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Abstract

Gaussian random fields (GRFs) are the most common way of modelling struc-
tured spatial random effects in spatial statistics. Unfortunately, their high com-
putational cost renders the direct use of GRFs impractical for large problems and
approximations are commonly used. In this paper we compare two approximations
to GRFs with Matérn covariance functions: the kernel convolution approximation
and the Gaussian Markov random field representation of an associated stochastic
partial differential equation. We show that the second approach is a natural way to
tackle the problem and is better than methods based on approximating the kernel
convolution.

1 Introduction

Problems that have a non-negligible spatial component are ubiquitous in environmental
statistics. In contrast to traditional statistical modelling, practical problems in spatial
statistics are, by and large, computational in nature. Most applications feature large sets
of data collected at irregular locations, which necessitates the development of fast and
efficient methods for computing both the point estimates and the associated uncertainties
of the parameters in the model.

Throughout this paper, we will consider the following generic scenario. Assume that
we have observed some data {yi}Ni=1 at some spatial locations {si}Ni=1 and that we have
a hierarchical model for this observation process (Diggle and Ribeiro, 2006)

yi|xi,θ i.i.d.∼ π(yi|xi,θ)

x ∼ N (µ(θ),Σ(θ))

θ ∼ π(θ),
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where θ is a vector of model parameters; µ(θ) is a model for the mean of the underlying,
unobserved spatial process x; Σ(θ) is the covariance matrix of x; and π(θ) is a prior
on the vector of parameters. In most applications, we are interested in the posterior
distribution of parameters (θ,x) given the data y. An application of Bayes’ formula
shows that the posterior is given by

π(θ,x|y) ∝ π(θ)π(x|θ)

N∏

j=1

π(yj |xj ,θ).

In most situations, the posterior will not be of a standard form and it is necessary to
investigate it numerically.

The standard method for specifying the covariance matrix Σ(θ) is to define it as

Σij = c(si, sj),

where c(si, sj) is a covariance function, which forces the covariance matrix to be positive
semi-definite. In general, finding useful covariance functions is difficult and typically it is
assumed that the covariance between two points only depends on the distance between
the points (or in the nomenclature of spatial statistics, that x is a stationary, isotropic
random field). The class of Gaussian random fields that we are focussing on in this
paper are the Matérn random fields, which are stationary, isotropic random fields with
covariance functions given by1

cν(si, sj) =
σ2

Γ(ν + d/2)(4π)d/2κ2ν2ν−1
(κ ‖si − sj‖)ν Kν (κ ‖si − sj‖) (1)

where κ, σ2, ν > 0. It can be shown that the parameter ν defines the smoothness of the
random field, whereas κ is a scale parameter and σ2 is a variance parameter. Matérn
random fields are popular models in many areas of applied statistics where the ability to
specify the smoothness of the field is useful. Furthermore, the Matérn family includes
two of the most popular covariance models—the exponential covariance function, which
occurs when ν = 1/2, and the Gaussian covariance function, which is the limit case as
ν →∞.

The major problem with using non-compactly supported covariance functions (such
as the Matérn covariance functions) is that the resulting covariance matrices are com-
pletely dense and, therefore, inference with (1) has a computational complexity of O(N3),
where N is the number of data points. This makes direct use of the Matérn covariance
function manifestly unsuitable for practical inference on moderate to large datasets. This
is, of course, not a new problem in spatial statistics and a number of approximations
have been developed to overcome this problem such as covariance tapering (Furrer et al.,
2006) and predictive process modelling (Banerjee et al., 2008).

Since the 1980s, there has been a great deal of work done on Gaussian Markov
random fields (GMRFs), especially over graphs. In practical situations, this Markov

1The scaling that we are using for the Matérn covariance function is slightly non-standard. It has
been chosen to reflect the solution to the stochastic partial differential equation defined below.
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property essentially forces the precision matrix Q = Σ−1 to be sparse. The sparsity
of the precision matrix allows for computation to be performed in O(n3/2) operations,
where n is the number of vertices in the graph, if the problem is two-dimensional (Rue
and Held, 2005). This reduction in computational complexity allows for the solution of
really quite large spatial models (for instance, a two-dimensional second order conditional
auto-regressive (CAR) model with ∼ 200, 000 nodes). Furthermore, the Markov property
allows us to use fast approximate inference methods, such as INLA (Rue et al., 2009),
to compute with these models.

The Markov random fields that we are considering in this paper are the stationary
solutions to stochastic partial differential equations (SPDEs) of the form

(κ2 −∆)α/2x(s) = σW (s), s ∈ R2, (2)

where ∆ = ∂2

∂s21
+ ∂2

∂s22
is the Laplacian on R2; W (s) is white noise (which in two dimensions

can be thought of as the ‘derivative’ of the Brownian sheet); α is a positive integer related
to the smoothness parameter in (1) by ν = α−d/2, where d is the dimension of the space;
and κ and σ are the scale and variance parameters from the Matérn covariance function.
In order to assure that x(s) is an ordinary random field, we assume that α > d/2, which
forces the associated smoothness parameter ν to be positive. We note here that the
model (2) can be easily extended in a number of ways to give non-stationary Gaussian
random fields on the sphere and other more general spatial domains.

The major aim of this paper is to demonstrate that, for this class of models, methods
based on the SPDE formulation aresignificantly faster for practical computation than
methods based on the covariance function. For comparison, we will consider a mathe-
matically equivalent method based on a convolution (or moving average) representation
of the random field

x(s) =

∫

R2

k(s, s′) dW (s′), (3)

where k(s, s′) = cη(s, s
′) is the Matérn covariance function with smoothness parameter

η = (α− d)/2. In Section 2, we will show that this convolution representation is equiv-
alent to the solution of the SPDE (2). Method based on approximations to (3) are very
popular in spatial statistics, as the kernel function k(s, s′) can be quite general and can
be used to generate non-stationary, anisotropic random fields.

In the remainder of the paper, we will firstly review the link between the SPDE (2)
and the convolution representation (3) and discuss the practical problems that are en-
countered when using convolution representations as a basis for a computational method.
In Section 3 we will review the methods of Lindgren et al. (2010) for constructing a
GMRF directly from (2). In the following section we will compare the accuracy and per-
formance of the SPDE and convolution field methods. Finally, we will discuss the various
extensions of the SPDE method and give reasons apart from computational efficiency
that SPDEs are good models in spatial statistics.
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2 Stochastic partial differential equations and convolution
fields

In order to demonstrate the link between convolution representation of a Matérn field
and the SPDE (2), we need to look at precisely what we mean by a solution to a
SPDE2. There are many different concepts of a solution, but in this paper we will be
mainly interested in the solution defined by Walsh (1986). In order to define a solution,
we need a class of test functions that can be used to ‘pick out’ enough features of the
equation to completely define it. The standard choice is to take the test functions to be
the class of smooth functions that go to zero at infinity. We then define a solution to be
any random field x(s) that satisfies

∫

R2

x(s)(κ2 −∆)α/2φ(s) ds = σ

∫

R2

φ(s) dW (s), (4)

for every smooth test function φ(s) (Walsh, 1986). The integral on the right hand
side of (4) is, by definition, a Gaussian random variable with mean zero and variance∫
R2 |φ(s)|2 ds. The link between (4) and convolution fields can be seen by a careful choice

of the test function φ(s): take φ(s) to be the solution to

(κ2 −∆)α/2φ(s) = ψ(s),

for some smooth test function ψ(s). It follows from the basic properties of (κ2 −∆)α/2

that φ(s) is a smooth function. If we use this φ(s) in (4), we get
∫

R2

x(s)ψ(s) ds =

∫

R2

(κ2 −∆)−α/2ψ(s) dW (s). (5)

In order to make it the rest of the way to the convolution representation, we need to
know what (κ2 −∆)−α/2ψ(s) looks like. Fortunately, as we are working in R2, Fourier
transform methods can be used to find an integral representation of the solution, namely

(κ2 −∆)−α/2ψ(s) =

∫

R2

cη(s, t)ψ(t) dt,

where cη(s, t) is the Matérn covariance function (1) with smoothness parameter η =
(α − d)/2. The link between the Matérn covariance function and fractional PDEs was
noted by Whittle (1963). Plugging this integral representation into (5) and changing
the order of integration, we get

∫

R2

x(s)ψ(s) ds =

∫

R2

(∫

R2

cη(s, t) dW (t)

)
ψ(s) ds,

for every smooth test functions ψ(s). This is the weak form of the equation

x(s) =

∫

R2

cη(s, t) dW (t), (6)

which is our desired result, namely equation (3).

2This section is, necessarily, more technical than the other parts of this paper. The message is that
the solution of (2) can be written as (6). This representation forms the basis for the computational
method described in Section 2.1.
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ti

Figure 1: The typical design for the kernel approximation. Highlighted in grey is the
box Bi and the centre point is ti.

2.1 Computing with convolution representations

The typical way to use the convolution field representation (6) is to replace the integral
by a sum

x(s) ≈
n∑

i=1

cη(s, ti)ξi

where ti are the midpoints of the boxes Bi and ξi ∼ N(0, |Bi|) are independent and
n is the number of boxes (see Figure 1) (Xia and Gelfand, 2005). Unfortunately, this
typical approach does not work for general Matérn fields—to see this we note that the
kernel function cη(t, s) is singular if η = (α− d)/2 ≤ 0. This can occur as we have only
assumed that α > d/2 (which ensures the covariance itself isn’t singular). As α is related
to the smoothness of the random field (Bolin and Lindgren, To appear), this says that
the typical convolution approach is only possible for random fields that have more than
d/2 mean square continuous derivatives.

This problem can be rectified by using a more appropriate discretisation of (6). One
possibility is to take

x(s) ≈
n∑

i=1

(
1

|Bi|

∫

Bi

cη(s, t) dt

)
ξi,

where the integral smooths out the singularity in the kernel function. Clearly, this is
only a reasonable approach if the integral can be computed cheaply. In one dimension,
where the ith box is Bi = [ti,L, ti,R], this integral can be evaluated exactly in terms of
modified Struve functions as

1

ti,R − ti,L

∫ ti,R

ti,L

cη(s, t) dt =
σ2

2κ2ηD
(sLI(η, κ|sL|)− sRI(η, κ|sR|))

where sL/R = s − ti,L/R, D = ti,R − ti,L, I(η, t) = Kη(t)Lη−1(t) + Lη(t)Kη−1(t), and
Lζ(t) is the modified Struve function with parameter ζ (Gradshteyn and Ryzhik, 1994,
Equation 6.561.4). Figure 2 shows a kernel for η = 1 along with the corresponding
smoothed version. We have been unable to analytically compute this integral for a two
dimensional field.
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Figure 2: A comparison of the standard kernel function and the smoothed kernel function
for α = 2 (η = 1/2) and κ = 20.

A simple test when assessing the quality of a method for approximating a random
function is to investigate how well it can represent simple deterministic functions. Figure
3 shows the best representation in each basis to the function x(s) ≡ 1, when α = 2,
κ = 20 and n = 11. There are two things immediately apparent from this figure: the
simple kernel fails to reproduce constant functions, and there are significant edge effects
when using kernel methods. The first problem can be partially alleviated by taking more
points—when n = 51 the error continues to oscillate but its magnitude is reduced to
around 1%. The second problem cannot be fixed, however the common work-around is
to enlarge the region of interest. It can be seen that the area effected is of the same
order of magnitude as the range of the random field (which is around

√
8ν/κ ≈ 0.17

Lindgren et al., 2010). The red line in Figure 3 is the best representation of x(s) ≡ 1
in the finite element basis (defined in Section 3). This basis, which does not depend
on the parameters of the random field can exactly represent constant (as well as linear)
functions.

The effect of smoothing the kernels can be easily seen in Figure 4. This shows a
comparison of the Kriging estimate to a one dimensional function re-construction prob-
lem using the typical kernel approximation, the smoothed kernel approximation, and
the GMRF representation (defined in the next section). In order to demonstrate the
differences between the methods, we have taken only eleven equally spaced knots/basis
functions at locations that do not correspond to the data. We have taken α = 2,
which results in a field with one continuous derivative. The instability of the common
kernel approximation is immediately clear from Figure 4(a). We also note that er-
ror in the GMRF representation is comparable with the error from the smoothed kernel
approximation and is never worse than the common kernel estimator. We also note that,
assuming you can even compute it, the smoothed kernel approximation is significantly
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Figure 3: This figure shows the error in the approximations to x(s) ≡ 1 for all three
sets of basis functions for α = 2 and κ = 20. The blue line shows the simple kernel
approximation. The smoothed kernel approximation (green line) behaves much better,
although it does demonstrate edge effects. The finite element basis used for the GMRF
representation of the SPDE (red line) reproduces constant functions exactly.

Dimension Kernel GMRF

1 O(Nn2 +mn+ n3) O(N +m+ n)

2 O(Nn2 +mn+ n3) O(N +m+ n3/2)

Table 1: Asymptotic operation counts for the calculation of the n weights for the Kriging
estimator E(x(s)|Y, θ) =

∑n
i=1wiφi(s), where φi(s) are the basis functions. Here N is

the number of data points and m is the number of kriging locations. It is assumed that
N > n.

more computationally expensive than the GMRF representation—in terms of compu-
tational complexity, O(n3) vs O(n), where n is the number of knots/basis functions.
While the reduction in computational complexity in two dimensions is smaller—O(n3)
vs O(n3/2)—it is more significant as n is typically much larger in two dimensions than it
is in one (cf. the curse of dimensionality). Table 1 gives the asymptotic operation counts
for both methods. It should be noted that if N � n the kernel methods may be faster
than the SPDE method.

3 GMRF representations of SPDEs

In this section we will outline the method of Lindgren et al. (2010) for constructing
efficient GMRF representations of (2) for integer values of α. In the interests of clar-
ity, we will particularly focus on the case α = 2, which corresponds to a second or-
der conditional autoregression. For the general case, we refer the interested reader

7



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−1

0

1

2
Optimal

Kernel

Smooth Kernel

GMRF

(a) Comparison of the Kriging estimates
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(b) The deviation from the optimal Kriging estimates

Figure 4: The above figures show the one dimensional Kriging when α = 2 and κ = 20
with 11 knots. The GMRF representation, detailed in Section 3 is almost as accurate as
the smoothed kernel approximation and is much cheaper and much more straightforward
to compute. The erratic behaviour of the kernel method can be clearly seen.
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to Lindgren et al. (2010).
As we cannot represent R2 on a computer, the first thing that we need to do is restrict

our attention to some bounded region D in R2, usually a rectangle. This rectangle needs
to be chosen large enough to avoid any effects from the artificial boundary infecting the
solution. Given such a bounded region D, the next step is to cover it in triangles in
such a way that the n vertices are well distributed throughout D. It is important to
note that the location of these vertices is in no way related to the location of the data
points. With this in place, we will construct an approximate solution to (2) using the
finite element method.

The key point in the finite element method is to replace the smooth test functions
in (4) with N well chosen piecewise linear functions. For the ith vertex in our triangu-
larisation, we define the test function φi(s) to be the piecewise linear function that is
equal to one on vertex i and zero on all other vertices. Using these finite element test
functions in (4) for α = 2 leads to the linear equation

(
κ2C̃n + Gn

)
x̃n

d
= N(0, C̃n),

where the matrices are given by

[C̃n]ij =

∫

D
φi(s)φj(s) ds

[Gn]ij =

∫

D
∇φi(s) · ∇φj(s) ds.

These integrals can be computed explicitly (see, for example, Lindgren et al. (2010)) and
are only non-zero if vertex i is a neighbour of vertex j. Therefore, all of these matrices
are sparse (and, in fact, symmetric positive semi-definite), which makes them amenable
to fast numerical methods.

In order to complete the approximation, we note that

x̃n
d
= N(0, Q̃−1),

where Q̃ =
(
κ2C̃n + Gn

)T
C̃−1n

(
κ2C̃n + Gn

)
. Unfortunately, as C̃n is not a diagonal

matrix, Q̃n is not sparse, however we follow Lindgren et al. (2010) and replace C̃n by
the diagonal matrix Cn that has on its diagonal the row sums of C̃n. The resulting
GMRF representation is

xn
d
= N(0,Q−1n ), (7)

where Qn =
(
κ2Cn + Gn

)T
C−1n

(
κ2Cn + Gn

)
.

A comparison of the kernel estimate and the GMRF representation for a two-dimensional
kriging problem is presented in Figure 5. In this case, we have taken our parameters to
be κ = 20 and α = 3, which results in the field having two mean-squared derivatives. It
is clear from Figure 5(a) that the error in the kernel estimator is strongly related to the
location of the kernels. This does not happen in the GMRF case.
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(a) The kernel approximation (b) The GMRF representation

Figure 5: The above figures show the deviation from the optimal Kriging estimate for a
two dimensional problem with α = 3 and κ = 20 with 11 knots in each direction. The
dashed circles in 5(a) show the location of the integration points ti, while the dashed lines
in 5(b) show the triangles over which the finite element approximation is calculated. The
dark areas in each figure show the regions of large deviation from the optimal estimate.

4 Discussion

The main thesis of this paper is that methods bases on GMRF approximations to SPDEs
are superior to methods based on the corresponding kernel methods. Of course, such
blanket statements need to be unpacked carefully and this section is devoted to doing
just that.

The restriction to the SPDE models. To begin with, this statement strongly
restricts the class of random field models to models based on SPDEs and, in particular,
to the Matérn class of random fields. It has been argued by others, in particular Stein
(1999), that the Matérn class is the only class of covariance functions that you need for
practical spatial statistics. We have further restricted the smoothness parameter in the
Matérn field to be of the form ν = α− d/2 for an integer α. We need to critically assess
whether or not this is a practical restriction—that is we must, for a given application,
ask whether or not we truly need values of ν outside of this class. This is not a simple
question to answer: for very large problems, the computational advantages of GMRFs
make a very convincing argument for their use over kernel methods and, therefore, for
restricting the smoothness parameter. This question is further complicated by the strong
relationship between the scale and smoothness parameters (Zhang, 2004). In the end,
the restriction on ν is not, in our opinion, a handicap, but rather it reflects the very real
fact that there are no universally appropriate methods for hard computational problems.

What do we mean by a superior method? The discussion in the previous para-
graph implies a definition of a ‘superior’ method. When saying that the GMRF rep-
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resentation of the SPDE model is superior to the kernel approximation, we are really
saying that it is more computationally efficient. This is a reasonable definition under the
condition that the two methods compute pretty much the same thing (we will discuss
this in the next paragraph)—we have, after all, predicated the entire discussion on the
idea that “practical problems in spatial statistics are, by and large, computational in
nature”. By this criterion, the GMRF method is superior based simply on operation
counts. This, along with the mathematical equivalence of the two methods, highlights an
important tenet of computational statistics: equivalent mathematical statements do not
lead to equally useful computational algorithms. Of course, real life is more complicated
than operation counts and it is necessary to consider the availability of efficient software
for these SPDE methods. This is discussed below.

Is the GMRF representation an approximation to the SPDE? There is an
important issue that we skirted in Section 3: does this representation converge to the
solution of the SPDE? The simple answer is yes, but a more detailed answer is in order.
If we are to use the GMRF approximation to a Matérn field we would like to be able
to control the approximation error. It can be shown using some finite element theory
that the error in the approximation can be bounded above by some constant times h2,
where h is the diameter of the largest circle that can be inscribed in a triangle in the
mesh (Lindgren et al., 2010). This tells us that, as long as the vertices of the triangles
are distributed in a reasonable way over the domain, the approximation will be good.
A similar requirement is needed in order to make the kernel method converge (Xia and
Gelfand, 2005). Ideally, whenever using a kernel method or a GMRF approximation
to an SPDE as a prior model, the sensitivity of the marginal posteriors to the compu-
tational mesh should be tested. Realistically however, we expect that the posterior is
insensitive to small perturbations in the prior and simply treat the methods as exact.
This assumption is necessary as it is common for the size of the prior field to be as large
as is computationally feasible, which makes refining the mesh any further impossible.

There is a second way of thinking about the correctness of the GMRF representa-
tion that bypasses the inconvenient and technical discussion about convergence. The
GMRF representation of the SPDE is (up to the diagonal approximation of C̃) the best
approximation to x(s) over the space of piecewise linear functions defined over our tri-
angularisation of D. From this point of view, we can simply define our triangles and feel
comfortable in the knowledge that the we have the best possible GMRF representation
of the full random field over these triangles.

The approximation properties of the Kernel methods are troubling. Figure
3 shows that the simple kernel approximation can behave very poorly. This implies that
great care must be taken when using the kernel methods, especially with respect to the
selection of integration points. Furthermore, the quality of these approximations depend
strongly on the smoothness and scale parameters which, again, suggests caution is in
order. Finite element basis functions do not share this problem and their approximation
properties have been very well studied (Brenner and Scott, 2007).
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The SPDE means something. There is a very strong conceptual advantage that
SPDE methods have over kernel methods that we have not mentioned—the differential
operator on the left hand side of (2) has a strong physical interpretation. The first
advantage of this is pedagogical: it allows for a new point of departure when explaining
these models to people with a strong physics, engineering or applied mathematics back-
ground. The second advantage is that the aforementioned group of people use partial
differential equations to model all manner of phenomena and this knowledge can be in-
corporated into building more complex models of spatial dependence. This idea can be
used to easily incorporate (spatially dependent) drift terms or anisotropy into the model.
While this can also be done using convolution kernels, the SPDE methodology mirrors
the way in which these processes are usually modelled in physics (Ockendon et al., 2003)
and computational biology (Murray, 2003).

The SPDE is independent of geometry. The great theoretical advantage of defin-
ing a Gaussian random field via a stochastic partial differential equation is that the form
of the SPDEs that we are considering does not depend on the underlying geometry of
the physical space. This is a distinct advantage when compared with GRFs defined
through covariance functions or kernel methods, in which the physical geometry is of
vital importance. Furthermore, we note that the finite element method depends only
on the local behaviour of the operator and the field and can therefore be applied on a
complicated domain or even on a manifold (Lindgren et al., 2010). In particular Bolin
and Lindgren (To appear) use the GMRF representation to define a random field on a
sphere in the context of environmental modelling. We note that it is possible to define
a kernel representation for a Matérn GRF on a sphere using similar arguments to those
in Section 2, however the resulting kernel does not have a closed form3. It is also worth
noting that the comments in the previous paragraph also hold on a manifold, that is
the GMRF representation can be used to construct nonstationary, anisotroptic Gaussian
random fields over general manifolds.

Is there software? The availability of freely available software is a vital part of the
development of new methods in computational statistics. As such, we have implemented
the GMRF representation described in this paper as part of the R–package INLA available
from http://r-inla.org. Furthermore, the code for all of the examples in this paper,
which were computed using Matlab, is available in the supplementary material.
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