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Abstract

Deterministic Bayesian inference for latent Gaussian models has recently become
available using integrated nested Laplace approximations (INLA). Applying the INLA-
methodology, marginal estimates for elements of the latent field can be computed
efficiently, providing relevant summary statistics like posterior means, variances and
pointwise credible intervals. In this paper, we extend the use of INLA to joint inference
and present an algorithm to derive analytical simultaneous credible bands for subsets
of the latent field. The algorithm is based on approximating the joint distribution of
the subsets by multivariate Gaussian mixtures. Additionally, we present a saddlepoint
approximation to compute Bayesian contour probabilities, representing the posterior
support of fixed parameter vectors of interest. The given methods are applied to
various examples from the literature.

Key words: contour probability, Gaussian mixtures, highest posterior density region,
integrated nested Laplace approximation, simultaneous credible bands

1 Introduction

Latent Gaussian models represent a widely applicable class of Bayesian hierarchical models
in which a Gaussian field is observed indirectly by conditionally independent observations.
This class of models can be viewed as a subclass of structured additive regression models,
in which the mean of observations belonging to an exponential family, is linked to a struc-
tured additive predictor. The predictor typically includes both linear and smooth effects
of covariates and also unstructured random effects. By assigning Gaussian priors to the
elements of the latent field, representing the random variables of the predictor, a latent
Gaussian model is obtained. Parameters of the prior models for the latent field are referred
to as hyperparameters, often being non-Gaussian. The resulting class of models is quite
general and includes several familiar statistical models, like generalized linear or additive
models, spline models, state-space models and various temporal, spatial or spatiotemporal
models. Applications of latent Gaussian models are numerous, see for example Fahrmeier
& Tutz (2001), Gelman et al. (2004), Rue et al. (2009) and Martino & Rue (2010).

In Rue et al. (2009), a unified framework for deterministic approximate Bayesian in-
ference of latent Gaussian models was presented, using integrated nested Laplace approx-
imations (INLA). Assuming the latent field to have Markov properties, efficient recursive
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algorithms based on sparse matrices, provide accurate estimates of posterior marginals for
all elements of the latent field and additional hyperparameters. The INLA-methodology is
available applying a user-friendly R-interface, see www.r-inla.org. For a specific model,
relevant summaries of the marginals like posterior means, variances, quantiles and point-
wise credible bands, are easily obtained. The main aim of this paper is to extend the use of
INLA to deterministic joint inference, deriving analytical simultaneous credible bands. We
also discuss Bayesian contour probabilities as a tool for model selection, see Held (2004)
and Brezger & Lang (2008), calculating the posterior support of specific vectors of interest.

A simultaneous credible band is a visually appealing exploratory tool in joint inference,
constructed as a collection of pointwise credible intervals having a specified coverage prob-
ability. Besag et al. (1995) presented an algorithm for calculating simultaneous credible
bands based on order statistics of univariate samples obtained by Markov chain Monte
Carlo (MCMC). The resulting credible bands were seen to be slightly conservative and due
to Monte Carlo error, these credible bands might be unstable, especially for large coverage
probabilities. Crainiceanu et al. (2007) and Krivobokova et al. (2009), derived simultaneous
credible bands using MCMC for functions of penalized spline models.

The computational benefit of deterministic inference for latent Gaussian models using
INLA, compared with sampling-based inference using MCMC, is huge, see Rue et al. (2009).
Our algorithm to derive simultaneous credible bands makes use of the INLA-methodology,
combined with multivariate Gaussian mixture approximations to joint distributions of sub-
sets of the latent field. Gaussian mixtures represent a flexible class of distributional models,
having a wide range of applications for high-dimensional data, see Chen & Tan (2009).
In Rue & Martino (2007), Gaussian mixtures were considered as approximations to the
marginals of the elements of a latent field. The resulting estimates showed to be quite accu-
rate but slight errors in location and skewness were observerd. Rue et al. (2009) suggested
that Gaussian mixtures, possibly including a correction for the mean, could be applied to
approximate the joint distribution of small subsets of the latent field. We adopt this pro-
cedure also for larger dimensions of a subset, and present a simple iterative algorithm to
compute simultaneous credible bands. The algorithm is based on finding individual highest
posterior density (HPD) intervals for each component of the relevant subset, scaling the
credible level of these intervals to obtain the correct simultaneous coverage probability.

In Held (2004), the use of simultaneous credible bands was questioned, as the resulting
region corresponds to a hyper-rectangular credible region, possibly containing vectors that
are not well-supported by the posterior distribution. Also, a vector in the tails of the
posterior is not necessarily included in the credible band. A relevant alternative is to
consider whether a fixed vector is within the HPD-region of a specified level or not, see Box
and Tiao (1973, p. 125). The HPD-region is optimal in the sense of having the smallest
volume of all credible regions. In Held (2004), the probability

p(x∗ | y) = P (π(x | y) ≤ π(x∗ | y) | y), (1)

is defined as the posterior contour probability of a fixed vector x∗, given observations y,
where the posterior π(x | y) is considered a random variable. The countour probability
equals 1 minus the content of the HPD-region just covering x∗, and can basically be in-
terpreted as p-values in checking the posterior support of specific vectors of interest. In
general, the HPD-region is hard to obtain analytically, but the contour probabilities can
be calculated using MCMC methods, see Held (2004). In our case, the contour probabil-
ities can be evaluated straightforwardly using Monte Carlo estimation, sampling from the
relevant Gaussian mixture. As an alternative, we present a method using the saddlepoint
approximation of Lugannani & Rice (1980), in which only the involved fractional moments
are approximated using Monte Carlo estimation.
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The plan of this paper is as follows. In section 2, we present some background on the
INLA-methodology and the Gaussian mixture assumption. The algorithms to calculate
simultaneous credible bands and posterior contour probabilities are presented in section 3.
In section 4, the given methodology is applied to various examples from the literature.
Discussion and concluding remarks are given in section 5.

2 Finite Gaussian mixture approximations to joint dis-
tributions

A latent Gaussian model is a hierarchical model in which a latent field x is observed point-
wise through conditionally independent observations y = {yi : i ∈ I}. Given hyperparam-
eters θ, x is assumed to be a zero-mean Gaussian Markov random field, having a sparse
precision (inverse covariance) matrix Q(θ). Generically, denote densities and conditional
densities by π(·) and π(· | ·), respectively. The posterior distribution of the given model
can then be expressed by

π(x, θ | y) ∝ π(θ)π(x | θ)
∏
i∈I

π(yi | xi, θ).

In order to derive simultaneous credible bands for a subset xS ⊂ x, we need to estimate
the conditional posterior of xS given y, expressed by

π(xS | y) =
∫
π(xS | θ, y)π(θ | y)dθ. (2)

The full conditional of the latent field,

π(x | θ, y) ∝ π(x | θ)
∏
i∈I

π(yi | xi, θ) ∝ exp{−1
2
xTQ(θ)x+

∑
i

log(π(yi | xi, θ))}, (3)

can often be well approximated by a Gaussian distribution,

π̃G(x | θ, y) ∝ exp{−1
2

(x− µ)TQ∗(θ)(x− µ)},

matching the mode and curvature by Taylor expansion, see Rue & Martino (2007) and Rue
et al. (2009). Notice that in the case of having a Gaussian likelihood, such an approximation
will be exact. The presented algorithms are based on applying a Gaussian approximation
also to the conditional distribution of the subset xS , denoted by π̃G(xS | θ, y).

Adopting the procedure in Rue & Martino (2007) and Rue et al. (2009), the marginal
posterior of θ can be estimated by the Laplace approximation

π̃(θ | y) =
π(x, θ | y)
π̃G(x | θ, y)

∣∣∣∣
x=x∗(θ)

where for each θ, x∗(θ) represents the mode of the Gaussian approximation. Applying
numerical integration, we will approximate (2) by

π̃(xS | y) =
k∑
j=1

wj π̃G(xS ;µj ,Σj | y), (4)
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in which
∑k
j=1 wj =

∑k
j=1 π̃(θj | y)∆j = 1, where ∆j denotes the area weight corresponding

to θj . Further, π̃G(·;µj ,Σj) denotes the multivariate Gaussian approximation with mean
µj = µ(θj) and covariance matrix Σj = Σ(θj). Details concerning the numerical integration,
are given in Rue et al. (2009). Basically, two different approaches for numerical integration
are implemented, in which a grid approach can be applied to increase the accuracy. Applying
the INLA-methodology, all weights, means (possible corrected, see Rue et al. (2009)) and
covariance matrices in (4) can be estimated efficiently, facilitating algorithms to obtain
simultaneous credible bands and posterior contour probabilities.

3 Simultaneous probability statements for Gaussian mix-
tures

In general, a 100(1− α)% credible region for a vector x, given observations y, is defined as
the fixed subset R of the sample space of x in which the posterior probability

P (x ∈ R | y) =
∫
R

π(x | y)dx = 1− α.

As with frequentistic confidence regions, credible regions are not uniquely defined and differ-
ent criteria can be applied in determining various types of credible regions. The simultane-
ous credible bands, to be derived in section 3.1, represent a visually appealing choice in joint
inference. The contour probabilities, derived in section 3.2, give information concerning the
optimal HPD-region.

3.1 Simultaneous credible bands

For a random vector x = (x1, . . . , xm), a 100(1 − α)% simultaneous credible band can be
defined as a hyper-rectangular region

R = {x : ∩mi=1(xi ∈ Ii,αi
)}, where P (x ∈ R | y) = 1− α,

and where {Ii,αi
}mi=1 denotes a set of 100(1 − αi)% individual credible intervals for the

elements of x. A natural idea to construct simultaneous credible bands for x, is to find a
credible region with the correct coverage probability, also having a minimized volume. We
propose to apply HPD-intervals for each component of x, all having the same credible level
1− γ, in which γ ∈ (α/m,α). The resulting simultaneous credible bands can be described
by the region

R∗(γ) = {x : ∩mi=1(xi ∈ Ii,γ)}, (5)

where {Ii,γ}mi=1 now denotes a set of 100(1− γ)% HPD-intervals and γ is chosen to ensure
the correct coverage probability, i.e.

P (x ∈ R∗(γ) | y) = 1− α. (6)

Based on (4), the individual HPD-intervals for a given value γ, are calculated by a
straightforward numerical approach using the marginals

π̃(xi | y) =
∫
π̃(x | y)dx−i =

k∑
j=1

wj π̃G(xi;µij , σij | y),
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where x−i denotes the vector x without the ith element. Further, µij and σij denote the
jth term mean and variance of xi, i = 1, . . . ,m, j = 1, . . . , k. The correct individual level
1− γ can be found by a few iterations, solving (6) with respect to γ, where

P (x ∈ R∗(γ) | y) =
k∑
j=1

wj

∫
R∗(γ)

π̃G(x;µj ,Σj | y)dx. (7)

The multi-Gaussian probabilities in (7), which is the probability for x being in the hyper-
rectangular region R∗(γ), can be calculated in R using the package mvtnorm. This package
implements the clever numerical integration algorithm developed for this purpose only, by
Genz (1992, 1993). In cases where the dimension of x is large, the computation time in
finding the simultaneous credible bands can be significantly reduced using a Gaussian copula
approximation in (7). The copula is constructed by

C(F1(x1), . . . , Fm(xm)) = Φm(Φ−1(F1(x1)), . . . ,Φ−1(Fm(xm))), (8)

where Φm(·) denotes the ordinary cumulative distribution function for a m-dimensional
Gaussian vector. The functions F (·) denote the marignal cumulative distribution functions
for the Gaussian mixture, i.e.

Fi(xi) =
k∑
j=1

wj

∫ xi

−∞
π̃G(xi;µij , σij | y)dxi, i = 1, . . . ,m.

As a result, (7) is evaluated as a single multi-Gaussian probability, in which the marginals
equal the original marginals of the Gaussian mixture in (4). In the examples later, the
copula approximation is seen to give very accurate results.

In constructing simultaneous credible bands, a Bonferroni correction which only adjusts
the credible level according to the dimension of a vector x, is known to be very conservative.
The given approach also adjusts for dependency and represents a computationally efficient
alternative to the approach in Besag et al. (1995), in which individual intervals of the same
level were found using MCMC. Their procedure was based on order statistics, in which the
intervals were assumed symmetric and the credible level was defined as the proportion of
samples which fell simultaneously in all intervals.

3.2 Posterior contour probabilities

According to Held (2004), simultaneous credible bands should be interpreted with care.
Constructed as a projection of a hyper-rectangular region, credible bands might give a
misleading impression concerning the support of the posterior, both containing vectors that
are not supported or by underestimating the support of vectors located in the tail. In
contrast, HPD-regions contain the subset of a random vector x, which is most probable.

Formally, a 100(1− α)% HPD-region is defined as the subset R(cα), in which

R(cα) = {x : π(x | y) ≥ cα}
P (x ∈ R(cα) | y) = 1− α,

and cα denotes a relevant constant. The contour probabilities in (1), can be expressed by

p(x∗ | y) = 1− P (x ∈ R(cα) | y), where cα = π(x∗ | y),

providing information concerning the credible level in which the corresponding HPD-region
covers the fixed vector x∗. A special case in which contour probabilities can be found
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analytically includes the Gaussian case, where the HPD-regions are ellipsoids. Consequently,
the contour probabilities can easily be calculated by

p(x∗ | y) = P (πG(x;µ,Σ) ≤ πG(x∗;µ,Σ) | y) = P (χ2
m > (x∗ − µ)TΣ−1(x∗ − µ) | y),

where χ2
m denotes a chi-squared variable with m degrees of freedom.

Generally, in cases where the functional form of the posterior is unknown, estimates of
contour probabilities can be based on a MCMC-approach, combining Rao-Blackwellization
and Monte Carlo estimation, see Held (2004). In our case, the posterior is approximated
by the Gaussian mixture (4), and independent samples from this distribution, denoted by
{x(t)}Tt=1, can be obtained efficiently. The contour probabilities can then be calculated
unbiasedly using the Monte Carlo estimator

p̂MC(x∗ | y) =
1
T

T∑
t=1

1{π̃(x(t) | y) ≤ π̃(x∗ | y)}, (9)

originally proposed by Wei & Tanner (1990).
As an alternative to (9), we propose to estimate contour probabilities using the saddle-

point approximation of Lugannani & Rice (1980), combined with Monte Carlo estimation of
the involved expectation. To describe our approach, let x denote a given subset of the latent
field and regard the density π̃(x | y) in (4) as a random variable. The contour probability
of a fixed vector x∗ is given by

p(x∗ | y) = P (log π̃(x | y) < log π̃(x∗ | y) | y).

Let K(u) denote the cumulant generating function of log π̃(x | y), which equals

K(u) = log(E(eu log π̃(x|y))) = logE(π̃(x | y)u). (10)

The saddlepoint approximation of the contour probabilities can be expressed by

p̂SA(x∗ | y) = Φ(w) + φ(w)(1/w − 1/v), (11)

where φ(·) and Φ(·) denote the standard Gaussian density and cumulative distribution
functions, resepctively. Further,

v = ψ̂(K ′′(ψ̂))1/2

w = sgn(ψ̂)(2(ψ̂ log π(x∗)−K(ψ̂)))1/2,

in which the saddlepoint ψ̂ is found numerically as the solution of K ′(ψ) = log π̃(x∗ | y).
The saddlepoint approximation of Lugannani & Rice (1980) is known to be very accurate,

especially in estimating tail probabilities. In our experience, the new approach requires fewer
Monte Carlo samples compared to (9), as the samples are used only to estimate the fractional
moments E(π̃(x | y)u) in (10). The derivatives of the cumulant generating function are
found numerically. Preferably, we would have liked to calculate the fractional moments
analytically. A possible idea to evaluate these expectations is to apply a Taylor series
expansion, as the given moments can be calculated exactly for positive integers u = 1, 2, . . .,
see the appendix. However, the cost of evaluation of the positive-integer moments grows
exponentially in the order, hence this approach is not computationally feasible.
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4 Examples

In this section, we reanalyse various examples from the literature using INLA, combined with
the given algorithms to calculate simultaneous credible bands and contour probabilities. For
the given examples, application of the copula approximation (8) in evaluating (7), visually
gives the same estimates for the credible bands as the exact approach. For fixed parameter
vectors, the empirical approach in (9) and the saddlepoint approximation in (11), have
shown to give quite similar estimates for the contour probabilities. Differences between the
two approaches are investigated further in section 4.1.

In exploring different models, the simultaneous credible bands provide a visual impres-
sion of the functional form of a given covariate. A relevant question in model selection is
whether an assumed nonparametric covariate effect can be modeled for example as a con-
stant or linear function, giving a more parsimonious model. Using the INLA-methodology,
commonly applied critera for model selection can be assessed, like the Deviance Informa-
tion Critera (DIC) of Spiegelhalter et al (2002), the predictive log-score given in Gneiting
& Raftery (2007) and the PIT-histograms given in Czado et al. (2009), see Martino & Rue
(2010) for several case studies. The posterior contour probabilities provide an additional
tool in model selection, basically having the same interpretation as p-values, see Held (2004)
and Brezger & Lang (2008) for various applications.

4.1 Childhoood undernutrition in Zambia

We first consider the data set given by Kandala et al. (2001), applying spatial analysis in
studying undernutrition among children in a total of 57 regions of Zambia. This example
is included as a case study in Martino & Rue (2010) and at the website www.r-inla.org
and has also been analysed in Kneib et al. (2004) and Brezger & Lang (2008), applying the
MCMC-based software BayesX.

Undernutrition among children can be measured by stunting, referring to insufficient
height for age. In the given data set, stunting is measured by a Z-score

Zi = (AIi −MAI)/σ,

where AI refers to a child’s anthropometric indicator (the childs height at a certain age),
MAI refers to the median of the reference population and σ denotes the standard deviation
of the population. Lower values indicate poorer nutritional status. The data set consists of
4846 observations, and the Z-scores are assumed to be conditionally independent Gaussian
random variables with mean ηi for child i. The mean is assumed to be linked to a structured
additive predictor,

ηi = µ+ f1(bmii) + f2(agci) + fs(si) + fu(si) + β′z, (12)

where the functions f1(·) and f2(·), represent smooth effects of the mother’s body mass
index (bmi) and the age of the child measured in months (agc). These functions are mod-
eled as second-order random walk processes (RW2). The functions fs(·) and fu(·) represent
structured and unstructured effects of the district si, in which a child lives, where the struc-
tured effect is modeled as an intrinsic Gaussian Markov random field (IGMRF), specified as
the Besag-model (see Ch. 3 in Rue & Held (2005) and www.r-inla.org for further details).
The model also includes linear effects of categorical covariates z, like gender of the child,
the mothers educational level and type of living area.

In exploring more parsimonious model than (12), we consider whether the covariates
bmi and agc can be modeled as constants or linear functions. Having a Gaussian likelihood,
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the full conditional distribution of the latent field in (3) is a Gaussian distribution. Conse-
quently, applying numerical integration the approximation in (4) where xS = (f1(·), f2(·)),
is an exact finite Gaussian mixture. The different integration strategies which can be applied
using the INLA-methodology are described thorougly in Rue et al. (2009). In calculating
simultaneous credible bands, the integration strategy used has not been seen to have any
significant impact on the results. Applying the default integration method to the given ex-
ample, the finite Gaussian mixture consists of k = 27 terms. The resulting credible bands,
illustrating nutritional status as a function of bmi and agc, respectively, are given in Fig. 1.

0 10 20 30 40 50 60

0.
0

0.
5

1.
0

Age of child in months

15 20 25 30 35 40

−0
.5

0.
0

0.
5

Mother's body mass index

Fig. 1: Estimated effect of agc (left) and bmi (right) including 95% pointwise and simulta-
neous credible intervals.

For the age effect, we notice that the nutritional status of children decreases until the age
of 20 months, remaining at an almost constant level thereafter. Visually, this effect seems
clearly nonlinear. This is supported by the fact that the posterior contour probability is
approximately 0 for any linear function, both applying the empirical approach in (9) and
the saddlepoint approximation in (11). For fixed vectors, the two approaches to calculate
the contour probabilities have been seen to give quite similar results. To illustrate the
difference, we have evaluated the tail contour probabilities using (9) and (11) as a function
of the argument log π̃(x∗ | y), in which the empirical approach is seen to give more wiggly
results. This is illustrated for the age effect in Fig. 2, using 2000 independent samples from
(4). Increasing the number of samples to 10000, the empirical approach still gives a wiggly
result.

A child’s nutritional status has been presumed to have an inverse U-shape as a function
of the mother’s bmi, indicating that both mothers with very low and high bmi, have poorly
nourished children, see Kandala et al. (2001). Fig. 1 illustrates that the effect of bmi seems
almost linear and a wide range of linear functions fit within the given simultaneous credible
bands. Visually, the bmi effect seems significantly different from 0, as the null-vector is not
entirely within the 95% simultaneous credible limits. However, in applying (11), we find
that the contour probability for the null-vector is approximately equal to 1, indicating that
the bmi effect is non-significant.

Table 1 presents the DIC and log-score values for a constant, linear or nonlinear effect of
bmi. The DIC-value of Spiegelhalter et al (2002), reflects a trade-off between the complexity
and the fit of a given model, while the log-score criteria in Gneiting & Raftery (2007),
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Fig. 2: The estimated contour probability for agc as a function of the argument log π̃(x∗ |
y) using the saddlepoint approximation p̂SA(x∗ | y) (solid line) and the direct empirical
approach p̂MC(x∗ | y) (dashed line). The calculations are based on 2000 independent
samples from the Gaussian mixture distribution in (4).

measures the predictive abilities of a given model. For both quantities, lower values are
preferable and evaluated by these criteria, the linear model is the best choice, see also
Martino & Rue (2010) and Brezger & Lang (2008).

Brezger & Lang (2008) applied a P-spline model and the procedure given in Held (2004)
to calculate contour probabilities. For the given example, they estimated the contour prob-
ability for a constant effect of bmi to be in a medium range (defined as values between 0.1 –
0.4), allowing no clear decision. In comparing the contour probabilities and DIC-values as
model selection criteria, Brezger & Lang (2008) noticed that the contour probabilities were
more conservative than DIC. Performing a simulation study, conclusions based on DIC were
seen to give too complex models in a considerable number of cases.

Model for bmi DIC log-score
Constant 12758 1.3162
Linear 12735 1.3139
Nonlinear 12740 1.3143

Table 1: The DIC and log-score as model selection criteria for the bmi effect.

4.2 Larynx cancer risk in Germany

The next example we consider, concerns spatial variation of larynx cancer risk in relation to
a proxy variable for smoking. The data set consists of male larynx cancer mortality counts
in n = 544 districts of Germany from 1986–1990 and has been analysed both in Natario &
Knorr-Held (2003) and Rue & Martino (2007).

The observations are assumed to be conditionally independent Poisson variables,

yi | ηi ∼ Poisson(Ei exp(ηi)), i = 1, . . . , n,

in which Ei denotes a fixed district effect and ηi is the log-relative risk for district i. The
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log-relative risk is modeled as sum

ηi = ui + vi + f(ci),

where ui and vi denote spatially structured and unstructered terms, respectively. As a
covariate, lung cancer rate is used as a proxy for smoking consumption, having value ci for
district i. The function f(·) is modeled as a RW2, and parametrized as unknown values
scaled to the interval [1, 100]. In addition, the constraint

∑
i ui = 0 is imposed to separate

the effect of the covariate, see Rue & Martino (2007). For further details, see the “Bym-
example” at www.r-inla.org.

0 20 40 60 80 100

−1
.0

−0
.5

0.
0

0.
5

Fig. 3: Estimated effect of a proxy for smoking consumption, including 95% pointwise cred-
ible intervals (dotted) and 95% simultaneous credible bands derived analytically (dashed)
and by MCMC-sampling (outer solid lines).

In Rue & Martino (2007), estimated quantiles using a Gaussian mixture assumption to
the marginals were seen to be very accurate for the given example, but slight errors in
skewness were observed. Natario & Knorr-Held (2003) applied MCMC and the software
BayesX, to derive simultaneous credible bands for the covariate effect, using the method of
Besag et al. (1995). In Fig. 3, the 95% credible bands obtained by the presented analytical
algorithm are compared with the results using the algorithm of Besag et al. (1995) (outer
solid lines), based on a total of 11719 MCMC-samples. The analytical credible bands
are seen to be slightly narrower than the limits obtained by sampling and the estimated
proportion of samples within the analytically derived credible band is 93.4%. We have
applied the default numerical integration strategy in INLA, in which the mixture in (4)
consists of k = 15 terms for this example.

Model for covariate DIC log-score
Constant 2810 2.6121
Linear 2780 2.5731
Nonlinear 2785 2.5837

Table 2: The DIC and log-score as model selection criteria for the proxy covariate of smoking

As for the bmi effect in the previous example, we notice that a wide range of linear func-
tions for the covariate effect, fit within the given simultaneous credible bands. Again, the
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null-vector is not entirely within the limits, but the estimated posterior contour probability
is approximately 1, implying that the given covariate is non-significant. Evaluated by the
DIC and log-score values, a linear model seems to be the best choice, see Table 2.

4.3 Leukemia survival data in Northwest England

In the last example, we review a data set analysed in Henderson et al. (2002) concern-
ing spatial variation in survival of adult acute myeloid leukemia (AML) patients in the
northwestern part of England. Data are registered for n = 1043 patients, being diagnosed
between 1982 and 1998. Henderson et al. (2002) applied a multivariate frailty approach,
including possible spatial variation based on 24 districts. In Henderson et al. (2002), linear
predictors were used for the covariate effects, while Kneib & Fahrmeir (2007) analysed the
given data set using a mixed model approach, modeling covariates as penalized splines.

We consider the following model in which the survival time of the patients are linked to
a predictor

ηi(t) = µ+ f0(t) + f1(wbci) + f2(tpii) + fs(si) + β′z, i = 1, . . . , n,

where f0(t) denotes a log-baseline function. The function f1(·) accounts for the effect of the
patients white blood cell counts (wbc). The effect of an index named the Townsend depriva-
tion index (tpi), is given by f2(·), in which higher and lower values indicate poorer and richer
regions, respectively. The functions f1(·) and f2(·) are modeled as first and second-order
random processes. The function fs(·) accounts for the spatial effects of different districts si
and is specified by the Besag-model. In addition, the patients gender and age are included
as linear effects and all of the smooth functions are constrained to sum up to zero.

The numerical integration using the default integration strategy, gives in this case k = 25
terms in (4). Fig. 4 illustrates the effect of the different districts and the simultaneous
credible bands for the log-baseline function, and the effects of wbc and tpi. The DIC value
for the given model is 5252 and the log-score is equal to 0.9744. Kneib & Fahrmeir (2007)
noted that some of the pointwise credible intervals for the districts are strictly positive or
negative. However, simultaneously we find that the district covariate is non-significant as
the contour probability for the null-vector is approximately 1. In the case of the log-baseline
function, we notice that the null-vector is not within the 95% simultaneous credible band
and the posterior contour probability of this vector is approximately 0.

wbc tpi
Model for covariate DIC log-score p̂SA(x∗ | y) DIC log-score p̂SA(x∗ | y)
Constant 5297 0.9821 0.241 5265 0.9768 0.996
Linear 5250 0.9738 1 5255 0.9750 1

Table 3: The DIC and log-score as model selection criteria for the covariates wbc and tpi
including estimated contour probabilities p̂SA(x∗ | y).

More parsimonious models can be explored applying constant or linear models for the
wbc and tpi covariates. Table 3 displays the DIC and the log-score values when either wbc
or tpi is modeled as a constant or linear function, also including the estimated posterior
contour probabilities p̂SA(x∗ | y) for these cases. The contour probabilities indicate that the
tpi effect is non-significant, while a linear effect for the wbc is clearly sufficient. Evaluated by
the DIC and log-score criteria, a linear model for wbc and a nonparametric model for tpi give
the lowest values. If both covariates are modeled by linear functions, the DIC-value equals
5254 and the log-score equals 0.9745, being about the same results as using nonparametric
functions for both effects.
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Fig. 4: Estimated effect of the 24 different districts is shown in the upper left panel. The
other panels illustrate the effects of the log-baseline function (upper right), the white blood
cell counts (lower left) and the Townsend deprivation index (lower right), including 95%
pointwise and simultaneous credible bands.

5 Discussion and concluding remarks

Deterministic Bayesian inference using the INLA-methodology of Rue et al. (2009), has
become a preferable choice in analysing latent Gaussian models, outperforming MCMC-
based techniques in terms of computational speed and accuracy. Applying INLA, the given
paper illustrates how simultaneous credible bands can be derived analytically, representing
an alternative to the traditional MCMC sample-based technique of Besag et al. (1995).
The algorithm makes use of the Laplace approximation in estimating the marginals of
hyperparameters and the numerical integration scheme used in INLA. However, to make the
resulting algorithm analytically tractable, Gaussian approximations (possible corrected) to
the joint marginals of subsets of the latent field, are used. As a result, simultaneous credible
bands can be estimated applying a two-step procedure: First, pointwise HPD-intervals are
calculated using a common credible level. Secondly, the pointwise level is adjusted to obtain
the correct simultaneous coverage probability. The resulting algorithm converges in a few
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iterations.
In Rue et al. (2009), the Laplace approximation was used to estimate the marginals of

the latent field, also suggesting a computationally faster simplified version. The Laplace
approximation or its simplified version, could be used also to estimate the joint marginal
for a subset of the latent field. Alternatively, Rue et al. (2009) suggest a Gaussian copula
approximation to the marginals of subsets with small dimensions. The practicalities in im-
plementing these approaches to construct simultaneous credible bands, seem rather tedious
and the fact that simultaneous credible bands are mainly used as a visual exploratory tool,
emphasizes the need for a computationally efficient algorithm.

Ideally, we would like to also obtain the posterior contour probabilities analytically but
we have not succeeded doing so. However, applying the saddlepoint approximation, we use
Monte Carlo estimates of the involved fractional moments using independent samples from
the Gaussian mixture distribution. In our experience, the suggested method requires fewer
samples than a direct empirical approach and gives a more stable estimate for the contour
probability as a function of its argument. For model selection, decisions based on the
estimated contour probabilities have been seen to be conservative. Fixed vectors that are
not included in the simultaneous credible bands, are seen to be supported by the posterior.
Also, decisions based on contour probabilities result in more parsimonious models, than
basing the decision on the DIC and log-score criteria.
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Appendix

The positive integer-moments of a random variable π(x) =
∑k
i=1 wiπG(x;µi,Σi) can be

evaluated applying the following identities for the multi-Gaussian distribution:

πG(x;µi,Σi)πG(x;µj ,Σj) = πG(0;µi − µj ,Σi + Σj)πG(x;µij ,Σij)∫
πG(x;µi,Σi)πG(x;µj ,Σj)dx = πG(0;µi − µj ,Σi + Σj)

where

µij = Σj(Σi + Σj)−1µi + Σi(Σi + Σj)−1µj

Σij = Σi(Σi + Σj)−1Σj .

A general expression for the mth moment is then given by

E(π(x)m) =
k∑

α1=1

wα1 . . .

k∑
αm+1=1

wαm+1

∫
πG(x;µα1 ,Σα1) · · ·πG(x;µαm+1 ,Σαm+1)dx

=
k∑

α1=1

wα1

k∑
α2=1

wα2fα1,α2

k∑
α3=1

wα3fα1,...,α3 . . .
k∑

αm+1=1

wαm+1fα1,...,αm+1

where

fα1,...,αj
= πG(0, µ(α1,...,αj−2),αj−1 − µαj

,Σ(α1,...,αj−2),αj−1 + Σαj
), j > 2.

The expressions for the means and covariance matrices, for j > 2, can be calculated by

µ(α1,...,αj−1),αj
= Σαj (Σ(α1,...,αj−2),αj−1 + Σαj )−1µ(α1,...,αj−2),αj−1

+Σ(α1,...,αj−2),αj−1(Σ(α1,...,αj−2),αj−1 + Σαj
)−1µαj

Σ(α1,...,αj−1),αj
= Σ(α1,...,αj−2),αj−1(Σ(α1,...,αj−2),αj−1 + Σαj )−1Σαj .

Alternatively, the expression for the moments can be summarized by

E(π(x)m) =
k∑

αi=1

wα1πG(0;µα1 ,Σα1) . . .
k∑

αm+1=1

wαm+1πG(0;µαm+1 ,Σαm+1)
1

πG(0, µα,Σα)

where
α = {(α1, . . . , αm+1)}, Σα = (

∑
i∈α

Σ−1
i )−1, µTα = (

∑
i∈α

µTi Σ−1
i )Σα.
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