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Abstract

This paper proposes approaches for the analysis of multiple changepoint mod-
els when dependency in the data is modelled through a hierarchical Gaussian
Markov random field model. Integrated nested Laplace approximations are used
to approximate data quantities, and an approximate filtering recursions approach
is proposed for savings in compuational cost when detecting changepoints. All of
these methods are simulation free. Analysis of real data demonstrates the useful-
ness of the approach in general. The new models which allow for data dependence
are compared with conventional models where data within segments is assumed
independent.

1 Introduction

There is a substantial volume of literature devoted to the estimation of multiple change-
point models. These models are used frequently in econometrics, signal processing and
bioinformatics as well as other areas. The idea is that “time” ordered data (where time
may be fictitious and only refers to some natural ordering of the data) is assumed to
follow a statistical model which undergoes abrupt changes at some time points, termed
the changepoints. The changepoint split the data into contiguous segments. The para-
metric model assumed for the data usually remains the same accross segments, but
changes occur in its specification. For example, in the famous coal mining disasters
data (Jarrett 1979), disasters are usually assumed to follow a Poisson distribution where
the rate of this distribution undergoes abrupt changes at specific timepoints. Fearn-
head (2006) discusses how to perform exact simulation from the posterior distribution
of multiple changepoints for a specific class of models using recursive techniques based
on filtering distributions. The class of models considered assumes there is independent
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data within a homogeneous segment and the prior taken on the unknown model param-
eters for that segment allows analytical evaluation of the marginal likelihood for that
segment. The paper of Fearnhead (2006) proposes a very promising step forward for
the analysis of multiple changepoint models, where the number of changepoints is not
known beforehand. The methods developed there allow for efficient simulation of large
samples of changepoints without resorting to MCMC.

An obstacle which may prevent wide applicability of the methods discussed in Fearn-
head (2006), is the requirement that the assumed model must have a segment marginal
likelihood which is analytically tractable. However, such a requirement can usually not
be fulfilled by models which allow for data dependency within a segment, a desirable
model assumption in many situations. Dependency is possible across regimes in some
cases (see Fearnhead & Liu (2010)), but the assumption of independent data still holds.
The main aim of this paper is to provide a solution to these issues and open up the
opportunity for more complex segment models which allow for temporal dependency be-
tween data points. This is achieved by hybridizing the methods in Fearnhead (2006) and
recent methodology for the approximation of Gaussian Markov random field (GMRF)
model quantities due Rue, Martino & Chopin (2009) termed INLAs (integrated nested
laplace approximations).

The INLA methodology provides computationally efficient approximations to GMRF
posteriors, which have been demonstrated to outperform MCMC in certain situa-
tions (Rue et al. 2009). An advantage to such approximations is that they avoid
lengthly MCMC runs to fully explore the posterior support and they also avoid the
need to demonstrate that these runs have converged. Another advantage is that the
approximations may be used to estimate quantities such as the marginal likelihood of
the data under a given GMRF model, the quantity which is of main interest here.

The R-INLA package Rue et al. (2009) for R-2.11.1 may be used to do all of the
aforementioned approximations for a range of GMRF hierarchical models. It aims to
give an off-the-shelf tool for INLAs. Currently the package implements many expo-
nential family models; Gaussian with identity-link; Poisson with log-link; Binomial
with logit-link; for many different temporal GMRFs; random effects models; first order
auto-regressive; first and second order random walk (neither of these lists are exhaus-
tive!). The package also implements spatial GMRFs in two and three dimensions and
is currently still evolving with new additions on a regular basis. Use of this package
avoids programming for specific models as it allows the selection of any observational
data model and selection of the desired GMRF through a one line call to the R-INLA
package. The R-INLA package is used for all the computations on hierarchical GMRF
models in this paper.

The remainder of this paper is organised as follows. Section 2 gives a brief review
of recursions for performing inference conditional on a particular number of change-
points as given in Fearnhead (2006). In Section 3 possible computational difficulties
are discussed and solutions for these are proposed. Sections 4, 5 and 6 analyze real data
examples; analysis of data arising from comparative genomic hybridization studies; the
coal-mining data is analyzed using a model with dependency and this is compared with
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the analysis of Fearnhead (2006); and Well-log data is analyzed with a model that al-
lows for dependency between adjacent data points, such that the dependency relation
may change across segments. Section 7 explores the possibility of detecting change-
points under the assumption of a stochastic volatility model. The paper concludes with
a discussion.

2 Changepoint models

Fearnhead (2006) gives a detailed account of how filtering recursions approaches may
be applied in changepoint problems. Some of the models considered there used a
Markov point process prior for the number and position of the changepoints. In some
experimentation in the first authors PhD thesis, it was demonstrated that the posterior
distribution may sometimes be sensitive to the choice of the parameters for the point
process. In this paper, the focus will be on performing inference for a given number of
changepoints, although it is noted that the methods also apply to the case of a point
process prior. Denote k ordered changepoints by τ1, . . . , τk. The likelihood for the data
y1:n, conditional on the k changepoints and the latent field x, assuming segments are
independent of one another is

π(y|x,Θ) =
k+1∏

j=1

π(yτj−1:τj |xj,θj),

where τ0 = 0, τk+1 = n, xj represents the part of the GMRF x which belongs to the
jth segment, and Θ = (θT

1 , . . . ,θ
T

k+1)
T are the segment hyperparameters. Independent

priors are taken on the members of Θ and the changepoints. The prior taken on
changepoints is assumed to have the product form

πcp

k (τ1, . . . , τk) =
k∏

j=0

πcp

k (τj|τj+1).

where τ0 = 0, τk+1 = n. Note that this prior is conditional on a given number of
changepoints, k. The idea is to introduce a prior on k and use the hierarchical form

π(k|y) ∝ π(y|k changepoints)π(k) (1)

to find the most likely number of changepoints. Using this, the most likely positions
for the changepoints can then be found.

2.1 Recursively computing the posterior

Let L
(k)
j (t) = Pr(yt:n|τj = t − 1 and k changepoints). It is possible to compute L

(k)
j (t)

in a backward recursion;

L
(k)
j (t) =

n−k+j∑

s=t

P (t, s)L
(k)
j+1(s+ 1)πcp

k (τj = t− 1|τj+1 = s)
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with j going from k to 1 and t going from n−k+ j− 1 to j+ 1, where P (t, s) = π(yt:s)
is the marginal likelihood of the segment yt:s. The marginal likelihood of y1:n(= y)
under a k changepoint model may be computed as

Pr(y1:n|k changepoints) =
n∑

s=1

P (1, s)L
(k)
1 (s+ 1)πcp

k (τ1 = s). (2)

2.2 Choice of changepoint prior and computational cost

It will be necessary to compute k for a range of values, say k = 0, . . . , K in order
to do inference for k using (1). This requires computational effort in O(n2K2) and
storage requirements in O(nK2) which could be costly. Both of these may be reduced
by choosing an appropriate changepoint prior. One such prior, as used and noted
by Fearnhead (2006), is to take changepoint positions distributed as the even numbered
order statistics of 2k+1 uniform draws from the set {1, . . . , n−1} without replacement.
Doing this gives

πcp

k (τ1, . . . , τk) =
1

Zk

k∏

j=0

δ(τj|τj+1)

where δ(s|t) = t − s − 1 and the normalizing constant Zk =
(
n−1
2k+1

)
. Using this prior

restricts the dependence of the prior on the number of changepoints to the normalizing
constant only, meaning that

L
(k+r)
j+r (t) =

n−[k+r−(j+r)]∑

s=t

P (t, s)L
(k+r)
j+r+1(s+ 1)δ(τj+r = t− 1|τj+r+1 = s)

=

n−k+j∑

s=t

P (t, s)L
(k+r)
j+r+1(s+ 1)× (s− t)

=

n−k+j∑

s=t

P (t, s)L
(k)
j+1(s+ 1)× (s− t) = L

(k)
j (t).

Reusing these values gives a reduction by a factor of K in computational effort and
storage requirements. The recursions are now

L
(k)
j (t) =

n−k+j∑

s=t

P (t, s)L
(k)
j+1(s+ 1)δ(τj = t− 1|τj+1 = s) (3)

and

Pr(y1:n|k changepoints) =
n∑

s=1

P (1, s)L
(k)
1 (s+ 1)δ(τ0 = 0|τ1 = s). (4)

Then (4) is divided by Zk to correctly normalize the prior and (1) is obtained by
multiplying this by the prior weight for k changepoints π(k). This prior will be used in
the examples later.
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2.3 Posterior of any changepoint

Since the prior on changepoints makes the changepoint model factorizable, it is possible
to write down the posterior distribution of τj conditional on τj−1 and k;

Pr(τj|τj−1,y1:n, k changepoints) ∝ P (τj−1 + 1, τj)L
(k)
j (τj + 1)δ(τj−1|τj)/L(k)

j−1(τj−1 + 1).

This is used for the forward simulation of changepoints once the backward recursions
have been computed. It can also be used to give the modal changepoint configuration
as in the examples later.

3 Approximate changepoint inference using INLAs

The essential ingredient of the approach presented in this paper is to replace the segment
marginal likelihood P (t, s) in the recursions

L
(k)
j (t) =

n−k+j∑

s=t

P (t, s)L
(k)
j+1(s+ 1)δ(τj = t− 1|τj+1 = s)

with a segment marginal likelihood approximated using INLA. It is the case that P (t, s)
needs to be available in closed form to use a filtering recursions approach. This will
never be the case for hierarchical GMRF models, which can account for within segment
dependency. However, INLAs can be used to get a good approximation to P (t, s) for
hierarchical GMRF segment models. This opens up the opportunity for more realistic
data models in many cases. There are also two other advantages; the posterior of the
number of changepoints may be well approximated for model selection; the posterior of
any given changepoint can be computed to a high degree of accuracy.

There are two potential drawbacks of the proposed approach however. The first is
that it usually would not make sense to fit a GMRF model to a very small amount of
data. For example, at least five data points would be required to make fitting a first
order auto-regressive random field feasible. This means that for the approach to be
reasonable it may be necessary to expect changepoints to be quite well separated. The
second potential drawback contrasts with the first. For large amounts of data, using
INLAs to compute the n(n + 1)/2 segment marginal likelihoods necessary to compute
the recursions (3) could be costly. The next section proposes a way to overcome both
of these problems simultaneously, while still retaining almost all of the advantages of
using a filtering recursions approach. This proposed solution is termed reduced filtering
recursions for changepoints (RFRs).

3.1 Reduced filtering recursions for changepoints

The main idea of RFRs is to use all the data, but to do recursions on a smaller portion
of it, in order to approximate the full recursions (3). What is meant by this is that
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the recursion is not computed at every data point which takes O(n2) computation.
Generally if segments have a reasonable duration, changpoints can be detected in the
region where they have occurred. The change in regime will be detectable for a period
after the actual changepoint position, possibly until a time is reached where the support
for a one segment model may be greater than that for a two segment model. An analysis
using RFRs only permits a changepoint to occur at some point in the reduced time index
set {t1, . . . , tN} with ti < tj for all i < j. For convenience, define t0 = 0 and tN+1 = n.
So to clarify, the assumption is that if there is a changepoint between ti and ti+2 it can
be detected at ti+1. The spacing of the ti is clearly an important issue. If the spacing
is too wide, then changepoints will not be detected. If the spacing is too narrow, many
points are required for the reduced time index set to cover the entire data, consequently
increasing the computation time. The most natural choice is to take equally spaced
points if there is little prior knowledge of where changepoints occur. This corresponds
to ti = ig for some choice of g. The following example briefly explores the choice of g
and makes the preceding discussion clearer.

Consider the data simulated from a Gaussian changepoint model shown at the top of
Figure 1(a) with a clear change at 97. Searching for one changepoint, the bottom three
plots in Figure 1(a) show the posterior probability of a changepoint for reduced time
index sets given by g = 1, 5, 10. Note that g = 1 corresponds to the original recursions
(3). For g = 5 the changepoint is detected at 95 and g = 10 detects it at 100. In both
cases the changepoint is identified as the closest possible point to its actual position.
Figure 1 shows a similar example, where this time one of the segments is very short
(only 13 points). Again, the changepoint is identified at the closest possible position in
the cases of g = 1, 5. In the case of g = 10 it is the second closest, possibly due to the
noise in the data contaminating the separation of the two regimes.

3.1.1 Recursions on the reduced time index set

The changepoints are τ1, . . . , τk. The reduced time index set is {t1, . . . , tN}. The change-
point prior is now defined on the set of numbers {1, . . . , N} and we let cj = r if τj = tr.
That is, cj corresponds to the changepoint position if time is indexed by {1, . . . , N}
whereas τj gives the changepoint position in the reduced time index set {t1, . . . , tN}.
Define

R
(k)
j (r) = Pr(ytr+1:n|τj−1 = tr, k changepoints).

For r = N, . . . , k + 1

R
(k)
k (r) = P (tr + 1, n)δ(ck = r|ck+1 = N + 1).

Then recursively, for j = k − 1, . . . , 1 and r = N − k + j − 1, . . . , j + 1

R
(k)
j (r) =

N−k+j∑

s=r+1

P (tr + 1, ts)R
(k)
j+1(s)δ(cj = r|cj+1 = s).

6



0 50 100 150 200

−
2

−
1

0
1

2
3

4

time

y

0 50 100 150 200

−
2

−
1

0
1

2

time

y

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

g = 1

time

p
o
s
te

ri
o
r 

p
ro

b
a
b
ili

ty
 o

f 
c
h
a
n
g
e

0 50 100 150 200

0
.0

0
.2

0
.4

0
.6

0
.8

g = 1

time

p
o
s
te

ri
o
r 

p
ro

b
a
b
ili

ty
 o

f 
c
h
a
n
g
e

0 50 100 150 200

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

g = 5

time

p
o
s
te

ri
o
r 

p
ro

b
a
b
ili

ty
 o

f 
c
h
a
n
g
e

0 50 100 150 200

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

g = 5

time

p
o
s
te

ri
o
r 

p
ro

b
a
b
ili

ty
 o

f 
c
h
a
n
g
e

0 50 100 150 200

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

g = 10

time

p
o
s
te

ri
o
r 

p
ro

b
a
b
ili

ty
 o

f 
c
h
a
n
g
e

0 50 100 150 200

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

g = 10

time

p
o
s
te

ri
o
r 

p
ro

b
a
b
ili

ty
 o

f 
c
h
a
n
g
e

0 50 100 150 200

(a) (b)

Figure 1: Results when searching for one changepoint in simulated Gaussian data for
g = 1, 5, 10. It can be seen that the changepoint is detected at one of its closest
neighbouring points in the reduced time index set.
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After computing these, the approximate marginal likelihood of the data conditional on
k changepoints follows as,

Pr(y1:n|k changepoints) ≈
N−k∑

s=1

P (1, ts)R
(k)
1 (s)δ(c0 = 0|c1 = s)/Zk.

Once the grid spacing g is not too large, the approximation to the marginal prob-
ability of k changepoints should be reasonable for the competing models. There are
many computational savings with this approach. Using the RFRs decreases the number
of marginal likelihood evaluations required to nr(nr + 1)/2 where

nr = bn/g + 1− I(g = 1)c.

3.1.2 Distribution of any changepoint

When the maximum a posteriori number of changepoints has been found, it is deter-
mined where the changepoints are most likely to occur on the reduced time index set.
The distribution of cj is

Pr(cj|cj−1,y1:n, k) ∝ P (tcj−1
+ 1, tcj)R

(k)
j (cj)δ(cj|cj+1)/R

(k)
j−1(cj−1). (5)

Instead of generating samples of changepoints, our focus is to deterministically search
for the most probable changepoint positions a posteriori. The first changepoint detected
on the reduced time index set will be

ĉ1 = arg max
c1

Pr(c1|c0 = 0,y1:n, k).

Conditioning on ĉ1 the search proceeds for c2, . . . , ck in the same way. In general,

ĉj = arg max
cj

Pr(cj|ĉj−1,y1:n, k).

This procedure is repeated until the k changepoints tĉ1 , tĉ2 , . . . , tĉk are found.

3.1.3 Refining changepoint detection

Following detection of changepoints on the reduced time index set, it is possible to
refine the search and hone in on the most likely position of the changepoint. To begin,
the changepoints obtained from the search above, τ

(0)
1 , . . . , τ

(0)
k where τ

(0)
j = tĉj , will all

be multiples of g. Condition on the value of τ
(0)
2 to update τ1. Compute

P (1, τ)P (τ + 1, τ
(0)
2 )

using INLAs for τ ∈ {τ (0)1 − g + 1, . . . , τ
(0)
1 + g − 1}. Then take τ

(1)
1 to be the τ which

maximizes this. Similarly τ = τ
(1)
j maximizes

P (τ
(1)
j−1, τ)P (τ + 1, τ

(0)
j+1).
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This procedure can be carried out just once, or repeated until there is no difference
between updates.

This step does of course mean additional computation. It may not be necessary in
all cases to carry out a refined search. For example, the case of large n and small g
would mean that refining the search would probably give little additional information.

3.1.4 Exploring approximation error and computational savings in a DNA
segmentation example

To get a rough idea of the approximation error and the possible computational savings
to be made by using RFRs, the methods were applied in a DNA segmentation task
with a conditional independence model. This deviates from the general theme of the
paper (to fit models relaxing conditional independence), however, it is included to offer
some insight into RFRs in general.

DNA sequence data is a string of the letters A,C,G and T representing the four
nucleic acids, adenine, cytosine, guanine and thymine. Interest focuses on segmenting
the sequence into contiguous segments characterized by their C+G content. It is as-
sumed that within a segment the frequency of constituent acids follows a multinomial
distribution, so that

π(yt:s|θ) =
s∏

i=t

θ
I(yi=A)
A θ

I(yi=C)
C θ

I(yi=G)
G θ

I(yi=T)
T .

With a Dirichlet(α, α, α, α) prior on θ(t:s) the marginal likelihood for a segment is

P (t, s) =
Γ{4α}

Γ{α}4Γ{s− t+ 1 + 4α}
∏

j∈{A,C,G,T}
Γ
{
n
(t:s)
j + α

}

where n
(t:s)
j is the number of occurences of acid j ∈ {A,C,G,T} in the segment from t

to s inclusive.
The data analyzed is the genome of a parasite of the intestinal bacterium Escherichia

coli. The sequence consits of 48,502 base pairs, and so will provide a good measure of
the computational savings to be made for larger datasets when using RFRs. This data
has previously been analyzed by Boys & Henderson (2004), who implemented a hidden
Markov model using RJMCMC to select the Markov order within a segment. Here
however, a changepoint model assuming data in segments are independent is applied.
Cumulative counts of the nucleic acids over location along the genome are shown in
Figure 2.

The RFRs were applied to this data using an equally spaced reduced time index
set with g = 1, 5, 10, 15, 20, 25. The prior taken on the number of changes was uniform
on {0, 1, . . . , 20}. All runs were on a 2.5GHz processor written in C and the segment
marginal likelihoods calculated in a step before the recursions were computed. Table 1
gives the identified changepoints and the computing time for each analysis. The value
g = 1 corresponds to filtering recursions on the entire data. It can be seen that using
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Figure 2: Cumulative counts of A,C,G,T for the DNA data. Identified changepoints
are overlain (vertical lines).

g 1 5 10 15 20 25
Time taken (s) 1816.73 76.96 19.22 9.47 5.86 4.03
Changepoints − 175 175 175 175 175

20091 20100 20091 20091 20091 20091
20919 20919 20919 20919 20919 20919
22546 22584 22545 22545 22545 22545
24118 24118 24118 24118 24118 24118
27830 27830 27830 27830 27830 27830
− 31225 31225 31225 31225 −

33099 33100 33100 33100 33100 33088
38036 38035 38048 38010 38035 38035
46535 46535 46535 46535 − 46500

Table 1: Location of changepoints and computing time for DNA segementation ex-
ample. As g increases there is little deviation in changepoint estimates. Reported
changepoints are found after a refined search.
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RFRs does not appear to have a considerable effect on the detected changepoints.
However, there are drastic differences in computing time- the RFRs for g = 25 give a
450 fold decrease in computing time with respect to recursions on the full data set.

It should be noted that the computation of the marginal likelihoods can be nested,
although this was not done here. For example, the marginal likelihood calculations for
g = 5 could be reused for g = 10, 15, . . . and likewise, some of the calculations for
g = 10 can be used for g = 5 if it is desired to perform analysis for different values of g.

4 CGH studies of Coriel cell lines

Comparative genomic hybridization or CGH studies are used to detect chromosomal
aberrations in the genome in tumor tissue. Two tissue samples, one tumor and the other
healthy, are dyed with different fluorochromes (red and green). The two samples are
then mixed together. Aberrations present in the tumor DNA are detected by examining
the colour of the fluorescence emitted by the mixture of the two samples. A yellow
fluorescence indicates that there have been no amplifications or deletions in the tumor
sample. If the healthy tissue has been dyed red or green however, and the mixture
of the samples emits a red or green fluorescence, then there has been chromosomal
aberrations in the tumor tissue. After dying and mixing the tissue samples the emitted
fluorescence is translated into DNA copy number.

The data studied here is chromosome 11 of Coriel.05296 which has been previously
studied by Erdman & Emerson (2007) and Fridlyand, Snijders, Pinkel, Albertson &
Jain (2004). The data is available from the R package bcp (Erdman & Emerson 2007).
In this type of application, analysis is usually carried out on the log-to-base-two ratio
of the red-green intensities obtained from the DNA copy numbers from the fluorescence
experiments. The data is shown in Figure 3 for chromosome 11 (n = 185). The task
is to detect changepoints in this series. There has been some pre-processing of this
particular data to remove points with a negligible level of intensity and to correct for
background noise. The specifics of this pre-processing are described in Section 3.1
of Erdman & Emerson (2007). Even after pre-processing, this data can still be prone
to outliers or “short-lived changes” which can be attributable to false signals or a true
signal on a single strand of DNA.

Erdman & Emerson (2007) compare different changepoint analyses for this data.
They use models which do not explicitly account for dependence in the chromosome. Fridlyand
et al. (2004) use a Hidden Markov Model to account for the spatial dependency in the
copy number values. Following Fridlyand et al. (2004), a GMRF model is fitted to ac-
count for dependency in the series of copy numbers. The observational data is assumed
Gaussian with some variance σ2

y and mean µ given by identity link to an AR(1) field.
To be more specific,

yi ∼ N(µi, σ
2
y)

where µi = α + xi. The parameter α is an intercept and

xi = φxi−1 + εi, i = 2, . . . , n
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where εi ∼iid N(0, σ2
x). The definition is completed by assuming the marginal distribu-

tion of x1 is N(0, σ2
x/(1− φ2)).

There are a few advantages with this model; the mean copy number is modelled at
each location by the field; the model expoits the spatial dependence along the chro-
mosome; this model will be more robust to outliers, as the field can model extra intra
segment variability. In addition to allowing dependence between neighbouring locations
along the chromosome, the approach adopted allows for changes in this dependence pat-
tern across different segments through the persistence parameter (φ) of the AR(1) field.
A drawback of the approach in general is that both changepoints corresponding to small
segments (with length less than about three) may not be detected or correctly located.
In many applications however, this is usually not an issue, as segments of duration less
than three would generally not be expected. For a discussion on minimum segment
duration and priors in this context, see Girón, Moreno & Casella (2007).

Using the R-INLA package requires choosing parameters for the priors of σ2
y, σ

2
x and

φ. A Gamma prior is used for σ−2y and σ−2x . The prior on φ is specified through κ =

logit
(
1+φ
2

)
where κ ∼ N(µκ, σ

2
κ). Priors which are too diffuse could cause problems in

approximating marginal likelihoods for small segments, or may demand lots of gridding
in θ to get accurate approximations. This problem is not exclusive to INLAs. As noted
by Kass & Raftery (1995) Bayes factors (and marginal likelihoods), tend to be sensitive
to the choice of priors on the parameters. Priors were chosen to mimic the behaviour
of the data. These were

σ−2y ∼ Gamma(75, 0.5)

σ−2x ∼ Gamma(15, 0.1)

κ ∼ N(2, 1).

The prior on changepoints was taken to be uniform on the integers {0, . . . , 5}.
The results were obtained by running R-INLA on a 2.5GHz processor. The value

of g was taken to be 5. In performing the calculations in the INLA package, one may
use the mode of θ from the previous iteration as an initial value for the optimization
in the next iteration. This should speed up the convergence of the Newton-Raphson
scheme for finding the modal configuration of the GMRF. The approximate marginal
likelihoods took just over 10 minutes to compute. There was overwhelming support for
a two changepoint model. The posterior probability for this was 0.996. Changepoints
were found at 50 and 65. A refined search then moved these to 51 and 66. Conditional
on these changepoints, inference was performed for the segment fields. This is shown
in the bottom of Figure 3. It can be seen that the AR(1) field gives a very good fit
to the data. It is possible to assess qualitative differences between the three segments
by comparing the approximated marginal posteriors of σ−2y , σ−2x and φ (from INLAs)
shown in Figure 4. It appears that the segment between 51 and 66 has more posterior
support for a larger persistence parameter (mode is about 0.75 compared with 0.375).
This segment also appears to have larger variance for the observations and the field,
due to the noisier observations. Overall the segment from 66 to 185 is less noisy. This
could be due to the larger number of data points used to fit the field.
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Figure 3: Top: Log to base two of the red-green intensity ratio for Chromosome 11
of Coriell.05296 along the cell line. Note that the horizontal axis here is not scaled
identically to that shown in Figure 1 of Erdman and Emerson (2008). (this does not
affect the results). Bottom: Inferred changepoints (blue dashed vertical lines) and
latent AR(1) field (solid red) using an RFR analysis and INLAs to estimate the field
conditional on the detected changepoints.
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Figure 4: Approximate marginal posterior densities of φ, σ−2x and σ−2y for each of the
three segments.
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5 Coal mining disasters

This data records the dates of serious coal-mining disasters between 1851 and 1962
and is a benchmark dataset for new changepoint approaches. It has been analyzed
in Fearnhead (2006), Yang & Kuo (2001), Chib (1998), Green (1995), Carlin, Gelfand
& Smith (1992) and Raftery & Akman (1986), amongst others. In all of these analyses
it is assumed that observations arise from a Poisson process. This Poisson process is
assumed to have intensity which follows a step function with a known or unknown
number of steps. These steps or “jumps” in intensity occur at the changepoints. Other
models have also been fit to this data. For example, a smoothly changing log-linear
function for the intensity of the Poisson process:

λ(t) = ν exp{−γt}

(see for example Cox & Lewis (1966) and the original source of this data Jarrett (1979)).
The log-linear intensity model would favour more gradual change, rather than the
abrupt changes implied by changepoint models. There is an argument for some of the
elements of such a model that allows for gradual change. Although, as noted in Raftery
& Akman (1986), abrupt changes in this data are most likely due to changes in the coal
mining industry at the time, such as trade unionization, the possibility of more subtle
changes in rate could and should be entertained. A GMRF model applied to this data
should be able to model gradual as well as abrupt change.

As in Fearnhead (2006) a week is the basic time unit. The data spans 5,853 weeks
over 112 years. The latent field is taken as AR(1). This allows for an inhomogeneous
Poisson process within segments, opening up the possibility for gradual change. The
rate of the Poisson process is related to the field through a log-link function. More
specifically,

yi ∼ Poisson(λi)

where
λi = exp{α + xi}, i = 1, . . . , n.

The parameter α is an intercept and xi follows an AR(1) process with persistence
parameter φ.

Priors were chosen in the same way as the Coriel example by choosing them to
mimic the behaviour of the data. The priors chosen were

σ−2x ∼ Gamma(4, 0.01)

κ ∼ N(3, 1.892)

α ∼ N(0, 102).

Following Fearnhead (2006) and Green (1995), the prior on the number of changepoints
was taken to be Poisson with mean 3.

A spacing of g = 50 was used. Figure 5 (a) shows the posterior distribution of
the number of changepoints for the AR(1) latent field model. A two changepoint
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Figure 5: Coal mining data: results from an anlysis using INLAs and g = 50. The
figure on the left the posterior distribution of the number changes while that on the
right shows the cumulative counts of disasters and the changepoints indicated (blue
dashed line).

model is most likely, a posteriori. Figure 5 (b) shows the most likely position of these
changepoints computed using the methods of Section 3.1.2. A plot of the log intensity
of the poisson process over the entire 5,853 weeks is shown in Figure 6, obtained by
conditioning on the MAP changepoint positions from the two changepoint model. From
this it can be argued that a model accounting for gradual changes in the rate of disasters
is not entirely unjustified. There appears to be small fluctuations of rate around a
mean rate. These fluctuations are treated differently to the two abrupt changes that
are detected by the GMRF model.

There is a discrepancy between the posterior of the number of changepoints from
RFRs given here and that given in Fearnhead (2006) (see Figure 1(a) there) which both
allowed changepoints at all possible points in the data. This is a good opportunity
to further investigate the approximation error introduced by using RFRs. Figure 7
shows the posterior number of changepoints obtained from using grids of size g =
1, 5, 10, 15, 25, 50 for the model and prior assumptions in Fearnhead (2006). It is clear
that as the value of g increases, the RFRs become less sensitive to small or short lived
changes for this model, as might be expected. However, at large values of g the ability
to pick out two abrupt changes does not seem to diminish.

It is possible to compute approximate Bayes factors for the GMRF and independent
data models conditional on there being a given number of changepoints. The marginal
likelihood of the data conditional on k changepoints is approximately

π(y1:n|k changepoints) ≈
N−k∑

s=1

P (1, ts)R
(k)
1 (s)δ(c0 = 0|c1 = s)/Zk.

The different models are characterized by model assumptions and consequently the way
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Figure 6: Coal mining data: Inferred log intensity by week.
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Figure 7: Investigating approximation error in RFRs; results from analyses of coal
mining disasters with different values of g using the model from Fearnhead (2006).
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in which the segment marginal likelihoods are computed;

PINLA(t, s) and PANALYTIC(t, s).

The approximate Bayes factor for the GMRF model versus the analytic model condi-
tioning on k changepoints is given by

Bk =
πINLA(y|k changepoints)

πANALYTIC(y|k changepoints)
.

For a one changepoint model, this was B1 = 4.63 and for two changepoints it was
B2 = 5.25. This implies that there is more support for the GMRF model in these cases,
suggesting that modelling small scale variation in the rate of disasters is worthwhile.
This supports the interpretation of Figure 6.

6 Well-log data

The Well-log data (Ó Ruanaidh & Fitzgerald 1996) records 4050 measurements on the
magnetic response of underground rocks obtained from a probe lowered into a bore-hole
in the Earth’s surface. The data is shown in Figure 8. The model fitted here aims to
account for dependency in the nuclear magnetic response as the probe is lowered into
the bore-hole. This is an improvement on the independence model fitted in Section 4.2
of Fearnhead (2006); as the probe lowers, it moves through different rock strata and
some will have greater depth than others. Therefore, it would be expected to see some
correlation between observations arising from rock strata of the same type. Fitting this
model can also reduce the detection of false signals as changepoints. See Fearnhead &
Clifford (2003) for a discussion of the issue of outliers in Well-log data.

Since this is a large data set (n = 4050) a larger value of g should be used to
isolate regions where changepoints occur. This vastly reduces the computational time
required for the necessary approximations for data of this size. Analyses using g =
10, 25, 50 were carried out, choosing the prior parameters using the information obtained
from an analysis using MCMC and an independent data model. In each instance
numerical instability prevented the recursions on the reduced time index set from being
computed. This happened because the scale of the data is so large (∼ 105). In general,
measures need to be introduced to prevent numerical instabilities in these types of
recursions. In the computations of the RFRs a measure similar to those in Fearnhead
(2005) (changepoint models) and Scott (2002) (hidden Markov models) was employed.
This consisted of two steps to ensure stability. Firstly, compute

R
(k)
j (r)

R
(k−1)
j−1 (r + 1)

=

N−k+j∑

s=r+1

δ(cj = r|cj+1 = s) exp
{

logP (tr + 1, ts) + logR
(k)
j+1(s)

− logR
(k−1)
j−1 (r + 1)

}
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Figure 8: Well-log data. Observations are the nuclear magnetic response recorded by a
probe being lowered into a bore-hole in the Earth’s surface.

and then

logR
(k)
j (r) = logR

(k−1)
j−1 (r + 1) + log

(
R

(k)
j (r)

R
(k−1)
j−1 (r + 1)

)
.

The reason these do not work here is that the large scale of the data means that
logP (tr + 1, ts) is much larger than usual, since it is the marginal likelihood of g =
10, 25, 50 points. It thus makes the argument to the exponential function in the first
stabilizing equation cause instabilities at some points. This then carries through the
remainder of the recursions.

A simple way to overcome the issues is to just do an equivalent analysis of the data
on a smaller scale, so that large logP (tr + 1, ts) is avoided. Simply dividing the data
by its sample standard deviation s reduces the scale appropriately. The parameters for
the prior specification were also adjusted to allow for the difference in scale to give the
priors

σ−2y ∼ Gamma(1, 0.01)

σ−2x ∼ Gamma(1, 0.01)

κ ∼ N(5, (
√

10)2).

The prior on κ here gives most prior weight to values of φ in [0.9, 1) (about 93%).
This will allow the possibility for the AR(1) GMRF model to closely approximate the
behaviour of a random walk of order one. However, it still allows the freedom for
the dependence pattern to vary across segments. Fearnhead (2006) fits a random walk
model of order one to this data, showing that a latent field can be robust to short lived
changes and outliers for Well-log data. A uniform prior on {0, . . . , 30} was taken for
the number of changepoints.
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Figure 9: Posterior of the number of changepoints for the Well-log data fitting an AR(1)
GMRF model. This suggests the most likely number of changepoints a posteriori is 19.

For the final analysis g was taken to be 25. This reduced the necessary number
of approximate marginal likelihood approximations from roughly 8.2× 106 (for g = 1)
to 1.3 × 104; over 600 times less. The computations for these approximations took
about a day of computing time. This appears lengthly, however this should be judged
along with the fact that the model is more flexible and that the mean signal can be
estimated at every point in the data. Figure 9 shows the posterior probability of the
number of changepoints. The mode is at 19, but there appears to be support for up to
22. Conditioning on 19 changepoints, their locations were determined using the search
strategy outlined in Section 3.1.2. These locations were then refined to hone in on the
actual changepoint positions. Conditioning on these positions inference was carried out
for the latent field. This is shown in the top figure of Figure 10. The field appears
to follow the trend of the data closely, while the changepoint model caters for abrupt
change. Fearnhead (2006) compared the results of a first order random walk field to
those from an independent Gaussian model for the data. Similarly, the results from the
GMRF model here are compared with those obtained using an MCMC sampler with
an independent data model on the Well-log data. For comparison, the 54 most likely
changepoints (mode of posterior) were taken from the independent Gaussian model,
and segment means were computed conditional on these (bottom of Figure 10). It
can be seen that the independent model is sensitive to changes in the mean and is
conservative when inferring changepoints (more rather than less). The GMRF model
however appears to be more robust to noisy data points and only infers changepoints
when abrupt changes occur in the field.
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Figure 10: Well-log data: results from RFRs and INLA (top) and independent data
model.
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Figure 11: Stochastic volatility data: Simulated observed data with changepoints indi-
cated with blue dashed line (left) and log of simulated latent volatilities (right).

Parameter Segment 1 Segment 2 Segment 3
Length 100 50 50
log β 0 2 0
φ 0.8 0.9 0.7
σ2
x 0.012 0.052 0.092

Table 2: Stochastic volatility: parameters used to simulate data.

7 Stochastic volatility data

In this example it is demonstrated how INLAs can be used with RFRs to estimate
changepoint models where the segment observations are assumed to arise from a stochas-
tic volatility model.

The segment model assumed is

yi ∼ N
(
0, β2exi

)
, i = 1, . . . , n.

with x following an AR(1) process with persistence parameter φ and innovation variance
σ2
x where exp{log β} may be interpreted as an intercept for the volatilities. Data in

different segments are assumed independent, so that concern here is only in the complex
intra segment correlation structure.

Simulated data was used to test out the methods. This had two changepoints and
is described in Table 2. It is shown in Figure 11 along with a plot of the generated
latent volatilities.

Prior parameters for computing the segment marginal likelihoods were roughly
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Figure 12: Stochastic volatility data: Posterior distribution of the number of changes.

guessed based by applying INLAs to the entire data. The priors were

σ−2x ∼ Gamma(30, 0.02)

κ ∼ N(3, 1).

The required computations took about 5 minutes using a reduced time index set
with equal spacing and g = 5. A two changepoint model had almost all of the posterior
weight, although there was minor support for three changepoints. See Figure 12. The
approximation works well in this situation because the change is quite noticeable.

In some other simulated data which the methods were applied to, it was found that
the approach was poor at detecting any changepoints when there was only a small (or
no) change in the intercept of the latent volatilities log β. It was desired that smaller
changes, for example, a change in just the persistence parameters across segments, could
be detected. This did not seem to be the case however (results not shown).

8 Discussion

This paper demonstrates two new useful approximate methods for changepoint prob-
lems when the assumption of independent data is relaxed. The first of these was INLAs,
a new approximate inference method for GMRFs due to Rue et al. (2009). This allows
the marginal likelihood for complex segment models to be evaluated approximately, so
that it may be used for an approximate filtering recursions approach.

Some computational considerations led to the second proposed method. Instead of
performing filtering recursions analysis on the entire data, RFRs were introduced so
that recursions may be computed only on a reduced time index set, thus using all of
the data, but only searching for changepoints in the general region where they occur.
It was demonstrated that this method can be useful in cutting computation time for
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larger datasets by applying it to a DNA segmentation example with about 49,000 data
points.

The hybrid INLAs-RFRs methodology was applied to four different data examples.
The first of these involved detecting changepoints in DNA copy number in CGH studies
of Coriel cell lines. The second example was an analysis of the coal mining disasters
data where the model allowed for small scale variation in the intensity of the process
and allowed for week to week dependency. This new model was more supported by
the data than the usual step function intensity models which are often fitted. This
was demonstrated by approximate calculation of Bayes factors for the GMRF model
and the independent data model for one and two changepoint models. The GMRF
model out-performed the independent data model in both cases. The third example
was an analysis the Well-log data ofÓ Ruanaidh & Fitzgerald (1996). It was shown
that allowing for segment dependency can be more robust to noisy observations, and
that unnecessary changepoints (short lived changes, outliers etc.) are not inferred in
this case. For the final example, the methods were applied to some simulated stochastic
volatility data. Performance was satisfactory when changes were large, but it was noted
that more subtle changes in the underlying segments were not detected. This is an area
for improvement of the proposed methodology.

It is worth noting again that RJMCMC would be practically infeasible for the data
models considered here. This gives the approximate approach even more of an advan-
tage. This is true especially in the case of models which require good corresponding
proposal densities to perform well when it comes to MCMC, such as stochastic volatility
models.

Overall, this paper has explored a promising new direction for estimation of change-
point models by creating a hybrid of two popular methods in their respective fields,
namely INLAs in the GMRF field of study, and filtering recursions for sequential change-
point model estimation. Other data models are possible which have not been applied
to any of the examples in this paper. For example, it is possible to have higher order
Markov dependencies for random walk fields in the R-INLA package. Zero inflated
Poisson and Binomial data models are also possible.
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