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Estimation of extreme values of

time series with heavy tails

Arvid Naess∗

Abstract

The paper focuses on the development of a new method for extreme

value estimation based on sampled financial time series. Of particular con-

cern is the case when the extreme values asymptotically follow the Fréchet

distribution. The method is designed to account for statistical dependence

between the data points of the time series in a rational way. The proposed

procedure avoids the problem of declustering of data to ensure indepen-

dence, which is a common problem for the peaks-over-threshold method.

The goal has been to establish an accurate method for prediction of e.g.

the VaR based on recorded historical data.
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1 Introduction

Extreme value statistics, even in applications, have very often been based on
asymptotic results. This is done either by assuming that the episodical ex-
tremes, for example yearly extreme values, are distributed according to the
generalized (asymptotic) extreme value distribution with unknown parameters
to be estimated on the basis of the observed data. Or it is assumed that the
exceedances above high thresholds follow a generalized (asymptotic) Pareto dis-
tribution with parameters to be estimated from the data. The major problem
with both of these approaches is that the asymptotic extreme value theory it-
self cannot be used in practice to decide to what extent it is applicable for the
observed data. Hence, the assumption that an asymptotic extreme value dis-
tribution is the appropriate distribution for the observed data is based more or
less on faith or convenience.

In an effort to ameliorate this situation, we have developed an approach
to this problem that is less restrictive and more flexible than the one based
on asymptotic theory. In particular, it has the capability to capture sub-
asymptotic behaviour of the large data, which seems to be of some importance
for accurate prediction. The proposed approach presented in this paper is de-
veloped under the assumption that the appropriate asymptotic extreme value
distribution is the Fréchet distribution.

2 Cascade of Conditioning Approximations

Consider a stochastic process Z(t), which has been observed over a time interval,
(0, T ) say. Assume that values X1, . . . , XN , which have been derived from the
observed process, are allocated to the discrete times t1, . . . , tN in (0, T ). This
could be simply the observed values of Z(t) at each tj , j = 1, . . . , N , or it could
be average values or peak values over smaller time intervals centered at the tj ’s.
Our goal in this paper is to accurately determine the distribution function of the
extreme value MN = max{Xj ; j = 1, . . . , N}. Specifically, we want to estimate
P (η) = Prob(MN ≤ η) accurately for large values of η. An underlying premise
for the development in this paper is that a rational approach to the study
of the extreme values of the sampled time series is to consider exceedances
of the individual random variables Xj above given thresholds, as in classical
extreme value theory. The alternative approach of considering the exceedances
by upcrossing of given thresholds by a continuous stochastic process has been
developed by the authors [1, 2]. The approach taken in this paper would seem
to be the appropriate way to deal with the recorded data time series of, for
example, the daily largest wind speeds observed at a given location.

In the following we outline possible approaches for practical implementa-
tion of a cascade of approximations based on conditioning, where the first is a
Markov-like approximation in the sense that it is a one-step memory approxi-
mation. This approximation concept is described in [3, 4].



From the definition of P (η) it follows that

P (η) = Prob{X1 ≤ η, . . . , XN ≤ η}
= Prob{XN ≤ η|X1 ≤ η, . . . , XN−1 ≤ η}Prob{X1 ≤ η, . . . , XN−1 ≤ η}

=
N
∏

j=2

Prob{Xj ≤ η|X1 ≤ η, . . . , Xj−1} · P (X1 ≤ η) (1)

In general, the variables Xj are statistically dependent. Hence, instead
of assuming that all the Xj are statistically independent, which leads to the
classical approximation

P (η) ≈
N
∏

j=1

P (Xj ≤ η), (2)

the following Markov-like, or one-step memory, assumption will to a certain
extent account for dependence between the Xj ,

Prob{Xj ≤ η|X1 ≤ η, . . . , Xj−1 ≤ η} ≈ Prob{Xj ≤ η|Xj−1 ≤ η}, (3)

for 2 ≤ j ≤ N . This can be extended to

Prob{Xj ≤ η|X1 ≤ η, . . . , Xj−1 ≤ η} ≈ Prob{Xj ≤ η|Xj−2 ≤ η, Xj−1 ≤ η},
(4)

for 3 ≤ j ≤ N , and so on.
Eqs. (3) and (4) represent refinements of the Poisson assumption. One would

expect that such approximations would be increasingly more able to capture
statistical dependence between neighboring data in the time series. As will be
seen in the examples in the following section, P (η) computed using Eq. (4) is
quite close to the value obtained using Eq. (3). This indicates that in practice,
Eq. (3) is often able to capture the effect of statistical dependence in e.g. wind
speed data with good accuracy. However, there is no noticeable increase of
numerical effort by using Eq. (4), or its further refinements by including three
or more preceding peaks.

Combining Eq. (1) with Eq. (3), the following relation is obtained

P (η) ≈
∏N

j=2 p2j(η)
∏N−1

j=2 p1j(η)
(5)

where we have introduced the notation pkj(η) = Prob{Xj−k+1 ≤ η, . . . , Xj ≤ η}
for j ≥ k.

It is of interest to compare the values for P (η) obtained by using Eq. (5) as
compared to Eq. (2). Now, Eq. (2) can be rewritten in the form

P (η) ≈
N
∏

j=1

(

1 − α1j(η)
)

, (6)

where
α1j(η) = Prob{Xj > η} = 1 − p1j(η). (7)



Then

P (η) ≈ P1(η) = exp
(

−
N

∑

j=1

α1j(η)
)

(8)

Alternatively, Eq. (5) gives

P (η) ≈
N
∏

j=2

(

1 − α2j(η)
)

p11(η), (9)

where αkj(η) = 1 − pkj(η)/pk−1,j−1(η), for j ≥ k ≥ 2. That is

αkj(η) = Prob{Xj > η |Xj−k+1 ≤ η, . . . , Xj−1 ≤ η} (10)

denotes the exceedance probability conditional on k−1 previous non-exceedances.
From Eq. (9) it is obtained that,

P (η) ≈ P2(η) = exp
(

−
N

∑

j=2

α2j(η) − α11(η)
)

, (11)

since p11(η) ≈ exp(−α11(η)).
Conditioning on two previous observations Xj−2, Xj−1 preceding Xj gives

P (η) ≈ P3(η) = exp
(

−
N

∑

j=3

α3j(η) − α22(η) − α11(η)
)

, (12)

while conditioning on three prior observations leads to the equation

P (η) ≈ P4(η) = exp
(

−
N

∑

j=4

α4j(η) − α33(η) − α22(η) − α11(η)
)

, (13)

and so on. Therefore, extreme value prediction by the conditioning approach
described above reduces to estimation of (combinations) of the αkj(η) functions.
For most practical applications N >> 1, so that (k ≥ 2)

Pk(η) ≈ exp
(

−
N

∑

j=k

αkj(η)
)

. (14)

Going back to Eq. (8), and the definition of α1j(η), it follows that
∑N

j=1 α1j(η)
is equal to the expected number of exceedances of the threshold η during the
time interval (0, T ). Eq. (8) therefore expresses the approximation that the
stream of exceedance events constitute a (non-stationary) Poisson process. This
opens for an understanding of Eq. (11) and subsequent approximations by inter-
preting the expressions

∑N
j=k αkj(η)+αk−1,k−1(η)+ . . .+α11(η) ≈

∑N
j=k αkj(η)

as the expected effective number of (independent) exceedances provided by con-
ditioning on k − 1 previous observations.



3 Empirical Estimation of the Mean Exceedance Rates

It is expedient to introduce the concept of average conditional exceedance rates
(ACER) as follows,

εk(η) =
1

N − k + 1

N
∑

j=k

αkj(η) , k = 1, 2, . . . (15)

In practice there are typically two scenarios for the underlying process Z(t).
Either we may consider it to be a stationary process, or, in fact, even an ergodic
process. The other alternative is to view Z(t) as a process that depends on
certain parameters whose variation in time may be modelled as an ergodic
process in its own right. For each set of values of the parameters, the premise
is that Z(t) can be modelled as an ergodic process. This would be the scenario
that can be used to model long-term statistics [5].

For both these scenarios, the empirical estimation of the ACER function
εk(η) proceeds in a completely analogous way by counting the total number of
favourable incidents, that is, exceedances conditional on the requisite number
of preceding non-exceedances, for the total data time series and then finally
dividing by N − k + 1 ≈ N . This can be shown for the long-term situation by
using a similar analysis as in [5].

A few more details on the numerical estimation of εk(η) for k ≥ 2 are useful.
We start by introducing the following random functions,

Akj(η) = 1{Xj > η, Xj−1 ≤ η, . . . , Xj−k+1 ≤ η} , j = k, . . . , N, k = 2, 3, . . .
(16)

and

Bkj(η) = 1{Xj−1 ≤ η, . . . , Xj−k+1 ≤ η} , j = k, . . . , N, k = 2, . . . , (17)

where 1{A} denotes the indicator function of some event A. Then

αkj(η) =
E[Akj(η)]

E[Bjk(η)]
, j = k, . . . , N, k = 2, . . . , (18)

where E[·] denotes the expectation operator. Assuming an ergodic process, then
obviously εk(η) = αkk(η) = . . . = αkN (η), and it may be assumed that for the
time series at hand

εk(η) = lim
N→∞

∑N
j=k Akj(η)

∑N
j=k Bjk(η)

. (19)

Clearly, limη→∞

∑N
j=k Bjk(η) = N−k+1 ≈ N . Hence, limη→∞ ε̃k(η)/εk(η) = 1,

where

ε̃k(η) = lim
N→∞

∑N
j=k Akj(η)

N − k + 1
. (20)

In the following we shall use ε̃k(η) instead of εk(η) for k ≥ 2. The advantage
of using the modified ACER function ε̃k(η) for k ≥ 2 is that it is easier to
use for non-stationary or long-term statistics than εk(η). Since our focus is on



the values of the ACER at the extreme levels, we may use any function that
provides correct estimates of the ACER function at the extreme levels.

For both stationary and non-stationary time series, the sample estimate of
ε̃k(η) would be,

ε̂k(η) =
1

R

R
∑

r=1

ε̂
(r)
k (η) , (21)

where R is the number of realizations (samples), and

ε̂
(r)
k (η) =

∑N
j=k A

(r)
kj (η)

N − k + 1
, (22)

where the index (r) refers to realization no. r.
It is of interest to note what events are actually counted for the calcula-

tion of the various ε̂k(η), k ≥ 2. Let us start with ε̂2(η). It follows from
the definition of ε̃2(η) that ε̃2(η) (N − 1) can be interpreted as the expected
number of exceedances above the level η satisfying the condition that an ex-
ceedance is counted only if it is immediately preceded by a non-exceedance.
A reinterpretation of this is that ε̂2(η) (N − 1) equals the average number of
clumps of exceedances above η for the realizations considered, where a clump
of exceedances is defined as a maximum number of consecutive exceedances
above η. In general, ε̂k(η) (N − 1) then equals the average number of clumps
of exceedances above η separated by at least k − 1 non-exceedances.

Now, let us look at the problem of estimating a confidence interval for ε̃k(η).
The sample standard deviation ŝk(η) can be estimated by the standard formula,

ŝk(η)2 =
1

R − 1

R
∑

r=1

(

ε̂
(r)
k (η) − ε̂k(η)

)2
. (23)

Assuming that realizations are independent, for a suitable number R, e.g. R ≥
20, Eq. (23) leads to a good approximation of the 95 % confidence interval CI
=

(

CI−(η), CI+(η)
)

for the value ε̃k(η), where

CI±(η) = ε̂k(η) ± 1.96 ŝk(η)/
√

R . (24)

The approach to extreme value prediction presented in this paper derives
from an assumption about the sampled time series to be used as a basis for
prediction. This assumption derives from an underlying premise concerning
the relevant asymptotic extreme value distribution, which is assumed here to
be of Fréchet type. For independent data, this assumption can be expressed in
terms of the ACER function ε1(η) as,

ε1(η) ≈
[

1 + ξ
(

a(η − b)
)]−

1

ξ , η ≥ η0, (25)

for a suitable asymptotic tail marker η0, where a > 0, b, ξ > 0 are constants.
The implication of this assumption on the possible subasymptotic functional

forms of εk(η) cannot easily be decided. However, using the asymptotic form
as a guide, it is assumed that the behaviour of the mean exceedance rate in



the subasymptotic part of the tail will follow a function largely of the form
[

1 + ξ
(

a(η − b)c
)]−

1

ξ (η ≥ η1 ≥ b) where a > 0, b, c > 0 and ξ > 0 are suitable
constants, and η1 is an appropriately chosen tail level. Hence, it will be assumed
that

εk(η) ≈ qk(η)
[

1 + ξk

(

ak(η − bk)
ck

)]−
1

ξk , η ≥ η1, (26)

where the function qk(η) is weakly varying compared with the function
[

1 + ξk

(

ak(η − bk)
ck

)]−
1

ξk and ak > 0, bk, ck > 0 and ξk > 0 are suitable
constants, that in general will be dependent on k. Note that the values ck = 1
and qk(η) = 1 corresponds to the asymptotic limit, which is then a special case
of the general expression given in Eq. (26).

An alternative form to Eq. (26) would be to assume that

εk(η) ≈
[

1 + ξk

(

ak(η − bk)
ck + dk(η)

)]−
1

ξk , η ≥ η1, (27)

where the function dk(η) is weakly varying compared with the function ak(η −
bk)

ck . However, for estimation purposes, it turns out that the form given by
Eq. (26) is preferrable as it leads to simpler estimation procedures. This aspect
will be discussed later in the paper.

For practical identification of the ACER functions given by Eq. (26), it
expedient to assume that the unknown function qk(η) varies sufficiently slowly
to be replaced by a constant. In general, qk(η) is not constant, but its variation
in the tail region is usually sufficiently slow to allow for its replacement by a
constant. Hence, it is in effect assumed that qk(η) can be replace by a constant
for η ≥ η1, for an appropriate choice of tail marker η1. For simplicity of notation,
in the following we shall suppress the index k on the ACER functions, which
will then be written as,

ε(η) ≈ q [1 + ã (η − b)c]−γ , η ≥ η1, (28)

where γ = 1/ξ, ã = aξ.
In the practical analysis of data, first the tail marker η1 is provisionally

identified from visual inspection of the log plot (η, ln ε̂k(η)). The value chosen
for η1 corresponds to the beginning of regular tail behaviour in a sense to be
discussed below.

The optimization process to estimate the parameters is done relative to the
log plot. The mean square error function to be minimized is written as

F (ã, b, c, q, γ) =
N

∑

j=1

wj

∣

∣ log ε̂(ηj) − log q + γ [1 + ã(ηj − b)c]
∣

∣

2
, (29)

where wj =
(

log CI+(ηj) − log CI−(ηj)
)−2

denotes a weight factor that puts
more emphasis on the more reliable data points. The choice of weight factor is,
of course, to some extent arbitrary, and if it is considered more appropriate to
put a slightly stronger emphasis on the larger data, this can be simply achieved
by replacing the exponent −2 by, for example, −1 in the definition of wj .



One of the options for estimating the five parameters ã, b, c, q, γ is to use
the Levenberg-Marquardt least squares optimization method, which seems well
suited for the task at hand [6], especially if a simplified optimization approach
is implemented. This is obtained by observing that if ã, b and c are fixed
in Eq. (29), the optimization problem reduces to a standard weighted linear
regression problem. That is, with ã, b and c fixed, the optimal values of γ and
log q are found using closed form weighted linear regression formulas in terms
of wj , yj = log ε̂(ηj) and xj = 1 + ã(ηj − b)c. In that light, it can also be
concluded that the best linear unbiased estimators (BLUE) are obtained for
wj = σ−2

yj , where σ2
yj = Var[yj ] (empirical) [7, 8]. Unfortunately, this is not

a very practical weight factor for the kind of problem we have here because
it seems that the summation in Eq. (29) then typically would have to stop at
undesirably small values of ηj .

It is obtained that the optimal values of γ and log q are given by the relations,

γ∗(ã, b, c) = −
∑N

j=1 wj(xj − x)(yj − y)
∑N

j=1 wj(xj − x)2
, (30)

and
log q∗(ã, b, c) = y + γ∗(ã, b, c)x . (31)

To calculate the final optimal set of parameters, the Levenberg-Marquardt
method may now be used on the function F̃ (ã, b, c) = F (ã, b, c, q∗(ã, b, c), γ∗(ã, b, c))
to find the optimal values ã∗, b∗ and c∗, and then Eqs. (30) and (31) are used
to calculate the corresponding γ∗ and q∗. The optimal values of the parameters
may e.g also be found by a sequential quadratic programming (SQP) method [9].

For estimation of the confidence interval for the predicted return value pro-
vided by the optimal curve, the empirical confidence band is reanchored to the
optimal curve. The range of fitted curves that stay within the reanchored con-
fidence band will determine an optimized confidence interval of the predicted
return value. As a final point, it has been observed that the predicted return
value is not very sensitive to the choice of η1. However, this sensitivity should
always be checked to verify the robustness of the obtained predictions.

4 Concluding remarks

This paper proposes a new method for extreme value estimation in time series
with heavy tails leading to Fréchet type asymptotic extreme value distributions.
It is based on the concept of average conditional exceedance rate (ACER). It
is demonstrated that the exact extreme value distribution given by the data
can be captured within the inherent statistical uncertainty by using the ACER
functions.

To provide predictions of the high quantiles in the extreme value distribu-
tion, a representation of the ACER functions by a particular class of parametric
functions is proposed. This class of functions is constructed in such a way that
they are capable to some extent of capturing the subasymptotic behaviour of
the extreme value distribution. By this, more data may become available for
analysis, and better and more accurate predictions may ensue.
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