
NORGES TEKNISK-NATURVITENSKAPELIGE

UNIVERSITET

Exact and approximate recursive calculations for
binary Markov random fields defined on graphs

by

Håkon Tjelmeland and Haakon Michael Austad

PREPRINT

STATISTICS NO. 2/2010

NORWEGIAN UNIVERSITY OF SCIENCE AND

TECHNOLOGY

TRONDHEIM, NORWAY

This report has URL http://www.math.ntnu.no/preprint/statistics/2010/S2-2010.pdf

Håkon Tjelmeland has homepage: http://www.math.ntnu.no/∼haakont
E-mail: haakont@stat.ntnu.no

Address: Department of Mathematical Sciences, Norwegian University of Science and Technology,
N-7491 Trondheim, Norway.

Exact and approximate recursive calculations for binary

Markov random fields defined on graphs

Håkon Tjelmeland and Haakon Michael Austad

Department of Mathematical Sciences

Norwegian University of Science and Technology

Trondheim, Norway

Abstract

In this paper we propose computationally feasible approximations to binary Markov
random fields. The basis of the approximation is the forward-backward algorithm. This
exact algorithm is computationally feasible only for fields defined on small lattices. The
forward part of the algorithm computes a series of joint marginal distributions by summing
out each variable in turn. We represent these joint marginal distributions by interaction
parameters of different orders. The approximation is defined by approximating to zero
all interaction parameters that are sufficiently close to zero. In addition, an interaction
parameter is approximated to zero whenever all associated lower level interactions are
(approximated to) zero. If sufficiently many interaction parameters are set to zero, this
gives an algorithm that is computationally feasible both in terms of computation time
and memory requirements. The resulting approximate forward algorithm defines an ap-
proximation to the intractable normalizing constant and the corresponding backward part
of the algorithm defines a computationally feasible approximation to the Markov random
field. We present numerical examples demonstrating the quality of the approximation.

Key words: approximate inference, autologistic model, forward-backward algorithm, Ising
model, Markov random field, recursive computation.

1 Introduction

In this paper we consider computational problems related to inference in binary Markov ran-
dom fields (MRF). A frequentist example is for an observed binary image x to find the maxi-
mum likelihood estimator θ̂ for a parameter vector θ in a specified parametric family p(x|θ) of
binary Markov random fields. Alternatively, the x is a latent unobserved variable and in stead
a vector y is observed from an assumed distribution p(y|x, θ). Again the maximum likelihood
estimator for θ and potentially also for x is of interest. The latter problem can also be for-
mulated in a Bayesian setting. Let p(y|x, θ) denote an assumed distribution for an observed
vector y given an unobserved latent vector x and a parameter vector θ. A Markov random
field p(x|θ) prior is adopted for x and some prior p(θ) is chosen for θ. The focus of interest is
then the posterior distribution for θ, p(θ|y), and the posterior distribution for x, p(x|y). The
main issue in these kind of problems is that the normalizing constant of the Markov random
field p(x|θ) is computationally intractable. Thereby numerical optimization is infeasible for
the frequentist problems and standard Markov chain Monte Carlo algorithms are not a viable
alternative for the Bayesian problem. Similar problems also occur for other classes of models
for which the normalizing constant is not analytically available, see for example the discussions
in Møller et al. (2006) and Murray (2007).

The strategies for dealing with an intractable normalizing constant proposed in the liter-
ature can be categorized into three groups. The first is to replace the intractable constant

1

with an approximation that is easily computable. For MRFs Besag (1974) defines a pseudo-
likelihood function as a product of full conditionals and proposes to estimate θ when x is
observed by maximizing this instead of the intractable likelihood function. In Besag et al.
(1991) and Rydén and Titterington (1998) the same pseudo-likelihood function is used as an
approximation to the likelihood in a Bayesian setting. Heikkinen and Högmander (1994) and
Huang and Ogata (2002) define alternative pseudo-likelihood functions. Friel and Rue (2007)
and Friel et al. (2009) define an approximation based on exact calculations for smaller lattices
by the so called forward-backward algorithm (Künsch, 2001; Scott, 2002; Bartolucci and Be-
sag, 2002; Pettitt et al., 2003). These exact calculations on smaller lattices are thereafter glued
together to give approximative results for larger lattices. One should note that the methods
proposed in these two articles are only feasible for MRFs defined on very small neighborhoods,
as otherwise exact computations are not feasible even for small lattices. The second approach
is to estimate the intractable normalizing constant using Markov chain Monte Carlo (MCMC)
samples. Geyer and Thompson (1995) run an MCMC chain for a specific value of θ, θ0, use
this to estimate the normalizing constant for values of θ close to θ0, and perform numerical
optimization on the resulting estimated likelihood function. In Tjelmeland and Besag (1998)
this strategy is adopted to find the maximum likelihood estimators for a discrete Markov
random field. Gelman and Meng (1998) run independent MCMC chains for a series of θ val-
ues, use this to estimate the normalizing constant as a function of θ, and then run MCMC
for p(x, θ|y) with the unknown normalizing constant replaced by the corresponding estimate.
A recent third strategy to cope with intractable normalizing constants in the Bayesian for-
mulation of the problem is to utilize that exact samples from p(x|θ) can be generated. In
Møller et al. (2006) an auxiliary variable Metropolis–Hastings algorithm is defined, where
the proposal distribution is constructed so that the intractable normalizing constant cancels
from the Metropolis–Hastings ratio. However, the price to pay for not having to compute the
intractable normalizing constant is that exact sampling from p(x|θ) is required. Moreover,
for the algorithm to be efficient an approximation to p(x|θ) without an intractable normaliz-
ing constant must be available. See also Murray (2007) for other constructions to bypass an
intractable normalizing constant by using perfect sampling.

In the present paper we define a deterministic approximation to the distribution p(x|θ)
where the normalizing constant is easily computable. Thus, our solution can be categorized
into the first class defined above. However, our approximation of p(x|θ) can also be used in the
construction of Møller et al. (2006). We primarily focus on binary fields, but also discuss how
our method can be generalized to more than two classes. As in Friel and Rue (2007) and Friel
et al. (2009), our starting point is the exact (but for large lattices, computationally infeasible)
forward-backward algorithm. The forward part of the forward-backward algorithm computes a
series of joint marginal distributions by summing out each variable in turn. We represent these
joint marginal distributions by interaction parameters of different orders and develop recursive
formulas for these interaction parameters. The approximation is defined by approximating to
zero all interaction parameters that are sufficiently close to zero. In addition, an interaction
parameter is also approximated to zero whenever all associated lower level interactions are
(approximated to) zero. If sufficiently many interactions are set to zero, this makes the
algorithm feasible both in terms of computation time and memory requirements. It should be
noted that our approach does not require exact computations even on small lattices, which
allows the method to be used also for MRFs with somewhat larger neighborhoods.

The paper is organized as follows. In Section 2 we introduce necessary notation and define
binary Markov random fields for a general graph. The exact forward-backward algorithm

2

��
��
∅

��
��
1

Q
Q

Q
Q

Q
Qs

��
��
2

A
A
AAU

��
��
3

�
�

���

��
��
4

�
�

�
�

�
�+

��
��
12

@
@

@
@R

HHHHHHHHHj

��
��
13

?

HHHHHHHHHj

��
��
14

�
�

�
�	

HHHHHHHHHj

��
��
23

�
�

�
�	 ?

��
��
24

����������
?

��
��
34

����������

�
�

�
�	

��
��
123

�
�

�
�	 ?

HHHHHHHHHj

��
��
124

?

HHHHHHHHHj

����������

��
��
134

�
�

�
�	

HHHHHHHHHj

����������

��
��
234

�
�

�
�	 ?

@
@

@
@R

��
��
1234

�
�

�
�

�
�+

�
�

���

A
A
AAU

Q
Q

Q
Q

Q
Qs

Figure 1: The graph G(P(S)) for S = {1, 2, 3, 4}.

for Markov random fields is specified in Section 3, and then in Section 4 we introduce our
approximation scheme. In Section 5 we briefly discuss how our strategy can be generalized to
fields with more than two classes. In Section 6 we discuss how to evaluate the quality of the
approximations, and in Section 7 we present results for a number of example Markov random
fields. Finally, in Section 8 we provide conclusions.

2 Binary Markov random fields

For a general introduction to Markov random fields, see, for example, Besag (1974), Kinder-
mann and Snell (1980) or Cressie (1993). We give a description of binary Markov random
fields which facilitates the development of exact and approximate recursive algorithms for such
models. We start by discussing how general (i.e. not necessarily Markov) binary random fields
can be characterized by a set of interaction parameters.

2.1 Binary random fields

We consider a set of n nodes, S = {1, . . . , n}. To each node k ∈ S we associate a binary
variable xk ∈ {0, 1} and let x = (x1, . . . , xn) ∈ Ω = {0, 1}n. We also use the notations
xΛ = (xk, k ∈ Λ) and x−Λ = xS\Λ for Λ ⊆ S, and x−k = xS\{k} for k ∈ S. Then we get a
one-to-one relation between the sample space Ω and the power set of S, P(S) = {Λ|Λ ⊆ S}.
Corresponding to an x ∈ Ω we have the set Λ = {k ∈ S|xk = 1} ∈ P(S) and corresponding to
a Λ ∈ P(S) we have the vector x = (x1, . . . , xn) where xk = 1 for k ∈ Λ and xk = 0 otherwise.
We denote the latter relation by χ(Λ), i.e.

χ(Λ) = (I(1 ∈ Λ), . . . , I(n ∈ Λ)), (1)

where I(·) is the indicator function. As shown in Figure 1 for n = 4, associated with the

3

power set P(S) we have a directed acyclic graph G(P(S)) with one vertex for each subset of
S and where the descendents of a vertex Λ ⊆ S are all (proper) subsets of Λ.

Assume we are given a probability distribution for x denoted by p(x), x ∈ Ω. We assume
that p(x) fulfil the so called positivity condition, i.e. p(x) > 0 for all x ∈ Ω, so we can write

p(x) = c exp {−U(x)} , (2)

where c is a normalizing constant and U(x) an energy function. In the following we represent
the energy function in terms of a set of interaction parameters, β = {β(Λ),Λ ⊆ S}, defined
by the identity

U(x) =
∑

Λ⊆S

β(Λ)
∏

k∈Λ

xk. (3)

As there is one interaction parameter for each vertex in the graph G(P(S)) it is natural to store
the elements of β in their respective vertices. Thereby the distribution p(x) can in principle be
represented by this vertex-weighted graph, which we denote by G(P(S), β). However, as the
number of elements in P(S) grows exponentially with n this representation is in practice only
feasible for small values of n. For larger values of n we need a more compact representation.
We discuss below how this can be done for Markov random fields. First, however, we consider
how one can compute the interaction parameters from a given energy function U(x) in an
efficient way.

Inserting x = χ(Λ) in (3) and solving with respect to β(Λ) we get

β(Λ) = U(χ(Λ)) −
∑

A⊂Λ

β(A), (4)

where the sum equals zero if Λ = ∅. Thereby the interaction parameters can be computed
recursively, first computing β(∅), then β({k}) for all k ∈ S, then β(Λ) for all |Λ| = 2 and so on.
In Figure 1 this corresponds to visiting the vertices of G(P(S)) sequentially from the bottom
to the top. Note however that a direct implementation of (4) is computationally inefficient as
it implies repeated calculations of the the same sum of interaction parameters. To see how to
avoid this, define γ0(Λ) = β(Λ) for all Λ ∈ P(S) and

γg(Λ) =
1

g

∑

k∈Λ

γg−1(Λ \ {k}) for g = 1, . . . , |Λ|,Λ ∈ P(S) \ {∅}. (5)

In the graph G(P(S)), γ1(Λ) is then the sum of the interaction parameters of the children of
the vertex Λ, γ2(Λ) is the the sum of the interaction parameters of the grandchildren of Λ and
so on. Thereby we get

β(Λ) = U(χ(Λ)) −

|Λ|∑

g=1

γg(Λ). (6)

Thus, to calculate the interaction parameters one should visit all the vertices in G(P(S))
sequentially in the order discussed above. When visiting a vertex Λ one should first compute
and store γg(Λ) for g = 1, . . . , |Λ| using (5) and thereafter compute β(Λ) by (6).

Reconsider now the vertex-weighted graph representation of p(x) defined above. In the next
section we show that for Markov random fields a large number of the interaction parameters
are zero. In particular, β(Λ) = 0 for all sets Λ that are not cliques. In our graph representation
of p(x) it is clearly not necessary to include vertices that correspond to interaction parameters

4

��
��
1 ��

��
��

HH
2

��
��
4

��
��
3

��
��
∅

��
��
1

Q
Q

Q
Q

Q
Qs

��
��
2

A
A
AAU

��
��
3

�
�

���

��
��
4

�
�

�
�

�
�+

��
��
12

@
@

@
@R?

��
��
23

@
@

@
@R?

��
��
24

�
�

�
�	

@
@

@
@R

��
��
34

?

�
�

�
�	

(a) (b)

Figure 2: (a) An undirected graph V = (S,E) visualizing the neighborhood system for a toy
example Markov random field. (b) The corresponding unweighted graph G(B) if β(Λ) 6= 0 for
Λ ∈ {{1, 2}, {2, 3}, {2, 4}, {3, 4}} and β({2, 3, 4}) = 0.

that are equal to zero. Correspondingly, terms with β(Λ) = 0 do not need to be included
in the sum in (3). In the following we therefore replace (3) by what will be our canonical
representation for energy functions,

U(x) =
∑

Λ∈B

β(Λ)
∏

k∈Λ

xk, where B =
⋃

Λ∈P(S):β(Λ)6=0

P(Λ) (7)

and represent p(x) by the corresponding vertex-weighted graph G = G(B, β[B]), where β[B] =
{β(Λ)|Λ ∈ B}. By definition the set B ⊆ P(S) contains all Λ ⊆ S with β(Λ) 6= 0, but clearly it
may also contain some Λ with β(Λ) = 0. We include these ’zero vertices’ in our representation
of p(x) because having B as a union of power sets simplifies our recursive algorithms in Sections
3 and 4. For the moment we just note that this choice imply that the elements of β[B] can still
be computed recursively as discussed above. Figure 2(b) shows the unweighted graph G(B)
for a n = 4 toy example when β(Λ) 6= 0 for Λ ∈ {{1, 2}, {2, 3}, {2, 4}, {3, 4}} and β(Λ) = 0
for Λ ∈ {{1, 3}, {1, 4}, {1, 2, 3}, {1, 2, 4}, {2, 3, 4}, {1, 2, 3, 4}}. Note that in this case B, and
thereby the graph G(B), does not depend on the value of β(Λ) for Λ ∈ {∅, {1}, {2, }, {3}, {4}}.

2.2 Markov assumption

Let p(x) and U(x) be defined as above, but now consider the situation when x is Markov with
respect to a given neighborhood system that we denote by N .

Definition 1. A collection N = {N1, . . . , Nn} is a neighborhood system for the set S, if k 6∈ Nk

for all k ∈ S and k ∈ Nl ⇔ l ∈ Nk for all distinct pairs of nodes k, l ∈ S

If k ∈ Nl we say that k and l are neighbors. Following common practice we visualize a
neighborhood system N by an undirected graph V = (S,E) which has one vertex corre-
sponding to each node in S and an edge between any pairs of nodes that are neighbors, i.e.
E = {(k, l)|k ∈ Nl, k, l ∈ S}. Such a graph for a toy n = 4 example is shown in Figure 2(a).

Definition 2. A binary random field x is said to be Markov with respect to a neighborhood
system N if for all k ∈ S the full conditional p(xk|x−k) fulfils the following Markov property,

p(xk|x−k) = p(xk|xNk
). (8)

5

We then also say that x is a Markov random field with respect to N .

Definition 3. A set Λ ⊆ S is said to be a clique if k ∈ Nl for all distinct pairs of nodes k, l ∈ Λ.
We let C denote the set of all cliques.

For the example graph in Figure 2(a) we have C = {∅, {1}, {2}, {3}, {4}, {1, 2}, {2, 3}, {2, 4},
{3, 4}, {2, 3, 4}}. The following theorem gives that all interaction parameters that do not
correspond to a clique must be zero.

Theorem 1. Let x be a Markov random field with respect to a neighborhood system N , let C
be the corresponding set of all cliques, and let {β(Λ),Λ ⊆ S} be given by (3). Then β(Λ) = 0
for all Λ 6∈ C.

This theorem is a direct consequence of the Hammersley–Clifford theorem (Besag, 1974; Clif-
ford, 1990) and the fact that the functions fΛ(x) =

∏
i∈Λ xi, Λ ∈ P(S) are linearly indepen-

dent. From the above theorem it follows that if x is known to be Markov with respect to a
neighborhood system N we have that B ⊆ C. To find our graph representation G = G(B, β[B])
of p(x) we thereby only need to compute β(Λ) for Λ ∈ C.

We end this section by noting that if we have a vertex-weighted graph G = G(B, β[B])
representing a distribution p(x), it follows directly that p(x) is Markov with respect to the
neighborhood system N = {N1, . . . , Nn} where Nk = {l ∈ S \ {k}|{k, l} ∈ B}. Moreover,
this neighborhood system is minimal for p(x) in the sense that x is Markov with respect to a
neighborhood system N = {N1, . . . , Nn} if and only if Nk ⊇ {l ∈ S \ {k}|{k, l} ∈ B} for all
k ∈ S.

3 Exact recursive computations

Let p(x) be a binary Markov random field with respect to a given neighborhood system N .
Assume we are representing p(x) by the vertex-weighted graph G = G(B, β[B]). If n > 1 one
can clearly, for any node r ∈ S, decompose p(x) into

p(xr|x−r) and p(x−r). (9)

From (7) the full conditional p(xr|x−r) is, up to proportionality, given by

p(xr|x−r) ∝ exp

{
−

∑

Λ∈Br

β(Λ)
∏

k∈Λ

xk

}
, where Br = {Λ ∈ B|r ∈ Λ}. (10)

As xr ∈ {0, 1} the normalizing constant for this full conditional is readily available. Thereby
the conditional distribution p(xr|x−r) can be represented by Br and β[Br] = {β(Λ),Λ ∈ Br}.
Again these values can be organized into a vertex-weighted directed acyclic graph, which we
denote by Gr = G(Br, β[Br]). For the toy G(B) in Figure 2(b), the corresponding unweighted
graph G(B3) is shown in Figure 3(a). We see that to obtain Gr one just have to cut loose
from G the subgraph containing all vertices associated to sets Λ that contain r. We let G−r

denote what is left of G after Gr has been removed. Thus, G−r = G(B−r, β[B−r]), where
B−r = B \ Br = {Λ ∈ Λ|r 6∈ Λ} and β[B−r] = {β(Λ),Λ ∈ B−r}. For the toy G(B) in Figure
2(b), the unweighted graph G(B−3) is shown in Figure 3(b).

The distribution p(x−r) is a binary random field and as such all the concepts discussed
in Sections 2.1 and 2.2 exist also for this distribution. We use ⋆ to mark that a quantity is

6

��
��
3

��
��
23

A
A
AAU

��
��
34

�
�

���

��
��
∅

��
��
1

@
@

@
@R

��
��

2

?

��
��
4

�
�

�
�	

��
��
12

�
�

���

A
A
AAU

��
��
24

�
�

���

A
A
AAU

��
��
∅

��
��
2

A
A
AAU

��
��
4

�
�

���

��
��
24

�
�

���

A
A
AAU

(a) G(B3) (b) G(B−3) (c) G(P(N3))

Figure 3: Unweighted graphs derived from the graph G(B) shown in Figure 2(b).

related to p(x−r), so that U⋆(x−r) and G⋆ = G(B⋆, β⋆) are the energy function and the vertex-
weighted graph representation of p(x−r), respectively. Thus, if we from G can determine G⋆

we can now represent p(x) by Gr and G⋆. This procedure can clearly by iterated, so in the
second step of the algorithm we decompose p(x−r) into p(xs|x−{r,s}) and p(x−{r,s}) for some
s ∈ S \ {r}. Letting t(1), . . . , t(n) denote the ordering in which we are summing out the
variables, after n − 1 steps we have decomposed p(x) into n factors,

p(x) =

[
n−1∏

k=1

p(xt(k)|xt(l), l = k + 1, . . . , n)

]
p(xt(n)), (11)

where each of the n factors are represented by a vertex-weighted graph. In particular the last
factor, p(xt(n)) is represented by a graph with only two nodes, ∅ and {t(n)}. The normalizing
constant of p(x) is included also in p(xt(n)) and thereby this constant can be evaluated from the
restriction p(xt(n) = 0) + p(xt(n) = 1) = 1. Moreover, simulation from p(x) is straight forward
by a backward pass, first simulating xt(n) from p(xt(n)), then xt(n−1) from p(xt(n−1)|xt(n)) and
so on. To fully define the recursive algorithm it remains to discuss how to obtain G⋆ from G.
We first develop relations that characterize G⋆ and thereafter discuss the algorithmic details
of how to obtain G⋆ from G.

3.1 Characterization of G⋆

The energy function U⋆(x−r) for p(x−r) is defined by p(x−r) = c exp{−U⋆(x−r)}, where c is
the same normalizing constant as in (2). Combining this with (2) and (7) we get

U⋆(x−r) = − ln

[
∑

xr

exp

{
−

∑

Λ∈B

β(Λ)
∏

k∈Λ

xk

}]
. (12)

Splitting the sum over Λ ∈ B into a sum of two sums, one over Λ ∈ Br and one over Λ ∈ B−r,
and using that the latter sum is then not a function of xr, we get

U⋆(x−r) = U1
⋆ (xNr

) + U2
⋆ (x−r), (13)

7

where Nr = {k ∈ S−r|{k, r} ∈ B} is the (minimal) set of neighbors of r,

U1
⋆ (xNr

) = − ln

1 + exp

−

∑

Λ∈Br

β(Λ)
∏

k∈Λ\{r}

xk

 (14)

and
U2

⋆ (x−r) =
∑

Λ∈B
−r

β(Λ)
∏

k∈Λ

xk. (15)

We note that U2
⋆ (x−r) is already in our canonical form. As discussed in Section 2.1, we

can recursively compute a set of interaction parameters for U1
⋆ (xNr

), which we denote by
∆β = {∆β(Λ),Λ ∈ P(Nr)}, to get also U1

⋆ (xNr
) in the canonical form,

U1
⋆ (xNr

) =
∑

Λ∈P(Nr)

∆β(Λ)
∏

k∈Λ

xk. (16)

Thus, the interaction parameters for U⋆(x−r), which we denote by {β⋆(Λ),Λ ⊆ S \ {r}}, is
given as a sum of one term from each of U1

⋆ (xNr
) and U2

⋆ (x−r). The contribution from U1
⋆ (xNr

)
is always vanishing when Λ 6⊆ Nr, whereas the contribution from U2

⋆ (x−r) may be non-zero
only when Λ ∈ B−r. Thus, for Λ ⊆ S \ {r} we get

β⋆(Λ) =

β(Λ) + ∆β(Λ) if Λ ∈ B−r ∩ P(Nr),
β(Λ) if Λ ∈ B−r \ P(Nr),
∆β(Λ) if Λ ∈ P(Nr) \ B−r,
0 otherwise.

(17)

In particular, the zero value in this expression gives a restriction on the set B⋆, namely

B⋆ ⊆ B−r ∪ P(Nr). (18)

3.2 Computation of G⋆

Based on the above equations and our representation of p(x) by the vertex-weighted graph G

we now discuss how to generate the updated graph G⋆, representing p(x−r). The resulting
algorithm is summarized in Figure 4 and to illustrate the process we again consider the toy
graph G shown in Figure 2(b). The first step is to split the graph G into Gr and G−r. For
the toy example (the unweighted versions of) Gr and G−r for r = 3 are shown in Figures
3(a) and (b), respectively. Note that to do this split it is not necessary to traverse all the
vertices in G, it is sufficient to traverse all ancestors of the vertex {r}. From Gr the (minimal)
set of neighbors to r, Nr, is easily found and from this the corresponding unweighted power
set graph, G(P(Nr)) is generated. In the toy example we have N3 = {2, 4} and G(P(N3))
is shown in Figure 3(c) The next step is to compute recursively and store the interaction
parameters ∆β associated to the graph G(P(Nr)), thereby producing the vertex-weighted
graph G(P(Nr),∆β). Thereafter G(P(Nr),∆β) should be added to G−r. This implies that
we need to traverse all the nodes in G(P(Nr),∆β), starting from the root node ∅ and going
upwards. When visiting a node Λ ∈ P(Nr), if the node Λ also exists in G−r we should just
add the weight ∆β(Λ) to the existing weight for Λ in G−r. If Λ does not exist in G−r, such
a vertex should be added to G−r and given the weight ∆β(Λ). The resulting graph, which
we denote by G̃⋆ is a representation of p(x−r). However, it may include vertices with zero

8

1. Split the graph G = G(B, β[B]) into the two subgraphs Gr = G(Br, β[Br]) and
G−r = G(B−r, β[B−r]). Store Gr as a representation of the full conditional
p(xr|x−r).

2. From Gr find the (minimal) set of neighbors of r, Nr = {k ∈ S−r|{k, r} ∈ Br}
and establish the graph of the corresponding power set, G(P(Nr)).

3. Compute recursively the interaction parameters ∆β = {∆β(Λ),Λ ∈ P(Nr)}
and store them in the vertices of the graph G(P(Nr)), thereby generating the
vertex-weighted graph G(P(Nr),∆β).

4. Add the graph G(P(Nr),∆β) to the graph to G−r. Denote the resulting graph
by G̃⋆ = G(B̃⋆, β⋆[B̃⋆]), where B̃⋆ = B−r ∪ P(Nr).

5. Prune the graph G̃⋆ by deleting all vertices (and associated edges) Λ ∈ B̃⋆ for
which β⋆(A) = 0 for all A ∈ {A ∈ B̃⋆|Λ ⊆ A}. The resulting graph, G⋆, is
then a representation of p(x−r).

Figure 4: Algorithm for generating Gr and G⋆ from G.

weight that should not be included according to our criterion in (7). To obtain the canonical
representation of p(x−r) any such nodes (and associated edges) should be deleted. However,
note that if this pruning is not performed the algorithm will still be correct in the sense
that the same conditional distribution will be found, but potentially with a somewhat higher
computational cost in later iterations of the algorithm. As one also saves computation time
by not performing the pruning it is not clear whether it is beneficial to perform the pruning
or not. In our current implementation of the algorithm we have chosen not to perform the
pruning.

The computational complexity of finding Gr and G⋆ from G is proportional to the size of
P(Nr), i.e. it is exponential in the number of neighbors of r. It is thereby only feasible to
perform the algorithm when the number of neighbors is reasonably low. When iterating the
procedure it becomes impossible to give general results for the cost of the algorithm, as this will
depend on the whole neighborhood system and typically also the ordering t(1), . . . , t(n) used.
Next we define a computationally cheaper, but approximate version of the exact recursive
algorithm.

4 Approximate recursive computations

The exact algorithm described above is not computationally feasible when the number of
neighbors to node r is large. There are two problems, both related to the large number of
vertices in the vertex-weighted graph G(P(Nr),∆β). First, it requires too much computation
time to evaluate all ∆β(Λ),Λ ∈ P(Nr). Second, even if the interaction parameters could have
been computed it would require too much computer memory to store them all.

What we observe when computing and studying the interaction parameters ∆β(Λ),Λ ∈
P(Nr) for frequently used Markov random field models (small enough to allow exact recursive
computation) is that most of the interaction parameters have values very close to zero. Figure

9

−3.0 −2.5 −2.0

0
50

10
0

15
0

0.0 0.5 1.0 1.5

0
10

0
20

0
30

0

0.00 0.01 0.02 0.03 0.04 0.05

0
20

0
40

0
60

0
80

0

1st order effects pairwise interactions triple interactions

−0.002 −0.001 0.000 0.001 0.002 0.003

0
10

00
20

00
30

00

−0.0015 −0.0010 −0.0005 0.0000 0.0005

0
20

00
40

00
60

00
80

00

−0.00025 −0.00015 −0.00005

0
50

00
15

00
0

4th order interactions 5th order interactions 6th order interactions

Figure 5: Values of interaction parameters for an Ising based model. The exact model used is
specified in Section 7. In lexicographical order the six plots show histograms of the values of
∆β(Λ) for all sets Λ ∈ P(Nr) with |Λ| = 1, 2, 3, 4, 5 and 6, respectively. Note the difference in
horizontal scale.

5 shows ∆β(Λ) for all Λ ∈ P(Nr) with |Λ| = 1, 2, 3, 4, 5 and 6 for an Ising based model. The
exact model used here is defined in Section 7. A natural approximation strategy is therefore,
for some threshold value ε, to approximate ∆β(Λ) to zero whenever |∆β(Λ)| < ε. This
solves the memory problem discussed above, but not the computation time problem as we
still have to compute ∆β(Λ) for all Λ ∈ P(Nr) in order to decide which to store and which to
approximate to zero. To cope also with the computation time problem we assume that ∆β(Λ)
is close to zero whenever ∆β(A) is close to zero for all sets A ⊂ Λ with exactly one element
less than Λ. Note that this is a frequently used assumption in statistics, higher order effects
can be present only if corresponding lower order effects are present. Thus, in the graph P(Nr)
we approximate ∆β(Λ) to zero, without computing its exact value, whenever the interaction
parameters of all children vertices of Λ is already approximated to zero. We have checked
this assumption in several frequently used Markov random fields and have not been able to
find cases where it is violated. However, we do not expect the assumption to be valid in all
cases and it should certainly be possible to construct models where it fails. However, in our
experience it seems to be valid, and certainly very useful, for most frequently used Markov
random field models.

The two approximation rules defined above define our approximation. The corresponding
algorithm is equal to the exact version in Figure 4 except that P(Nr) is replaced by the smaller
set of vertices for which the interaction parameters is not approximated to zero. Thus, the joint
distribution p(x) is decomposed into the exact full conditional p(xr|x−r) and an approximate
p̃ε(x−r). In the next step of the recursive algorithm p̃ε(x−r) is decomposed into p̃ε(xs|x−{r,s}),
which of course is only an approximation to p(xs|x−{r,s}), and after new approximations

10

p̃ε(x−{r,s}). Ultimately we end up with an approximate version of (11),

p(x) ≈ p̃ε(x) = p(xt(1)|xt(l), l = 2, . . . , n)

[
n−1∏

k=2

p̃ε(xt(k)|xt(l), l = k + 1, . . . , n)

]
p̃ε(xt(n)). (19)

Thus, the normalizing constant of p(x) can be approximated with the normalizing constant of
the right hand side, and approximate samples from p(x) can be generated be sampling from
the approximate distribution. We end this section by three remarks.

Remark 1. Our focus when defining the approximation is to make it computationally feasible
to decompose p(x) into p(xr|x−r) and p̃ε(x−r). However, approximating interaction param-
eters to zero also introduces conditional independence to p̃ε(x−r) that is not present in the
corresponding exact p(x−r). This becomes computationally beneficial in later iterations of the
recursive algorithm.

Remark 2. The approximate recursive algorithm is effectively dividing the elements of the set
P(Nr) into three groups. The first group consists of the sets Λ for which we compute ∆β(Λ),
find |∆β(Λ)| ≥ ε and thereby store ∆β(Λ) in memory. The second group contains the sets Λ
for which we compute ∆β(Λ) and find |∆β(Λ)| < ε. The third group consists of the remaining
sets Λ, for which we do not compute ∆β(Λ). When the number of elements in Nr is large it
is essential for the approximate algorithm to be feasible that most of the sets Λ ∈ P(Nr) end
up in the third group.

Remark 3. The quality of the approximation, the computation time and the memory require-
ments of the approximate recursive algorithm clearly depend on the threshold value ε. How
small ε needs to be for the algorithm to give a reasonable approximation needs to be explored
empirically. In Section 7 we report our experience with both this and the associated computer
resources required by the algorithm in a number of frequently used binary Markov random
fields. In particular note that we have defined the approximations so that the algorithm
becomes exact for ε = 0.

5 Beyond binary fields

The focus of this paper is binary Markov random fields. In this section, however, we shortly
discuss how the above algorithms can be generalized to handle also discrete Markov random
fields with more than two possible values. Thus, in this section let the distribution of interest
be pz(z) = c exp{−Uz(z)} where z = (z1, . . . , zn) ∈ {0, 1, . . . ,K − 1}n. There are two natural
strategies for generalizing the algorithm discussed above to such a situation. The first is to
start with a generalized version of (3),

Uz(z) =
∑

Λ⊆S

β(Λ, zΛ)
∏

k∈Λ

zk. (20)

Thus, in stead of having only one interaction parameter for a set Λ we now have (K − 1)|Λ|

parameters associated to Λ. Again the interaction parameters can be computed recursively
and approximations following the same ideas as discussed in Section 4 can be defined.

The second strategy to cope with more than two possible values is to map pz(z) over to a
corresponding binary problem px(x). For example, if we have K = 3 or 4 classes, each variable
zk can be represented by two binary variables xk1 and xk2.

11

6 Evaluation criteria for approximation

To choose criteria for evaluating the quality of an approximation we must take into account
how the approximation will be used. Here we discuss three Bayesian applications of the approx-
imation defined above. However, our approximation can clearly also be of use in frequentist
settings. First, assume that a binary field x is observed and that this is assumed to be a
realization from a Markov random field p(x|θ). A prior distribution for θ, p(θ), is adopted and
the interest is in the resulting posterior distribution p(θ|x) ∝ p(θ)p(x|θ). The computational
problem then is that the intractable normalizing constant of the likelihood p(x|θ) is a function
of θ. Thereby p(θ|x) is not easily available to us. By replacing the computationally problem-
atic p(x|θ) by the approximation defined above, now denoted p̃ε(x|θ), we get an approximate
posterior distribution p̃ε(θ|x) ∝ p(θ)p̃ε(x|θ). To evaluate the quality of this approximation
it is natural to focus on p̃ε(θ|x). For examples with a small number of nodes, so that exact
computations of p(x|θ) are feasible, one can compare the approximate posterior p̃ε(θ|x) for
different values of the threshold ε with the exact posterior p(θ|x). In more realistic situations,
where the exact p(x|θ) is not computationally available, the natural alternative is to compare
the approximate p̃ε(θ|x) for different values of ε. If p̃ε(θ|x) seems to stabilize for sufficiently
small values of ε it is reasonable to trust the approximation.

The second application we consider is a small variation of the first. Now let x be a latent
unobserved variable, still assumed distributed according to p(x|θ), and assume we observe a
vector y according to a distribution p(y|x, θ). Still assuming a prior p(θ) for θ the posterior
distribution of interest is p(θ|y) ∝ p(θ)p(y|θ). To find an expression for the marginal likelihood
p(y|θ) we can note that

p(x|y, θ) =
p(x|θ)p(y|x, θ)

p(y|θ)
(21)

for any value of x. Thus, by solving this expression with respect to p(y|θ) we get

p(θ|y) =
p(θ)p(x|θ)p(y|x, θ)

p(x|y, θ)
, (22)

again for any value of x. Assuming p(y|x, θ) to be computationally available, the problematic
factors in (22) are p(x|θ) and p(x|y, θ). Both are binary Markov random fields and thereby,
if the normalizing constants of any of them is not computationally available, the problematic
factor(s) can be replaced by the corresponding approximation(s) defined above. Typically,
both normalizing constants are problematic and the approximation becomes

p̃ε(θ|y) =
p(θ)p̃ε(x|θ)p(y|x, θ)

p̃ε(x|y, θ)
. (23)

Here we have assumed that the same threshold value ε is used for both approximations, but this
is of course not necessary. The right hand side of (22) is by construction constant as a function
of x, whereas one should not expect this to be true for the corresponding approximation in
(23). An important question when applying (23) is thereby what value to use for x. We have
used two strategies, i) to sample x from p̃ε(x|y, θ) and ii) to let x be a vector of only zeros. Our
experience is that if ε is sufficiently small both strategies works satisfactory, and conversely,
if ε is not sufficiently small none of the two alternatives produce satisfactory results. To
evaluate the quality of the approximation p̃ε(θ|y) we can use the same strategy as for p̃ε(θ|x),
either compare p̃ε(θ|y) with the exact p(θ|y) if this is computationally available, or otherwise

12

compare the approximation p̃ε(θ|y) for different values of ε and trust the approximation if
p̃ε(θ|y) stabilizes for sufficiently small values of ε.

The third application of the approximation we consider here is to use the approximation in
the construction of Møller et al. (2006). As we discussed in the introduction, the goal is then
to sample from the posterior p(θ|x) ∝ p(θ)p(x|θ). For this an auxiliary variable Metropolis–
Hastings algorithm is constructed. The algorithm simulates (θ, z) from the target distribution
p(θ|x)p̃ε(z|θ), i.e. z is an auxiliary variable of the same dimension as the observed x. In each
iteration a potential new value for θ, θ′, is first generated from a proposal distribution q(θ′|θ).
Then a potential new value for z, z′, is generated from p(z′|θ′) by exact sampling, and finally
θ′ and z′ are jointly accepted with probability

α(θ′, z′|θ, z) = min

{
1,

p(θ′)

p(θ)

p(x|θ′)

p(x|θ)

p̃ε(z
′|θ)

p̃ε(z|θ)

q(θ|θ′)

q(θ′|θ)

p(z|θ)

p(z′|θ′)

}
. (24)

The ingenious part of this construction is that all the computationally intractable normalizing
constants cancel from this expression. As pointed out in Møller et al. (2006) we can also note
that if the approximation is perfect, then the third and fifth factors in (24) cancel and we are
left with the acceptance probability of a standard Metropolis–Hastings algorithm simulating
from the posterior p(θ|x). What we loose by using the approximation p̃ε(·|·) in stead of the
exact p(·|·) is therefore given by the third and fifth factors of (24). Setting θ′ equal to θ in
(24) we are left with exactly these two factors,

α(θ, z′|θ, z) = min

{
1,

p̃ε(z
′|θ)

p̃ε(z|θ)

p(z|θ)

p(z′|θ)

}
, (25)

which we recognize as the acceptance probability of a independent proposal Metropolis–
Hastings algorithm with target distribution p̃ε(·|·) and proposal distribution p(·|θ). To quantify
the quality of the approximation in this setting it is therefore natural to focus on the aver-
age acceptance probability of such a Metropolis–Hastings algorithm, i.e. the mean value of
(25) when z ∼ p(z|θ) and z′ ∼ p̃ε(z

′|θ), independently. We note in passing that this is also
identical to the mean acceptance probability of an independent proposal Metropolis–Hastings
algorithm with target distribution p(·|·) and proposal distribution p̃ε(·|·).

7 Examples

In this section we consider a number of Markov random fields and discuss the feasibility of our
algorithms for these models. We start looking at simple models where the exact algorithm is
especially efficient. In particular we discuss how the exact algorithm reduces to the famous
forward-backward algorithm when the field is Markov with respect to a neighborhood system
defined by a chain graph. Finally we consider the autologistic model on a two dimensional
rectangular lattice, where the exact algorithm is feasible for small lattices only. Here we
evaluate empirically the quality and effectiveness of the approximate algorithm for different
values of the threshold value ε.

7.1 Models where the exact algorithm is particularly efficient

Let S = {1, . . . , n} and assume x to be Markov with respect to the neighborhood system
defined by the graph in Figure 6(a). The most general form of the energy function is then

13

��
��
1 ��

��
2 · · · ��

��
n

��
��

��
��

��
��

��
����

��
��
��

��
��

��
����

��
��
��

��
��

1 2 3

4 5 6 7

8 9 10 11

(a) (b)

Figure 6: Two undirected graphs V = (S,E). A pairwise interaction, binary field which
is Markov with respect to one of these graphs can very efficiently be handled by the exact
algorithm described in Section 3. (a) A chain graph and (b) a somewhat more complex graph.

��
��
∅

��
��
1

HHHHHHHHHj

��
��
2

@
@

@
@R

��
��

3

?

��
��

4

�
�

�
�	

· · ·

��
��
12

�
�

���

A
A
AAU

��
��
23

�
�

���

A
A
AAU

��
��
34

�
�

���

A
A
AAU

· · ·

Figure 7: The graph G(B) for the energy function (26) if βk,k+1 6= 0 for all k = 1, . . . , n − 1.

U(x) = α0 +

n∑

k=1

αkxk +

n−1∑

k=1

βk,k+1xkxk+1, (26)

where α0, α1, . . . , αn and β1,2, . . . , βn−1,n are model parameters. Note that in particular the
hidden (binary) Markov chain, see for example Künsch (2001), can be formulated in this form.
The pairwise interaction parameters β1,2, . . . , βn−1,n are then related to the Markov prior,
whereas the αi’s are functions of both the prior and the observed data. It is easy to see that
for this model the exact algorithm with t(k) = k, k = 1, . . . , n is equivalent to the efficient
forward-backward algorithm, again see Künsch (2001). To see what makes the algorithm
so efficient for this model we have to look at the graph G(B) and how this develops when
running the iterations. The function (26) is already in the canonical form (7) so β(∅) = α0,
β({k}) = αk for k = 1, . . . , n and β({k, k + 1}) = βk,k+1 for k = 1, . . . , n − 1. If none of the
βk,k+1’s are equal to zero the graph G(B) becomes as shown in Figure 7. In the first iteration
of the recursive algorithm, when summing out x1, we get B1 = {{1}, {1, 2}} and thereby
N1 = {2} and P(N1) = {∅, {2}}. In turn this gives B⋆ = B−1, so B⋆ is of the same form as B.
Thereby, the situation repeats when summing out x2, x3 and so on. What is important for
the efficiency of the algorithm is that all distributions p(x−t(1)), p(x−{t(1),t(2)}), . . . are pairwise
interaction models. For this to be the case the neighbor set Nt(1), and corresponding sets in
later iterations, must never contain more than two elements. In fact, this implies that for
the current model the exact algorithm is equally efficient for any ordering t(1), . . . , t(n). For

14

example, if t(1) = 3 we get N3 = {2, 4} and P(N3) = {∅, {2}, {4}, {2, 4}}, so B⋆ = B−3.
The requirement that Nt(1), and corresponding sets in later iterations, contains at most

two elements is, for suitable orderings t(1), . . . , t(n), fulfilled also for other models than just
(26). By drawing up the relevant graphs it is easy to check that any pairwise interaction,
binary field that are Markov with respect to a neighborhood system defined by a graph that
contains no loops, i.e. a tree, fulfils the requirement. Moreover, even for graphs that contain
loops the corresponding pairwise interaction Markov random field may fulfil the formulated
condition. An example of this with n = 11 is shown in Figure 6(b). Again drawing up
the relevant graphs, one can easily check that the ordering t(k) = k, k = 1, . . . , 11 works
in this case. However, if in that graph we add an edge between 2 and 3 there no longer
exists any ordering that satisfies the set requirements. We have not been able to formulate an
easy to check criterion for undirected graphs that can characterize the set of Markov random
fields that fulfil the requirements. However, our discussion here should clearly demonstrate
that the exact recursive algorithm is highly efficient for a larger class of models than where
the forward-backward algorithm is typically used today. Of course, the algorithm may also be
highly efficient even if a few of the neighborhood sets contains slightly more than two elements.

7.2 The autologistic model

The autologistic model was first introduced in Besag (1974). A binary field x = (x1, . . . , xn)
is an autologistic model with respect to a given neighborhood system N = (N1, . . . , Nn) if
the energy function can be expressed as (7) with B = {∅, {1}, . . . , {n}} ∪ {(k, l)|l ∈ Nk, k, l =
1, . . . , n}, i.e.

U(x) = β(∅) +
n∑

k=1

β({k})xk +
1

2

n∑

k=1

∑

l∈Nk

β({k, l})xkxl. (27)

Strictly speaking the models discussed in Section 7.1 are thereby autologistic models. However,
the term is usually reserved for models defined on a two dimensional rectangular lattice, so
from now on we limit the attention to such models. Thus, consider a u× v rectangular lattice
and number the lattice nodes from one to n = uv in the lexicographical order. Except when
many of the β({k, l})’s are equal to zero, the autologistic model does not fall into the set of
models that can be handled efficiently by the exact algorithm as discussed in the previous
section. The algorithms in Pettitt et al. (2003), Reeves and Pettitt (2004) and Friel and
Rue (2007) are essentially the same as our exact algorithm with the ordering t(k) = k for
k = 1, . . . , n. They conclude that for a model with a first order neighborhood system the
algorithm is computationally feasible only when the number of columns, v, is less than or
equal to 20. The number of rows, u, can be large. For larger neighborhoods the lattice
size limit that can be handled by the exact algorithm is even smaller. In the following we
focus on evaluating empirically the performance of the approximate algorithm of Section 4 for
autologistic models.

To evaluate the approximate algorithm we consider the computation time for running the
algorithm and the quality of the approximation. In the simulation examples below we first
focus on the latter. To monitor the quality of the approximation we adopt the three strategies
discussed in Section 6.

15

Table 1: Results for the Ising model on a 15 × 15 lattice: Values of d0(ε, x) for realizations
x generated from the Ising model for each of the parameter values θtrue = 0.4, 0.6 and 0.8.
Results are given for six different values of ε and for the pseudo likelihood and block pseudo
likelihood approximations.

ε \ θtrue 0.4 0.6 0.8

10−1 1.49 · 10−1 1.87 · 10−1 6.70 · 10−1

10−2 8.12 · 10−3 1.07 · 10−1 1.15 · 10−1

10−3 3.20 · 10−3 2.61 · 10−2 1.15 · 10−1

10−4 1.57 · 10−3 9.60 · 10−3 4.42 · 10−2

10−5 3.47 · 10−4 2.35 · 10−3 3.22 · 10−3

10−6 3.32 · 10−5 2.44 · 10−4 1.92 · 10−4

pl 1.60 · 10−1 1.19 · 10−1 8.82 · 10−1

block-pl 1.77 · 10−1 1.11 · 10−1 9.81 · 10−2

7.3 The Ising model

We first consider the Ising model, i.e. an autologistic model with a first order neighborhood
system (Besag, 1986). The energy function can be defined as

U(x) = −
θ

2

n∑

k=1

∑

l∈Nk

I(xk = xl), (28)

where I(·) is the indicator function. Using that for binary variables we have I(xk = xl) =
xkxl + (1 − xk)(1 − xl), this can easily be rewritten to the form in (27) and gives

θ(∅) = −
θ

2

n∑

k=1

|Nk|,

θ({k}) = |Nk|θ, for k = 1, . . . , n, (29)

θ({k, l}) = −2θ, for l ∈ Nk, k, l = 1, . . . , n,

where |Nk| is the number of elements in the set Nk. We first consider the quality of the
approximation for a small 15× 15 lattice, for which exact computations are feasible. For each
θ = θtrue = 0.4, 0.6 and 0.8 we generate an exact sample x from the Ising model and thereafter,
separately for each of the three realizations, consider the resulting posterior distribution for
θ given x, i.e. p(θ|x). As prior we adopt a uniform (improper) distribution on [0,∞). We
compute the exact posteriors (i.e. ε = 0) and corresponding approximations p̃ε(θ|x) for
ε = 10−s, s = 1, 2, 3, 4, 5 and 6. More precisely, we compute p(θ|x) and p̃ε(θ|x) for a mesh of
θ values and use interpolating spline for ln p(θ|x) and ln p̃ε(θ|x), respectively, to interpolate
the results between the mesh values. Finally, we numerically evaluate

d0(ε, x) =

∫ ∞

0
|p̃ε(θ|x) − p(θ|x)| dθ (30)

for each realization x and value ε, see the results in Table 1. In all three cases we see that the
approximation is not very accurate for ε = 10−1, but becomes very good for smaller values of

16

0.6 0.7 0.8 0.9 1.0

0
1

2
3

4
5

6
7

Figure 8: Results for the Ising model on a 15 × 15 lattice: p(θ|x) (solid) and p̃ε(θ|x) for
ε = 10−1 (dotted) , 10−2 (dashed), 10−3 (dot-dashed) and 10−4 (long dashed). With the
resolution used here the approximations for ε = 10−5 and 10−6 are visually indistinguishable
from the exact p(θ|x).

Table 2: Results for the Ising model on a 100 × 100 lattice: Values of d(ε, x) for realizations
x generated from the Ising model for each of the parameter values θtrue = 0.4, 0.6 and 0.8.
Results are given for five different values of ε and for the pseudo likelihood and block pseudo
likelihood approximation.

ε \ θtrue 0.4 0.6 0.8

10−1 3.98 · 10−1 2.00 2.00
10−2 1.70 · 10−1 9.02 · 10−1 1.64
10−3 6.44 · 10−2 4.44 · 10−2 1.11
10−4 1.16 · 10−2 2.46 · 10−2 NA
10−5 3.45 · 10−3 2.85 · 10−3 NA

pl 6.26 · 10−1 4.35 · 10−1 NA
block-pl 8.63 · 10−2 2.82 · 10−1 NA

ε. Not surprisingly, smaller values of ε is necessary to obtain a good approximation when the
value of θtrue is larger. For comparison we also compute the same quantities when using the
pseudo likelihood approximation to p(θ|x) and for a pseudo block likelihood approximation
with 15 × 5 blocks. The results are again given in Table 1 and we see that p̃ε(θ|x) gives a
much better approximation except for the larger values of ε. To get a visual impression of the
accuracy of the approximations Figure 8 gives, for the θtrue = 0.8 case, the exact p(θ|x) and
the approximations p̃ε(θ|x) for the various values of ε.

Next we repeat the same exercise for a 100 × 100 lattice. Then the exact posteriors are
not available, so in stead of d0(ε, x) we consider

d(ε, x) =

∫ ∞

0

∣∣p̃ε(θ|x) − p̃ε/10(θ|x)
∣∣dθ (31)

for the same values for θtrue and ε considered above. Table 2 summarizes the results. For the

17

Table 3: Results for the hidden Ising model on a 100 × 100 lattice: Values of d(ε, y) for
realizations y generated based on realizations from the Ising model for each of the parameter
values θtrue = 0.4, 0.6 and 0.8. Results are given for five different values of ε.

ε \ θtrue 0.4 0.6 0.8

10−1 5.26 · 10−1 1.99 2.00
10−2 2.49 · 10−1 1.02 1.72
10−3 5.13 · 10−2 5.89 · 10−2 NA
10−4 1.32 · 10−2 2.34 · 10−2 NA
10−5 2.15 · 10−3 NA NA

θtrue = 0.8 case, the computer resources required to compute p̃ε(θ|x) for ε = 10−5 and 10−6

was very large, so we did not run these cases. In the evaluation of the pseudo likelihood and
pseudo block likelihood approximations we compute the difference to p̃ε(θ|x) with ε = 10−6,
and for the pseudo block likelihood we use blocks of size 100 × 5. As one would expect, the
approximations are less accurate for the 100×100 lattice than for the 15×15 lattice. However,
for the θtrue = 0.4 and 0.6 cases, the results for the smaller values of ε clearly indicate good
approximations. For θtrue = 0.8 the results are much less favorable.

Then we consider the hidden Markov random field situation discussed in Section 6. More
precisely, for each θtrue = 0.4, 0.6 and 0.8 we first generate a realization, x = (x1, . . . , xn), from
the Ising model on a 100×100 lattice and thereafter generate y = (y1, . . . , yn) where y1, . . . , yn

are conditionally independent given x and yi|x ∼ N(xi, 0.25
2). As before we adopt a uniform

prior distribution for θ on [0,∞). As defined in Section 6 we compute approximate posterior
distributions p̃ε(θ|y) for the same six values of ε as before, and finally evaluate numerically an
integral corresponding to the one in (31), but with x replaced by y. The resulting values are
given in Table 3, again some cases are not evaluated because they required too much computer
resources. When looking at p̃ε(θ|y) for large values of ε one clearly sees the effect of evaluating
the right hand side of (23) for a random x, the curve gets a “noisy” appearance. As we should
expect the noisy appearance vanishes if in stead x = 0 is used, but when comparing results
for various values of ε to find how small ε needs to be to get a good approximation, both
approaches produce the same conclusion. We therefore favor to evaluate the right hand side
of (23) at a random x as then one can use the “noisiness” to diagnose whether a given value
for ε gives a good approximation.

Finally, we evaluated the approximation by estimating the mean acceptance probability
of a Metropolis–Hastings algorithm with target distribution p(z|θ) and proposal distribution
p̃ε(z|θ). For each of θ = 0.4, 0.6 and 0.8 we generated 1000 independent realizations from
p(x|θ) by the coupling from the past algorithm (Propp and Wilson, 1996) and for the various
values of ε, 1000 realizations from the approximation p̃ε(x|θ). We then estimated the mean
acceptance probability by taking the mean of the 1000000 acceptance probabilities generated
by combining each of the 1000 realizations from p(x|θ) with each of the 1000 realizations
from p̃ε(x|θ). The results are shown in Figure 9. The solid, dotted and dashed curves are
for θ = 0.4, 0.6 and 0.8, respectively. Again we have no available results for the small values
of ε when θ = 0.8 because the necessary computations required too much computation time.
Consistent with what we saw in Table 2 we find that the approximation is indeed very good
for ε ≤ 10−4 for θ = 0.4 and 0.6, whereas for θ = 0.8 we are not able to find a very good

18

1e−06 1e−04 1e−02
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Figure 9: Results for the Ising model on a 100 × 100 lattice: Estimated acceptance rates as a
function of ε for an independent proposal Metropolis–Hastings algorithm with an Ising target
distribution when the corresponding approximate p̃ε(x|θ) is used as proposal distribution. The
solid, dotted and dashed curves show results for θ = 0.4, 0.6 and 0.8, respectively.

Table 4: Results for the Ising model on a 100×100 lattice: Computation time used to establish
the approximation p̃ε(x|θ) and the additional time necessary for generating one realization
from the approximate distribution. The numbers are computation times in seconds on a
machine with an Intel Quad-Core X5365 3.0Hz cpu.

Time to establish approximation Additional time per realization
ε \ θ 0.4 0.6 0.8

10−1 0.11 0.12 0.19
10−2 0.19 0.39 2.32
10−3 0.82 3.83 60.01
10−4 2.38 27.89 5 640.50
10−5 15.21 279.00 370 303.80
10−6 41.27 1 948.37 NA

ε \ θ 0.4 0.6 0.8

10−1 0.07 0.06 0.05
10−2 0.09 0.12 0.21
10−3 0.17 0.41 1.52
10−4 0.27 1.10 34.56
10−5 0.68 3.70 921.93
10−6 1.14 11.52 NA

approximation within reasonable computation time.
Above we have evaluated the approximation quality as a function of θ and ε. To fully

evaluate the usefulness of the approach one clearly also needs to consider the computation
times required. The computations involved can be divided into 1) what is necessary to establish
the approximation p̃ε(x|θ) and 2) the additional time required to generate one realization from
the approximation or to evaluate p̃(x|θ) for a given x. For our implementation and a 100×100
lattice, Table 4 shows both computation times for the θ and ε values used above. Recalling
that for θ = 0.4 and 0.6 very good approximations are produced for ε = 10−4 we see that
these approximations are also quite efficiently available, especially for θ = 0.4. For θ = 0.8
the situation is less favorable and whether or not the approximation is at all of any use for
this value of θ depends on the problem of interest.

7.4 A pairwise interaction 5 × 5 neighborhood model

Last we consider an autologistic model on a rectangular 100 × 100 lattice with a 5× 5 neigh-
borhood. We adopt torus boundary conditions so all nodes have 24 neighbors. We consider

19

1e−06 1e−04 1e−02
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Figure 10: Results for the pairwise interaction 5×5 neighborhood model on a 100×100 lattice:
Estimated acceptance rates as a function of ε for an independent proposal Metropolis–Hastings
algorithm when the pairwise interaction 5×5 neighborhood model is used as target distribution
and the corresponding approximate p̃ε(x|θ) is used as proposal distribution. The solid and
dashed curves show results for θ = 0.1 and 0.15, respectively.

Table 5: Results for the pairwise interaction 5 × 5 neighborhood model on a 100 × 100 lat-
tice: Computation time used to establish the approximation p̃ε(x|θ) and the additional time
necessary for generating one realization from the approximate distribution. The numbers are
computation times in seconds on a the same machine as specified in the caption of Table 4.

Time to establish approximation Additional time per realization
ε \ θ 0.10 0.15

10−1 0.65 0.62
10−2 1.57 2.63
10−3 37.73 104.66
10−4 402.82 2 085.03
10−5 2 741.99 61 086.34
10−6 32 478.77 NA

ε \ θ 0.10 0.15

10−1 0.30 0.19
10−2 0.34 0.24
10−3 0.54 0.95
10−4 2.56 7.57
10−5 8.10 73.60
10−6 36.30 NA

the locations of the nodes to be positioned from 1 to 100 along each coordinate axis and let
D(i, j) denote the Eucledian distance between nodes i and j. The energy function we consider
can then be expressed as

U(x) = −θ
∑

k∼l

I(xk = xl)

D(k, l)
, (32)

where the sum is over pairs of nodes that are neighbors. We consider the model for θ = 0.1 and
for θ = 0.15, and apply our approximate recursive algorithm for various values of ε. To evaluate
the quality of the resulting approximations we estimate the mean acceptance probability of
an independent proposal Metropolis–Hastings algorithm, corresponding to what we did for
the Ising model above. The results are given in Figure 10, and Table 5 gives the associated
computation times.

20

8 Closing remarks

Using a canonical representation of binary Markov random fields we have defined exact and
approximate recursive algorithms for this model class. The exact algorithm is essentially the
same as previously defined in Reeves and Pettitt (2004) and Friel and Rue (2007). What is new
is how we combine our canonical representation with the recursive scheme and how this enables
us to define our corresponding approximative recursive algorithm. We have explored the
quality of our approximate algorithm in a number of simulation examples and demonstrated
how it can be used in several scenarios. In particular we have obtained accurate approximations
for the Ising model, a model that is frequently used in spatial statistics. Even though we
here have limited the attention to binary fields the approximation strategy we have used is
applicable also for stochastic fields with more than two colors. However, the computational
complexity grows rapidly with the number of colors, so it is feasible only for a small number
of colors.

The results in our simulation examples demonstrate that the procedure we propose is fea-
sible in situations of practical importance. However, our results also shows the limitations of
our approach. For example, our approximation procedure is not feasible for the Ising model
with θ = 0.8 unless one is willing to do a lot of computations. We have also tested our proce-
dure on other models not discussed in this paper, including higher order interaction Markov
random fields (Descombes et al., 1995; Tjelmeland and Besag, 1998). What is important for
the practicality of our approximation algorithm seems not to be interaction level, but rather
the degree of correlation between node values in p(x).

Our setup can be modified in several ways. First, we adopted the basis functions fΛ(x) =∏
i∈Λ xi, Λ ∈ P(S) to define our canonical representation of p(x). One may imagine alternative

sets of basis functions. What is important for the efficiency of the algorithm is that the
corresponding parameters β(Λ) can be computed recursively and that most of these parameters
can be approximated to zero. Second, by maximizing over each variable in turn in stead
of summing them out as we do here, one may define approximate variants of the Viterbi
algorithm, see for example Künsch (2001), thereby finding an approximation to the most
probable state. Third, whenever the target distribution p(x) is defined on a regular lattice,
the parameters β(Λ) are stationary and we are summing out the variables in the lexicographical
order, we quickly get into an essentially stationary phase after having summed out the first
few lines of nodes. Thus, taking advantage of this stationarity we only need to sum out in
detail the first few lines and the last one. This idea has previously been used for a different
approximation scheme in Pettitt et al. (2003). In our simulation examples we have not taken
advantage of this idea, so here there is a potential for drastically reducing the computation
times reported in Tables 2 and 5. Last, even though we have formulated our summation
procedure for a general permutation t(1), . . . , t(n), we are summing out the node variables
in the lexicographical order in all our simulation examples presented in this paper. In runs
not discussed here we have also tried other permutations, including permutations based on
the multigrid (Goodman and Sokal, 1989) and divide and conquer (Golub and van Loan,
1996; Rue, 2001) ideas, but the results are inferior relative to summing out the variables in
the lexicographical order. Still, however, we suspect that summing orders better than the
lexicographical one exist.

It should be noted that the approximate distribution we are constructing, p̃ε(x), is in fact
a partially ordered Markov model (POMM), see the definition in Cressie and Davidson (1998).
The induced partial ordering can be studied by looking at p̃ε(xt(k)|xt(l), l = k+1, . . . , n). This

21

ε = 10−2 ε = 10−4

θ = 0.4

θ = 0.6

Figure 11: Conditional dependence structure for p̃ε(xt(k)|xt(l), l = k + 1, . . . , n) corresponding
to an Ising model when the node variables of summed out in the lexicographical order. Results
of shown for a node k well away from borders and for two values of θ and two values of ε. The
node t(k) is black and other nodes that influence p̃ε(xt(k)|xt(l), l = k + 1, . . . , n) are shaded.

conditional distribution is really only a function of a subset of xt(l), l = k + 1, . . . , n, partly
because of the Markov property of the original p(x) and partly because of the approximation
we are doing when setting some of the interaction parameters equal to zero. When summing
out the variables in an Ising model in the lexicographical order, Figure 11 shows the sets of
variables that the p̃ε(xt(k)|xt(l), l = k + 1, . . . , n) ends up being a function of for a node k

well away from lattice borders. Results are shown for two values of θ and two values of ε.
Corresponding to what is intuitively reasonable the approximate conditional distribution is
a function of the nodes that are close to t(k), and it becomes a function of more variables
when θ increases or ε decreases. From the partial ordering given by the dependence structure,
level sets can be identified as discussed in Cressie and Davidson (1998) and in the backward
simulation part of the algorithm variables in the same level set can be simulated in parallel.
Even though our p̃ε(x) is formerly a POMM, the procedure we propose for constructing the
POMM in this paper is very different from what is discussed in Cressie and Davidson (1998).
Our approximation algorithm is automatically finding a suitable partial ordering that fits to
the p(x) of interest, whereas in Cressie and Davidson (1998) the partial ordering is apriori
specified.

Acknowledgements

We acknowledge support from The Research Council of Norway, Statoil and ENI.

References

Bartolucci, F. and Besag, J. (2002). A recursive algorithm for Markov random fields,
Biometrika 89: 724–730.

22

Besag, J. (1974). Spatial interaction and the statistical analysis of lattice systems, J. R.

Statist. Soc. B 36: 192–225.

Besag, J. (1986). On the statistical analysis of dirty pictures (with discussion), J. R. Statist.

Soc. B 48: 259–302.

Besag, J., York, J. and Mollié, A. (1991). Bayesian image restoration, with two applications
in spatial statistics, Annals of the Institute of Statistical Mathematics 43: 1–59.

Clifford, P. (1990). Markov random fields in statistics, in G. R. Grimmett and D. J. A. Welsh
(eds), Disorder in Physical Systems, Oxford University Press, pp. 19–31.

Cressie, N. A. C. (1993). Statistics for spatial data, 2 edn, John Wiley, New York.

Cressie, N. and Davidson, J. (1998). Image analysis with partially ordered Markov models,
Computational Statistics and Data Analysis 29: 1–26.

Descombes, X., Mangin, J., Pechersky, E. and Sigelle, M. (1995). Fine structures preserving
model for image processing, Proc. 9th SCIA 95, Uppsala, Sweden, pp. 349–356.

Friel, N., Pettitt, A. N., Reeves, R. and Wit, E. (2009). Bayesian inference in hidden Markov
random fields for binary data defined on large lattices, Journal of Computational and Graph-

ical Statistics 18: 243–261.

Friel, N. and Rue, H. (2007). Recursive computing and simulation-free inference for general
factorizable models, Biometrika 94: 661–672.

Gelman, A. and Meng, X.-L. (1998). Simulating normalizing constants: from importance
sampling to bridge sampling to path sampling, Statistical Science 13: 163–185.

Geyer, C. J. and Thompson, E. A. (1995). Annealing Markov chain Monte Carlo with appli-
cations to ancestral inference, J. Am. Statist. Ass. 90: 909–920.

Golub, G. H. and van Loan, C. F. (1996). Matrix Computations, 3rd edn, John Hopkins
University Press, Baltimore.

Goodman, J. and Sokal, A. D. (1989). Multigrid Monte Carlo method. Conceptual foundations,
Physical Review D 40: 2035–2071.

Heikkinen, J. and Högmander, H. (1994). Fully Bayesian approach to image restoration with
an application in biogeography, Applied Statistics 43: 569–582.

Huang, F. and Ogata, Y. (2002). Generalized pseudo-likelihood estimates for Markov random
fields on lattice, Annals of the Institute of Statistical Mathematics 54: 1–18.

Kindermann, R. and Snell, J. L. (1980). Markov random fields and their applications, American
Mathematical Society, Providence, R.I.

Künsch, H. R. (2001). State space and hidden Markov models, in O. E. Barndorff-Nielsen,
D. R. Cox and C. Klüppelberg (eds), Complex Stochastic Systems, Chapman & Hall/CRC.

Møller, J., Pettitt, A., Reeves, R. and Berthelsen, K. (2006). An efficient Markov chain
Monte Carlo method for distributions with intractable normalising constants, Biometrika

93: 451–458.

23

Murray, I. (2007). Advances in Markov chain Monte Carlo methods, PhD thesis, Gatsby
Computational Neuroscience Unit, University College London.

Pettitt, A. N., Friel, N. and Reeves, R. (2003). Efficient calculation of the normalising constant
of the autologistic and related models on the cylinder and lattice, J. R. Statist. Soc. B

65: 235–247.

Propp, J. G. and Wilson, D. B. (1996). Exact sampling with coupled Markov chains and
applications to statistical mechanics, Random Stuctures and Algorithms 9: 223–252.

Reeves, R. and Pettitt, A. N. (2004). Efficient recursions for general factorisable models,
Biometrika 91: 751–757.

Rue, H. (2001). Fast sampling of Gaussian Markov random fields, J. R. Statist. Soc. B 63.

Rydén, T. and Titterington, D. M. (1998). Computational Bayesian analysis of hidden Markov
models, Journal of Computational and Graphical Statistics 7: 194–211.

Scott, A. L. (2002). Bayesian methods for hidden Markov models: Recursive compution in
the 21st century, Journal of the American Statistical Association 97: 337–351.

Tjelmeland, H. and Besag, J. (1998). Markov random fields with higher order interactions,
Scand. J. Statist. 25: 415–433.

24

