
NORGES TEKNISK-NATURVITENSKAPELIGE
UNIVERSITET

Approximate Bayesian Inference for Survival Models

by

Sara Martino Rupali Akerkar and H̊avard Rue

PREPRINT
STATISTICS NO. 3/2010

NORWEGIAN UNIVERSITY OF SCIENCE AND
TECHNOLOGY

TRONDHEIM, NORWAY

This preprint has URL http://www.math.ntnu.no/preprint/statistics/2010/S3-2010.pdf

Sara Martino has homepage: http://www.math.ntnu.no/∼martino
E-mail: martino@math.ntnu.no

Address: Department of Mathematical Sciences, Norwegian University of Science and Technology, N-7491
Trondheim, Norway.



Approximate Bayesian Inference for Survival Models

Sara Martino, Rupali Akerkar and H̊avard Rue
Department of Mathematical Sciences

NTNU, Norway
Email: {martino,akerkar,hrue}@math.ntnu.no

February 16, 2010

Abstract

Bayesian analysis of time-to-event data, usually called survival analysis, has received increasing
attention in the last years. In Cox-type models it allows to use information from the full likelihood
instead of from a partial likelihood, so that the baseline hazard function and the model parameters
can be jointly estimated. In general, Bayesian methods permit a full and exact posterior inference
for any parameter or predictive quantity of interest. On the other side, Bayesian inference often
relies on Markov Chain Monte Carlo (MCMC) techniques which, from the user point of view,
may appear slow at delivering answers. In this paper, we show how a new inferential tool named
Integrated Nested Laplace approximations (INLA) can be adapted and applied to many survival
models making Bayesian analysis both fast and accurate without having to rely on MCMC based
inference.

1 Introduction

Since its introduction in the seminal work of Cox (1972), the proportional hazard or Cox model is
the default choice when dealing with continuous time-to-event data. In its basic form, it leaves the
baseline hazard function unspecified (thus allowing for some flexibility) but requires all covariates
to have linear effects. While classical analysis have to rely on parameter inference based on par-
tial likelihood, and on a post-estimate of the baseline hazard, the Bayesian approach allows to use
information from the full likelihood and to jointly estimate all unknown elements in the model. In
general, Bayesian methods permit a full and exact posterior inference for any parameter or predictive
quantity of interest.

The last years have seen an increasing interest in Bayesian analysis of time-to-event data mainly
due to improvements in both modeling techniques and computational power. Several extensions to
the basic Cox model have been proposed in the Bayesian literature in order to account for different
characteristic of the data, such as within group correlation, spatial patterns or non-linear covariate
effects. The book by Ibrahim et al. (2001) provides a good overview of Bayesian survival models.
Banerjee et al. (2003) discuss parametric Weibull baseline hazard and adds a spatial component
using a geostatistical model, whereas Carlin and Banerjee (2003) and Banerjee and Carlin (2003)
do similarly with a semi-parametric estimation of baseline hazard. Hannerfeind et al. (2006) extend
the work of Fahrmeir and Lang (2001) and Lang and Brezger (2004) and propose a geoadditive
Cox model where the linear predictor is extended to include spatial components, unknown form of
the (log)baseline hazard and semi-parametric effect of covariates. The spatial effect is modeled via
geostatistical and conditional autoregressive priors while B-splines are used to model the unknown
smooth functions. Inference is done using MCMC algorithms. Kneib (2006) extends the geoadditive
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Cox model to deal with interval censored survival times. Kneib and Fahrmeir (2007) propose a mixed
model based methodology for geoadditive Cox models, which can be interpreted as an empirical Bayes
version of the full Bayesian approach in Hannerfeind et al. (2006). A joint frequentistic analysis
of survival and longitudinal data was proposed by Henderson et al. (2000), central feature is to
postulate a latent bivariate Gaussian process and assume that, given such process, the longitudinal
measurements and the survival data are conditionally independent. Guo and Carlin (2004) discuss
a Bayesian version of the same model using MCMC for inference.

Although there exist software offering general solutions for wide classes of models, like WinBUGS
(Lunn et al., 2000) and BayesX (Brezger et al., 2003), the use of MCMC based inference still carries a
large computational cost and requires interaction from the user to diagose convergence and accuracy
of the estimates. All these additional costs become more prominent when applied to more advanced
models including spatial and/or semi-parametric (smooth) effects. We conclude that Bayesian infer-
ence for survival models is indeed possible, but the current computational solutions is not yet at the
level which gives the end-user a smooth experience, both in terms of speed and simplicity.

The aim of this paper is twofold. First we want to show that many of the Cox-type models proposed
in the literature can be seen as latent Gaussian models. These are a wide class of statistical models
whose latent variables are jointly Gaussian partially observed through data. Some hyperparameters
might also be present; see Rue et al. (2009) for more examples. There are two main advantages in
viewing survival models as latent Gaussian models; “complicated” components in the models like
smooth effects of continuous covariates, spatial/temporal effects, various frailty effects, are easy to
add and appear only as a trivial changes in the Gaussian part of the model. Moreover, Bayesian
inference for latent Gaussian models can be done using Integrated Nested Laplace approximations

(INLA), see Rue et al. (2009). INLA provide fast and accurate approximations to the posterior
marginals through a clever use of Laplace approximations and advanced numerical methods taking
computational advantage sparse matrices. The result is that posterior marginals can be estimated
in a small fraction of the time required by MCMC, with a relative error not additive error as for
MCMC. The second aim the this paper is to show how INLA can be adapted to fit survival models.
Although the implementation of INLA is quite involved, an open-source version written in C based
on the GMRFLib-library (Rue and Held, 2005) is available. An interface from R named INLA, is also
available; see www.r-inla.org for documentation and worked through examples.

The rest of the paper is organized as follows: in Section 2 we introduce latent Gaussian models and
give a short description of the INLA approach to approximate the posterior marginals. In Section 3
we discuss Weibull hazard regression. Increasing the model complexity, we discuss a joint model
for longitudinal and survival data in Section 4. Semi-parametric models for the baseline hazard are
discussed in Section 5. We end with a discussion of various forms for censoring in Section 6 and a
general discussion in Section 7.

2 Latent Gaussian Models and INLA

In general, latent Gaussian models are hierarchical models where we assume a n-dimensional latent
field x to be point-wise observed through nd ≤ n data y. The latent field x is assumed to have
Gaussian density conditionally on some hyperparameters θ1,

x|θ1 ∼ N (0, Q−1(θ1))

The data y are assumed to be conditionally independent given the latent field x and, possibly, some
additional hyperparameters θ2 in the likelihood. The model definition is completed the prior density
for the hyperparameters θ = {θ1, θ2}. In addition, some linear constraints of the form Ax = e,
where the k × n matrix A has rank k ≪ n, may be imposted.
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Latent Gaussian models are a subset of all Bayesian structured additive models (see Fahrmeir and
Tutz (2001) for a review). Here the likelihood for the ith observation, π(yi|ηi, θ2), depends on some
structured additive predictor ηi and, possibly, on hyperparameters θ2. Rue et al. (2009) consider
π(yi|ηi, θ2) to belong to an exponential family with the mean µi linked to the structured predictor
ηi through a known link function. In survival analysis applications, the likelihood does not belong
to an exponential family but depends on the survival application considered.

The structured predictor ηi accounts for effects of various covariates in an additive way:

ηi = β0 +

nf
∑

j=1

wijf
(j)(uij) +

nβ
∑

k=1

βkzki + ǫi. (1)

Here, the {βk}’s represent the linear effect of covariates z. The {f (j)(·)}’s are unknown functions
of the covariates u: non-linear effects of continuous covariates, time trends, seasonal effects, i.i.d.
“random” intercepts and slopes, group specific random effects (frailties) and spatial random effects
can all be represented through the {f (j)}’s functions. The wij are known weights defined for each
observed data point. Finally, ǫi’s are unstructured random effects. A latent Gaussian model is
obtained by assigning x = {{f (j)(·)}, {βk}, {ηi}} a Gaussian prior with precision matrix Q(θ1).

The posterior distribution then reads:

π(x, θ | y) ∝ π(θ) π(x | θ)
∏

i∈I

π(yi | x, θ). (2)

Where the likelihood for yi depends only on ηi and θ2. As the likelihood often is not Gaussian, this
posterior density is not analytically tractable. The aim is to infere the posterior marginal distributions
for the latent field π(xi|y), i = 1, . . . , n and for the hyperparameters π(θ|y).

Integrated Nested Laplace approximation (INLA) provides a recipe for computing in a fast and
accurate way, such posterior marginals (Rue et al., 2009). The approximations π̃(θ|y) and π̃(xi|θ, y),
i = 1, . . . , n are based on a clever use of Laplace approximations. Posterior marginals for the latent
variables π̃(xi|y) are then computed via numerical integration:

π̃(xi|y) =

∫

π̃(xi|θ, y)π̃(θ|y) dθ

≈
K

∑

k=1

π̃(xi|θk, y)π̃(θk|y) ∆k (3)

Posterior marginals for the hyperparameters π̃(θj |y), j = 1, . . . , M can also be derived via numer-
ical integration. The output of INLA consists of posterior marginal distributions, which can be
summarized via means, variances and quantiles. As a bi-product of the main computations, INLA
can compute the Deviance Information Criteria (DIC) (Spiegelhalter et al., 2002), a measure of
complexity and fit useful to compare different models.

In order for the INLA methodology to work in an efficient way, latent Gaussian models have to satisfy
some additional properties which will be assumed throughout this paper. First, the latent field x,
often of large dimension, admits conditional independence properties. In other words it is a latent
Gaussian Markov random field (GMRF) with a sparse precision matrix Q, (Rue and Held, 2005).
The efficiency of INLA relies, in fact, on algorithms for sparse matrices computations. Almost all
latent Gaussian models in the literature satisfy this conditions. The second condition to be satisfied
is that the dimension of the hyperparameter vector θ should be not be too large. This is necessary
for the integral in Eq. (3) to be computationally feasible. Finally, each data point yi should depend
on the latent field x only through the predictor ηi, i.e. π(yi|x, θ1) = π(yi|ηi, θ1). This is a technical
requirement due to the software design of the GMRFLib-library upon which the INLA library is based
and not a condition necessary to the INLA methodology itself.
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3 Parametric Proportional Hazard models: Weibull Regression

Here we consider survival data in their most common form: for each individual i in study the lifetime
Ti and the censoring time Ci are independent random variables. The observed time is ti = min(Ti, Ci)
and δi denotes the censoring observation. In the Cox proportional hazard model the hazard rate for
individual i is:

h(ti) = h0(ti) exp(ηi) (4)

where h0(·) is the baseline hazard, and ηi the predictor. One common approach is to assume a
Weibull distribution for the baseline hazard:

h0(ti) = αtα−1
i , α > 0. (5)

The contribution to the log-likelihood of observation (ti, δi) is

li = δi log h(ti) −
∫ ti

0
h(u) du

= δi (log α + (α − 1) log ti + ηi) − exp(ηi)t
α
i . (6)

In the basic Cox model we have ηi = βT zi where β is a vector of unknown parameters and zi a
vector of observed covariates. Following Hannerfeind et al. (2006), we let the predictor ηi take the
structured additive form in Eq. (1). We assign Gaussian priors to all elements on the right end side
of Eq. (1), so that x = {{f (j)(·)}, {βk}, {ηi}} is a Gaussian field with precision matrix Q(θ1).

The extended Weibull regression model described above can easily be seen as a latent Gaussian model
with latent field x, hyperparameter vector θ = {θ1, θ2}, with θ2 = α, and observed data (ti, δi),
i = 1, . . . , nd. The likelihood for (ti, δi) depends on the latent field x only through the predictor ηi,
as can be seen from Eq. (6), therefore INLA can be directly applied to such model as shown in the
following example.

3.1 Example: The Kidney Infection data

Our first example concerns the well known study of times to kidney infection for a set of 38 patients
(McGilchrist and Aisbett, 1991; Spiegelhalter et al., 1995). The data set contains, for each patient,
the first and second infection time tij and a set of three covariates: sex, age and the type of disease.
Spiegelhalter et al. (1995) propose a Weibull model with to analyze the data set. Log-normal frailties
are used to model the association between the two survival times related to the same patient. The
hazard model is:

h(tij) = αtα−1
ij exp(ηij); i = 1, . . . , 38 j = 1, 2

where
ηij = β0 + βsexsexi + βageagei + βdis2dis2i + βdis3dis3i + βdis4dis4i + log(ui)

We assign bi = log(ui) ∼ N (0, τ−1), β0 ∼ N (0, 0.001−1) and β = {βsex, βage, βdis2, βdis3, βdis4} ∼
N (0, I). Further we assume Gamma priors Γ(a, b) with mean a/b and variance a/b2, for both τ and
α. In particular τ ∼ Γ(1, 1) and α ∼ Γ(1, 1).

We implement the model using INLA by defining the formula:

formula = inla.surv(time,event) ~ age + sex + dis2 + dis3 + dis4 +

f(ID, model="iid", param=c(1, 1))

and then using the inla() function:
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mod = inla(formula, family="weibull", data=Kidney,

control.data=list(param=c(1,1)), control.fixed = list(prec=1))

The inla.surv() function is used to describe censored data, and always appears on the left side of
a model formula when dealing with survival models. The param argument specifies the parameters
a and b in the Gamma priors while the prec argument specifies the precision for the prior of the β

vector.

In Figure 1 the INLA posterior marginals for α, τ , β0 and βsex are compared to histograms based
on long MCMC runs using WinBUGS. All examples in the paper are implemented on on a dual-
core 2.5GHz laptop and the execution times refers to such machine. The estimates are practically
indistinguishable despite the fact that the computing time for inla() was only 2 seconds while
WinBUGS needed around 5 minutes. Results for the other elements of the β vector are similar.
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Figure 1: Kidney example: Posterior marginal distributions approximated by INLA (solid line) and
MCMC based density estimates (histogram) for α (a), τ (b), β0 (c) and βsex (d)

The core of the INLA methodology is a Gaussian approximation of the full conditional density for
the latent field given the data and the hyperparameters. Therefore, for INLA to achieve accurate
results we either have to have a proper Gaussian prior for x, or a large enough ratio between the
number of data points and the total (or effective) number of model parameters. In this example there
are relatively few data compared to the total number of parameters (76 observation and a total of 46
parameters) so choosing flat priors makes the problem difficult for INLA. To illustrate, lets use the
priors chosen in the WinBUGS manual: β ∼ N (0, 104I), τ ∼ Γ(10−3, 10−3) and α ∼ Γ(1, 10−3). The
very low precision for β and the vague prior assigned to τ make the prior density for x|θ resembling
more a uniform than a normal density. To check how INLA behaves in such a challenging case we
have compared INLA and MCMC results.
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Parameter (µinla − µmcmc)/σmcmc σinla/σmcmc

β0 0.015 0.897
βage 0.008 0.937
βsex 0.015 0.911
βdis2 -0.002 0.935
βdis3 -0.009 0.935
βdis4 0.007 0.936

α - 0.174 0.800
log τ -0.093 0.835

Table 1: The Kidney Infection example: Comparison between INLA and MCMC based estimates in
the case of very flat prior densities.

Now the two estimates present some discrepancy. We quantify them using both the difference between
the estimated posterior means relative to the estimated standard deviation (µinla − µmcmc)/σmcmc

and the ratio of the estimated standard deviations (σinla/σmcmc). Results are reported in Table 1.
Although there are differences in the two estimates, these are rather small and could be ignored for
practical use. Despite this being a quite difficult case for the INLA methodology, we get reliable
estimates in only 2 seconds when the the MCMC sampler needed around 10 minutes.

4 Model for Joint analysis of survival and longitudinal data

Many scientific investigations generate both longitudinal data (repeated measurement of a response
variable at a number of time points) and survival data. Often the longitudinal variable is linked to the
mechanism generating the survival data, then joint study of the two data set is of interest. A flexible
model for such analysis is presented in Henderson et al. (2000). The authors argue that, a joint
model for longitudinal and survival data should incorporate the most commonly used assumption for
both subject. Thus, they model longitudinal data by including fixed effects, random effects, serial
correlations and pure measurement error, and the survival data by using a parametric proportional
hazard with or without frailty terms. The longitudinal and the survival processes are then connected
by a latent bivariate Gaussian process and assumed conditional independent given such latent process
and any available covariate. While Henderson et al. (2000) propose a classical maximum likelihood
approach for this model, Guo and Carlin (2004) assume a Bayesian perspective and rely on MCMC
algorithms. In this section we show how this rather complex model reduces again to a latent Gaussian
model where the observations have different likelihoods.

4.1 Model specification

Suppose we have a set of m subject followed over a time interval [0, τ ]. The ith subject provides a
set of (possibly missing in part) longitudinal quantitative measurements {yij , j = 1, . . . , ni} at times
{sij , j = 1, . . . , ni} and a (possibly) censored survival time ti. Moreover, a set of covariates z is
recorded. The joint model is composed of two sub-models, one for each type of data.

The longitudinal data yij are assumed to have a Gaussian likelihood with unknown precision τ1 and
mean:

ηl
ij = µi(sij) + W1i(sij) (7)

where µi(s) = zT
1i(s)β1 and W1i(s) = d1i(s)U i incorporates subject specific random effects. The

vectors zT
1i(s) and β1 represent (possibly time varying) explanatory variables and their correspond-
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ing regression coefficients. The U i are vectors of Gaussian random effects corresponding to the
explanatory variables d1i(s).

The survival observarions ti, i = 1, . . . , m are assumed to have a Weibull likelihood with unknown
shape parameter α and predictor

ηs
i = zT

2i(ti)β2 + W2i(ti) (8)

where the vectors z2i(t) and β2 represent (possibly time dependent) explanatory variables and their
corresponding regression coefficients. They may or may not have elements in common with z1i and
β1 in the longitudinal model. The form of W2i(t) is similar to W1i(s), including subject specific
covariate effects and intercept (frailty).

Henderson et al. (2000) introduce association between models (7) and (8) by using a latent zero-
mean bivariate Gaussian process to model (W1i, W2i)

T . The random variables are assumed to be
independent across different subjects. Specifically they propose:

W1i(s) = U1i + U2is (9)

and
W2i(t) = γ1U1i + γ2U2i + γ3(U1i + U2it) + U3i. (10)

The parameters γ1, γ2 and γ3 in Eq. (10) measure the association between the two sub-models induced
by the random intercepts, slopes and fitted longitudinal value at the event time W1i(t) respectively.
The pairs (U1i, U2i)

T are assumed to have a bivariate Gaussian distribution N (0, Q−1
U ) while the

U3i are independent frailty terms with N (0, τ−1
U3

) prior and independent of the (U1i, U2i)
T ’s. Vague

Gaussian priors are assigned to β1, β2, γ1, γ2 and γ3 in Eq. (10), while Gamma priors are assigned
to τ1, τU3

and α. Finally a Wishart prior is assigned to the 2 × 2 precision matrix QU .

This rather complex model reduces to a latent Gaussian field. Define the vector of hyperparameters
to be θ = {α, τ1, τU3

, γ1, γ2, γ3, QU}. The latent field x = ({ηl
ij}, {ηs

i }, β1, β2, {(U1i, U2i)}, {U3i}),
conditioned on θ, has Gaussian distribution with precision matrix Q(θ). Finally the observations
({yij}, {ti}) have a likelihood which, conditional on the hyperparameters θ, depends on the latent
field x only through the predictor, ηl

ij or ηs
i according to the particular data point we are considering.

The fact that not all data points have the same likelihood does not pose any challenge to the INLA
methodology; each data point could have a different likelihood.

4.2 Example: AIDS Clinical Trial

We reconsider the data in Henderson et al. (2000) referring to a clinical study to compare the efficacy
of two antiretroviral drugs, didanosine (ddI) and zelcitabine (ddC) in treating patients who have
failed or were intolerant of zidovudine (AZT) therapy. For each of the m = 467 patient enrolled in
the study the times to death (δi = 1) or to leave the study (δi = 0) are recorded: (ti, δi), i = 1, . . . , m.
Moreover, the square root of the number of CD4 cells per ml of blood yij is recorded at time sij .
There is a maximum of 5 observations per patient. Four explanatory variable are also recorded: the
gender, the type of drug, the AIDS diagnosis at study entry (PrevOI) and the stratum.

The longitudinal sub-model assumes a Gaussian likelihood for yij with unknown precision τ1 and
mean

ηij = β11 + β12sij + β13sijDrugi + β14Genderi + β15PrevOIi + β16Stratumi + W1i(sij)

The survival sub-model assumes an exponential likelihood for (ti, δi) with predictor:

ηi = β21 + β22Drugi + β23Genderi + β24PrevOIi + β25Stratumi + W2i(t) (11)
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Guo and Carlin (2004) propose a variety of joint models with different forms of the latent processes
W1(s) and W2(s) and compare them using the Deviance Information Criterion (DIC). This is a
measure of complexity and fit, introduced in Spiegelhalter et al. (2002) and used to compare complex
hierarchical models. It is defined as:

DIC = D + pD

where D is the posterior mean of the deviance of the model and pD is the effective number of
parameters. Smaller DIC values indicate a better trade-off between complexity and fit. We have
implemented all models in Guo and Carlin (2004), with the exception of model X and XII which, for
technical reasons, cannot be implemented in the current version of INLA. The computing time goes
from 6 seconds needed for model I to 206 for model XI. The R code used to fit the models is available
at www.r-inla.org. In Table 2 the computed D, pD and DIC are reported for the 9 different joint

Model W1(s) W2(s) mean of the effective number DIC
deviance of parameters

No random effects
I 0 0 9812.1 11.6 9823.7
II 0 U3 9812.1 12.2 9824.4

Random Intercepts
III U1 0 7507.8 432.2 7940.0
IV U1 U3 7507.7 432.1 7939.9
V U1 γ1U1 7438.1 433.3 7871.4
VI U1 γ1U1 + U3 7439.9 430.8 7870.7

Random Intercepts
and random slopes

VII U1 + U2s 0 7109.0 734.6 7843.6
VIII U1 + U2s γ1U1 7056.9 736.7 7793.6
IX U1 + U2s γ2U2 7053.6 757.4 7811.0
XI U1 + U2s γ1U1 + γ2U2 6979.3 760.1 7739.4

Table 2: Model selection for the ddI/ddC data

models and model XI emerges with the smallest DIC.

Having selected a final model we compare results obtained under the separate (i.e. ignoring any
latent association introduced by W2) and the joint model. The estimated parameters, together with
95% credible intervals are reported in Table 3. Our results appear to be equal to those obtained via
Gibbs sampling in Guo and Carlin (2004) up to two digit accuracy.

5 Semi-parametric baseline hazard models

In this section we consider a semiparametric model for the baseline hazard rate h0(t), the piecewise
log-constant proportional hazard model (Breslow, 1972). To construct this model we start from a
finite partition of the time axis, 0 = s0 < s1 < s2 < · · · < sK with sK > ti for all i = 1, . . . , m
observed lifetimes, and assume the baseline hazard to be constant in each time interval

h0(t) = λk for t ∈ (sk−1, sk], k = 1, . . . , K.

Let (ti, δi), i = 1, . . . , m indicates the (possibly censored) survival times and censoring indicator, and
let zi indicate the set of covariates recorder for individual i. Then, the hazard rate for individual i
in the kth time interval is:

hi(t) = h0(t) exp(βT zi) = exp(βT zi + bk) = exp(ηik), t ∈ (sk−1, sk] (12)
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Separate Analysis Joint Analysis

Parameter Posterior Mean 95%CI Posterior Mean 95%CI

Longitudinal Sub-model Longitudinal Sub-model

Intercept (β11) 8.05 ( 7.36, 8.74) 8.05 (7.36,8.74)
Time (β12) -0.20 (-0.29,-0.10) -0.27 (-0.36,-0.17)
Time×Drug (β13) 0.05 (-0.08,0.19) 0.03 (-0.11, 0.17)
Sex (β14) -0.15 (-0.79,0.49) -0.11 (-0.75, 0.54)
PrevOI (β15) -2.33 (-2.81,-1.86) -2.35 (-2.82, -1.88)
Stratum (β16) -0.10 (-0.57,0.36) -0.11 (-0.58, 0.36)
τepsilon 0.35 ( 0.31, 0.38) 0.35 (0.31 , 0.38)

Σ−1
11 0.06 ( 0.06, 0.07) 0.06 (0.06, 0.07)

Σ−1
22 2.58 ( 2.21, 2.99) 2.56 (2.24, 2.92)

ρ = Σ12/
√

Σ11Σ22 -0.12 (-0.22,-0.01) -0.06 (-0.15, 0.03)

Survival Sub-model Survival Sub-model

Intercept (β21) -3.72 (-4.05 ,-3.41) -4.07 ( -4.49, -3.67)
Drug (β22) 0.21 ( -0.08 , 0.50) 0.26 ( -0.09, 0.61)
Sex (β23) -0.17 ( -0.40, 0.08) -0.13 ( -0.41, 0.17)
PrevOI (β24) 0.62 ( 0.40, 0.85) 0.76 ( 0.51, 1.02)
Stratum (β25) 0.08 ( -0.08, 0.24) 0.07 ( -0.12, 0.27)
γ1 - - -0.20 ( -0.25, -0.14)
γ2 - - -1.61 ( -1.97, -1.23)

Table 3: Separate and Joint analysis for the ddI/ddC data

where bk = log(λk). Assigning a Gaussian prior to the vector (b1, . . . , bK) and to the parameters
vector β brings us back to a Gaussian distributed predictor ηik and therefore to latent Gaussian
models. Note that extending the predictor ηik in Eq. (12) to the general form in Eq. (1) does not
constitute any problem.

The log-likelihood contribution for data point (t, δ) with t ∈ (sk−1, sk] is

l = δ log h(t) −
∫ t

0
h(u)du = δηk − (t − sk)e

ηk −
k−1
∑

j=1

(sj+1 − sj)e
ηj (13)

and depends on the Gaussian latent field through the vector of predictors η1, . . . , ηk. Hence INLA is
not directly applicable to such model.

In order to be able to apply INLA we have to rewrite the model so that it fits the INLA framework.
Notice that Eq. (13) is equivalent to the log-likelihood of k Poisson distributed data points, of which
k − 1 with mean (sj+1 − sj)e

ηj observed to be 0, and one with mean (t − sk)e
ηk observed to be 0 or

1 according to whether the survival time t is observed or censored. The fact that a Cox model with
piecewise log-constant baseline hazard is equivalent to certain Poisson regression model was noted
independently by Holford (1980), and Laird and Oliver (1981). The key to apply INLA to a Cox
model with piecewise log-constant baseline hazard lies therefore in data augmentation. In practice
each original data point (t, δ) with t ∈ (sk−1, sk] is represented by k Poisson distributed data points
in the augmented data set. Such data augmentation brings us back to the latent Gaussian models
described in Section 2.

For (b1, . . . , bK) we choose a prior that gives smooth realizations. Since the baseline hazard is by
“default” constant, the choice falls on an intrinsic first-order random walk (RW1) model (Rue and
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Held (2005), Ch. 3) with precision τb. RW1 models are built by first assuming that the location k of
the nodes are all positive integers, i.e. k = 1, 2, . . . , K so that the distance between nodes is constant
and equal to 1. Then, increments bk+1 − bk are assumed independent and identically distributed

bk+1 − bk ∼ N (0, τ−1
b ), k = 1, . . . , K − 1. (14)

Such models are invariant to the addition of any constant to the overall mean. We assume τb ∼ Γ(a, b).

5.1 Example: Leukemia survival data in North-West England

To illustrate the use of INLA for piecewise log-constant Cox models we consider the data set presented
in Henderson et al. (2002) and re-proposed in Kneib and Fahrmeir (2007). Both analysis concentrate
on the detection of spatial variations but while the first paper retain the assumption of linear predictor
for covariate effects, the second one assumes more flexible smooth effects of covariates.

The data set contains information on m = 1043 cases of leukemia in adults diagnosed between 1982
and 1998 in Northwest England. Almost 16% of cases are right censored. For each patient i the
following covariates are recorded: the age of the patient (agei), the white blood cell counts (wbci) at
diagnosis, the Townsend deprivation index (tpii), which measures the deprivation for the enumeration
district of residence, the sex of the patient (sexi), and district of residence (si). We partition the
time axis into K = 20 equally spaced intervals and assume a Cox model with piecewise log-constant
baseline hazard. From the results in Kneib and Fahrmeir (2007), we let age and white blood cell
counts have a linear effect while for the Townsend deprivation index we assume a smooth effect.
Moreover, a spatial effect is included. The predictor for patient i at time t ∈ (sk−1, sk] is then given
by:

ηik = β0 + βsexsexi + βageagei + βwbcwbci + f (tpi)(tpii) + f (s)(si) + bk

The tpi values are rounded to ntpi = 50 different values and their effect is modeled as a smooth

function f (tpi)(·), parametrized as unknown values f (tpi) = {f (tpi)
1 , . . . , f

(tpi)
ntpi

}. The vector f (tpi) is
assumed to follow a second order random walk (Rue and Held (2005), Ch. 3) defined as:

π(f (tpi)|τtpi) ∝ τ
(ntpi−2)/2
f exp

{

−1

2
τtpi

ntpi
∑

i=3

(f
(tpi)
i − 2f

(tpi)
i−1 + f

(tpi)
i−2 )2

}

.

The model for the spatial term f (s) = {f (s)
1 , . . . , f

(s)
ns }, with ns = 24 being the number of districts, is

defined conditionally as:

f
(s)
1 |f (s)

−i , τs ∼ N





1

ns
i

∑

j∈∂i

fs
j ,

1

ns
i τs





where ∂i is the set of neighbor district to district i, namely those ns
i district which share a com-

mon border with i; see Rue and Held (2005), section 3.3.2, for further details on this model. For
identifiability reasons we assume sum-to-zero constraints on both the smooth effect of tpi and the
district effect. The model is completed by assigning a N (0, 104I) prior to β = {β0, βsex, βage, βwbc}
and independent Γ(1, 0.001) priors to the three hyperparameters θ = (τb, τtpi, τs).

The computing time needed by INLA is around 10 seconds. Estimates for the log-baseline and for the
smooth effect of tpi are shown in Figure 2. The log-baseline decreases over nearly the whole observed
period. The increase at the end of the observation time should not be over-interpreted since there
are only 26 individual surviving 10 years. The effect of the deprivation index is first increasing and
then staying almost constant after reaching a value of about 0.

The estimated spatial effect is shown in Figure 3(a). Areas with low risk are concentrated in the west
part of the country while areas with high risk are more spread. Such path can be seen clearly from
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Figure 2: Leukemia survival data: posterior means (solid line) and 95% credible intervals (dashed
lines) for the log-baseline hazard and the effect of Townsend deprivation index.

.

the significance map in Figure 3(b) where white denotes districts with strictly negative 80% credible
intervals and black denotes districts with strictly positive 80% credible intervals. These findings
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Figure 3: Leukemia survival data. Left panel: spatial effect on a district level (posterior mean).
Right panel: point-wise 80% significance map. White denotes districts with strictly negative credible
intervals, black denotes districts with strictly positive credible intervals.

correspond to those reported in Kneib and Fahrmeir (2007).

To check how the estimate of the log-baseline hazard h0(t) varies with the number of intervals K, we
have repeated the analysis using K = 50 and K = 100. The results are shown in Figure 4. Increasing
the number of intervals K we get a more detailed estimate of the baseline hazard function.

6 Interval censored data

In many applications the analyst is confronted with more complex censoring schemes than right
censoring. Interval censored survival times T are not observed exactly but are only known to fall
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Figure 4: Leukemia survival data: posterior means (solid line) and 95% credible intervals (dashed
lines) for the log-baseline hazard with K = 50 (Panel (a)) and K = 100 (Panel(b)).

.

into an interval [Tlo, Tup]. If Tlo = 0 such survival times are referred to as left censored.

Another feature of lifetime data often encountered is that of truncation. While censoring is about
leaving the study, truncation is about entering it. We say that an observation is left truncated if the
survival time is observed only if it exceeds the truncation time Ttr.

In a general framework an observation can be described by a quatruple (Tlo, Tup, Ttr, δ) with:

Tlo = Tup δ = 1 if the observation is uncensored
Tlo = Tup δ = 0 if the observation is right censored
Tlo < Tup δ = 0 if the observation is interval censored

Moreover, for left truncated observations we have Ttr > 0 while Ttr = 0 indicates that the obser-
vation is not truncated. The general log-likelihood contribution for an observation represented by
(Tlo, Tup, Ttr, δ) is given by:

l = δ log(h(Tup)) −
∫ Tup

Ttr

h(u)du + log

{

1 − exp

(

−
∫ Tup

Tlo

h(u)du

)}

(15)

For the Weibull model discussed in Section 3 the general log-likelihood term in Eq. (15), for a data
point with predictor η as in Eq. (1) reduces to:

l = δ log
{

αTα−1
up exp(η)

}

− exp(η)
(

Tα
up − Tα

tr

)

+ log
{

1 − exp(−Tα
up + Tα

lo)
}

(16)

The likelihood in Eq. (16) depends on the latent field x only through the predictor η, just like the
log-likelihood for right censored data in Eq. (6). Applying INLA to parametric Weibull models is
therefore straight forward also for interval censored data.

As for the piecewise-constant model , the rightmost element in Eq. (15), characteristics for interval
censored data, does not allow to use the data augmentation trick discussed in Section 5 therefore
INLA cannot be applied in such case.
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7 Discussion

In this paper we have shown that many models for survival analysis can be considered as latent
Gaussian models, which allow us to do the inference using INLA. We have demonstrated that INLA
provide a computational solution which gives the end-user a smooth experience, both in terms of
speed and simplicity.

The website www.r-inla.org contains all the data and R-scripts to perform the analyses reported in
the paper including the INLA-software itself.
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