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Abstract

Continuously indexed Gaussian fields (GFs) is the most important ingredient in spatial statistical mod-
elling and geo-statistics. The specification through the covariance function gives an intuitive interpretation
of its properties. On the computational side, GFs are hampered with the big-n problem, since the cost
of factorising dense matrices is cubic in the dimension. Although the computational power today is all-
time-high, this fact seems still to be a computational bottleneck in applications. Along with GFs, there is
the class of Gaussian Markov random fields (GMRFs) which are discretely indexed. The Markov prop-
erty makes the involved precision matrix sparse which enables the use of numerical algorithms for sparse
matrices, that for fields in R2 only use the square-root of the time required by general algorithms. The
specification of a GMRF is through its full conditional distributions but its marginal properties are not
transparent in such a parametrisation.

In this paper, we show that using an approximate stochastic weak solution to (linear) stochastic partial
differential equations (SPDEs), we can, for some GFs in the Matérn class, provide an explicit link, for any
triangulation of Rd, between GFs and GMRFs. The consequence is that we can take the best from the two
worlds and do the modelling using GFs but do the computations using GMRFs. Perhaps more importantly,
our approach generalises to other covariance functions generated by SPDEs, including oscillating and non-
stationary GFs, as well as GFs on manifolds. We illustrate our approach by analysing global temperature
data with a non-stationary model defined on a sphere.
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1 Introduction

Gaussian fields (GFs) has a dominant role in spatial statistics and especially in the traditional field of geo-
statistics (Chilés and Delfiner, 1999; Cressie, 1993; Diggle and Ribeiro, 2006; Stein, 1999), and forms an
important building block in modern hierarchical spatial models (Banerjee et al., 2004). GFs is one of a few
appropriate multivariate models with an explicit and computable normalising constant and has otherwise good
analytic properties. In a domain D ∈ Rd with coordinate s ∈ D, x(s) a continuously indexed GF if all finite
collections {x(si)} are jointly Gaussian distributed. In most cases, the Gaussian field is specified using a
mean function µ(·) and a covariance function C(·, ·), so the mean is µ = (µ(si)) and the covariance matrix
is Σ = (C(si, sj)). Often the covariance function is only a function of the Euclidean distance between two
locations in which the deviation from the mean is said to be isotropic, and it is stationary if the covariance
function only depends on any distance measure between two locations. Since the covariance matrix is positive
definite, the covariance function must be a positive definite function. This restriction makes it less easy to
“invent” analytical covariance functions. Bochner’s theorem is often used in this context, as it characterises
all continuous positive definite functions in Rd as the Fourier transforms of non-negative Borel measures.

Although GFs are convenient from both an analytical and a practical point of view, the computational
issues has always been a bottleneck. This is due to the general cost ofO(n3) to factorise dense n×n (covari-
ance) matrices. Although the computational power today is all-time-high, the tendency seems to be that the
dimension n is always set, or we want to set it, a bit higher than the value that gives a reasonable computation
time. The increasing popularity of hierarchical Bayesian models has made this issue more important, as “re-
peated computations (as for simulation-based model fitting) can be very slow, perhaps infeasible” (Banerjee
et al., 2004, p.387), and the authors continue with referring to this situation informally as “the big n problem”.

There are several approaches trying to overcome or avoid “the big n problem”. The spectral approach
representation of the likelihood (Whittle, 1954) makes it possible to estimate the (power-)spectrum (using dis-
crete Fourier transforms calculations) and compute the log-likelihood from it (Dahlhaus and Künsch, 1987;
Fuentes, 2008; Guyon, 1982) but this is only possible for directly observed stationary GFs on a (near-)regular
lattice locations. Stein et al. (2004); Vecchia (1988) propose to use an approximate likelihood constructed
using a sequential representation and then simplify the conditioning set, and similar ideas also apply when
computing conditional expectation (Kriging). An alternative approach, is to do exact computations on a sim-
plified Gaussian model of low rank (Banerjee et al., 2008; Cressie and Johannesson, 2008). Their difference is
essentially how the basis for the low rank approximation is constructed. Furrer et al. (2006) apply covariance
tapering to zero-out parts of the covariance matrix to gain computational speedup. However, the sparsity pat-
tern will depend on the range of the GFs, and the potential in a related approach, named “lattice methods” by
(Banerjee et al., 2004, A.5.3), is superior to the covariance tapering idea. In this approach the GF is replaced
by a Gaussian Markov random field (GMRF); see Rue and Held (2005) for a detailed introduction and Rue
et al. (2009, Sec. 2.1) for a condensed review. A GMRF is a (discretely indexed) Gaussian field x where the
full conditionals

π(xi | x−i) = π(xi | x∂i), i = 1, . . . , n, (1)

only depend on a set of neighbours ∂i to each site i (where consistency requirements imply that if i ∈ ∂j then
also j ∈ ∂i). The computational gain comes from the fact that the zero-pattern of the precision matrixQ (the
inverse covariance matrix), relates directly to the notion of neighbours,

Qij 6= 0 ⇐⇒ i ∈ ∂j ∪ j

see for example Rue and Held (2005, Sec 2.2). Algorithms for MCMC will repeatedly update from these
simple full conditionals, which explains to a large extent the popularity of GMRFs in recent years, starting
already with the seminal papers by J. Besag (Besag, 1974, 1975). However, GMRFs also allow for fast
direct numerical algorithms Rue (2001), as numerical factorisation of the matrix Q can be done using sparse
matrix algorithms (Davis, 2006; Duff et al., 1989; George and Liu, 1981) at a typical cost ofO(n3/2) for two-
dimensional GMRFs; see (Rue and Held, 2005) for detailed algorithms. GMRF has very good computational
properties and its major importance in Bayesian inferential methods is based on nested integrated Laplace
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approximations (INLA) (Rue et al., 2009), which allow for fast and accurate Bayesian inference for structured
additive regression models.

Although GMRFs have very good computational properties, there are good reasons for why statistical
models based on GMRFs are relatively simple and often applied to area data like regions or counties. First,
there is has been no good way to parametrise the precision matrix of a GMRF to achieve a predefined behaviour
in terms of correlation between two sites and to control marginal variances. In matrix terms, this is kind of
obvious since the covariance matrix is the inverse of the precision matrix. Therefore, often simple approaches
are taken, like letting Qij be related to the reciprocal distance between sites i and j (Arjas and Gasbarra,
1996; Besag et al., 1991; Gschlößl and Czado, 2007; Pettitt et al., 2002; Weir and Pettitt, 2000), however
a more detailed analysis shows that such a rationale is suboptimal (Besag and Kooperberg, 1995; Rue and
Tjelmeland, 2002) and can give surprising effects (Wall, 2004). Secondly, it is unclear how large the class of
useful GMRF models really is using only a simple neighbourhood. A complicating issue here is the global
positive definiteness constraint, and it might not be evident how this influences the parametrisation of the full
conditionals.

Rue and Tjelmeland (2002) demonstrated empirically, that GMRFs could approximate very well most
of the commonly used covariance functions in geo-statistics, and proposed to use them as computational
replacements for GFs for computational reasons like doing Kriging (Hartman and Hössjer, 2008). (It must
be emphasised, that GFs used in geo-statistics when discretised do not have the desired Markov property
we desire for GMRFs, but there seems to be a GMRF with approximately the same covariance function.)
However, there were several drawbacks with their approach; First, the fitting of GMRFs to GFs was restricted
to a regular lattice (or torus) and the fit itself had to be precomputed for a discrete set of parameter values
(like smoothness and range), but the fit is invariant to the lattice size, using a time-consuming numerical
optimisation. Despite these ‘proof-of-concept’ results, several authors have followed up this idea without any
large progress in the methodology (Cressie and Verzelen, 2008; Hrafnkelsson and Cressie, 2003; Song et al.,
2008), but the approach itself has shown useful even for spatio-temporal models (Allcroft and Glasbey, 2003).

The discussion so far has revealed an seemingly optimal modelling/computational strategy for approaching
the “big n-problem” is a good way:

1. Do the modelling using a GF on a set of locations {si}, to construct a discretised GF with covariance
matrix Σ

2. Find a GMRF with local neighbourhood and precision matrix Q that represents the GF in the best
possible way; i.e.Q−1 is close to Σ in some norm. (We deliberately use the phrase “represents” instead
of approximate.)

3. Do the computations using the GMRF representation using numerical methods for sparse matrices.

Such an approach relies on several assumptions. First the GF must be of such a type that there exists a GMRF
with local neighbourhood that can represent it sufficiently accurate in order to keep the interpretation of the
parameters and the results. Secondly, we must be able to compute the GMRF representation from the GF, at
any collections of locations, so fast, that we still achieve a considerable speedup compared to treating the GF
directly.

The purpose of this paper, is to demonstrate that these requirements can indeed be met for certain members
of GF with the Matérn covariance function in Rd, where the GMRF representation is available explicitly.
Although these results are seemingly restrictive at first sight, they do cover the most important and used
covariance model in spatial statistics; see also Stein (1999, p.14) which concluded his detailed theoretical
analysis with “Use the Matérn model.” The GMRF representation can be computed using a certain stochastic
partial differential equation (SPDE) which has GFs with Matérn covariance function as the solution when
driven by Gaussian white noise.

Rather surprisingly, extending this basic result seems to open new doors and opportunities, and provide
rather simple answers to rather difficult modelling problems. We will show how we can treat some GFs
beyond the Matérn covariances, how to use this approach to define GFs on curved spaces/manifold and how
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to represent non-stationary GFs. Our basic task, to do the modelling using GF and the computations using the
GMRF representation, still holds for these extensions as the GMRF representation is still available explicitly.

The plan of rest of this paper is as follows. In Section 2, we discuss the relationship between Matérn co-
variances and a specific stochastic partial differential equation, and present the two main results for explicitly
constructing the precisions of GMRFs based on this relationship. In Section 3, the results are extended to
fields on triangulated manifolds, as well as non-stationary and oscillating models. The extensions are illus-
trated with a non-stationary analysis of global temperature data in Section 4, and we conclude the main part
of the paper with a brief discussion in Section 5. Thereafter follows five technical appendices, with explicit
representation results (A), theory for random fields on manifolds (B), the Hilbert space representation details
(C), proofs of the technical details (D), and theory for spherical harmonics (E) needed for models on a globe.

2 Preliminaries and main results

This section will introduce the Matérn covariance model and discuss its representation through a linear SPDE.
We will state explicit results for the GMRF representation of Matérn fields on a regular lattice and do an
informal summary of the main results.

2.1 The Matérn covariance model and its SPDE

Let ‖ · ‖ denote the Euclidean distance in Rd. The Matérn covariance function between locations u,v ∈ Rd,
is defined as

r(u,v) =
σ2

Γ(ν)2ν−1
(κ‖v − u‖)νKν(κ‖v − u‖). (2)

Here, Kν is the modified Bessel function of second kind and order ν > 0, κ > 0 is a scaling parameter
and σ2 is the marginal variance. The integer value of ν determines the mean square differentiability of the
underlying process, which matters for predictions made using such a model. However, ν is usually fixed since
it is poorly identified in typically applications. A more natural interpretation of the scaling parameter κ is as
a range parameter ρ; the Euclidean distance where x(u) and x(v) is almost independent. In lack of a simple
relationship, we will throughout this paper use the definition ρ =

√
8ν/κ, corresponding to correlations near

0.1 at the distance ρ, for all ν.
The Matérn covariance function appears naturally in a number of scientific fields (Guttorp and Gneiting,

2006), but the important relationship that we will make use of is that the solution x(u), of the following
(fractional) stochastic partial differential equation (SPDE)

(κ2 −∆)α/2x(u) =W(u), u ∈ Rd, α = ν + d/2, κ > 0, ν > 0 (3)

is a Gaussian field with the Matérn covariance (Whittle, 1954, 1963). The innovation processW is (spatial)
Gaussian white noise with unit variance, ∆ is the Laplace operator (Laplacian)

∆ =

d∑

i=1

∂2

∂x2
i

(4)

and the marginal variance is

σ2 =
Γ(ν)

Γ(ν + d/2)(4π)d/2κ2ν
. (5)

We will name any solution to (3) a Matérn field in the following. However, the limiting solutions to the
SPDE (3) as κ −→ 0 or ν −→ 0 do not have Matérn covariance functions, but the SPDE still has solutions
when κ = 0 or ν = 0 which are well-defined random measures. We will return to this issue in Section C.3.
Further, there is an implicit assumption of “proper” boundary conditions for the SPDE, as for α ≥ 2 then
exp(κeTu) is in the null-space of the differential operator, for all ‖e‖ = 1.
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The proof of Whittle (1954, 1963), is to show that the wave-number spectrum of the solution is

R(k) =
(2π)−d(

κ2 + kTk
)α (6)

using the Fourier transform definition of the fractional Laplacian in Rd

(F(κ2 −∆)α/2φ)(k) = (κ2 + kTk)α/2(Fφ)(k) (7)

where φ is a function on Rd for which the right-hand side of the definition has a well-defined inverse Fourier
transform.

2.2 Main results

This section contains our main results, however in a loose and imprecise form. In the Appendices, our state-
ments are made precise and the proofs are given. In the discussion we will restrict us to dimension d = 2
although our results are general.

2.2.1 Main result 1

For our first result, we will use some hand-waving arguments and a simple but powerful consequence of a
(partly) analytic result of Besag (1981). We will later (in the Appendices) show that these results are true. Let
x be a GMRF on a regular (tending to infinite) two-dimensional lattice indexed by ij, where the Gaussian full
conditionals are

E(xij | x−ij) =
1

a
(xi−1,j + xi+1,j + xi,j−1 + xi,j+1) , Var(xij | x−ij) = 1/a (8)

and |a| > 4. To simplify later notation, we will write this particular model as

−1
a −1

(9)

where symmetry is required to interpret this model. The approximate result (Besag, 1981, Eq. (14)) is that

Cov(xij , xi′j′) ≈
a

2π
K0(l
√
a− 4), l 6= 0 (10)

where l is the Euclidean distance between ij and i′j′. Comparing with (2), we find that κ2 = a−4, ν = 0 and
σ2 = a/(4π), even though (2) requires ν > 0. Informally, this means that the discrete model defined by (8)
generates approximate solutions to the SPDE in (3) on a unit-distance regular grid, with ν = 0.

Passing Gaussian noise through (3) for α = 1 gives the spectrum

R1 ∝
1

(a− 4) + kTk
(11)

meaning that (some discretised version of) the SPDE acts like a linear filter with squared transfer-function
equal to R1. Passing Gaussian noise with spectrum R1 into the same filter produces output with spectrum
R2 = R2

1 and so on. The consequence is GMRF representations for the Matérn fields for ν = 1 and ν = 2, as
convolutions of the coefficients in (9),

ν = 1 :

1
−2a 2

4 + a2 −2a 1
ν = 2 :

−1
3a −3

−3(a2 + 3) 6a −3
a(a2 + 12) −3(a2 + 3) 3a −1

(12)

5



0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 1: The Matérn correlations (solid line) for range 10 (left) and 100 (right), and the correlations for the
GMRF representation (dotted line).

The marginal variance is 1/(4πν(a− 4)ν). Figure 1 shows how accurate these approximations are for ν = 1
and range 10 and 100, displaying the Matérn correlations and the linearly interpolated correlations for integer
lags for the GMRF representation. For range 100 the two curves are indistinguishable. The root-mean-square
error between correlations up to twice the range, is 0.01 and 0.0003 for range 10 and 100, respectively. The
error is the marginal variance is 4% for range 10 and negligible for range 100.

Our first result confirms the above heuristics.

Main Result 1 The coefficients in the GMRF representation of (3) on a regular unit-distance two-dimensional
infinite lattice for ν = 1, 2, . . ., is found by convolving (9) by itself ν times.

Simple extensions of this result are also interesting, like anisotropy along one of the main axes, with details in
Appendix A. Extensions to irregular lattices are discussed in the next main result.

2.3 Main result 2

Although Result 1 is useful in itself, is not yet fully practical since often one does not want to have a regular
grid, to avoid interpolating the locations of observations to the nearest grid-point, and to allow for finer reso-
lution where details are required. We therefore extend the regular grid to irregular grids, by subdividing R2

into a set of non-intersecting triangles, where any two triangles meet in at most a common edge or corner. The
three corners of a triangle are named vertices. In most cases we place initial vertices at the locations for the
observations, and add additional vertices to satisfy overall soft constraints of the triangles; see for example
Edelsbrunner (2001); Hjelle and Dæhlen (2006) for details. In short, to construct such a triangulation is a
standard problem in engineering for solving differential equations using finite element methods (Brenner and
Scott, 2007; Quarteroni and Valli, 2008), and many good free implementations exists.

To illustrate the process of triangulation of R2, we will use an example from Henderson et al. (2002) which
models spatial variation in leukaemia survival data in Northwest England. Figure 2(a) displays the 1043
locations of 1043 cases of acute myeloid leukaemia in adults who have been diagnosed between 1982 and
1998 in Northwest England. Panel (b) displays the triangulation of the area of interest, using fine resolution
around the data locations and rough resolution outside the area of interest. Further, we place vertices at all
data locations. The number of vertices in this example is 2535 and the number of triangles is 5054.
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Figure 2: Panel (a) displays the locations of the observations, panel (b) the triangulation using 2535 triangles,
panel (c) shows the (reordered) sparse precision matrix for ν = 1, and panel (d) displays the accuracy of the
GMRF representation through the numerical and true correlation function.
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In order to compute a GMRF representation of the Matérn field on the triangulated lattice, we will compute
(an approximation to) a stochastic weak solution of the SPDE (3) (Kleoden and Platen, 1999; Kotelenez,
1999). This part borrows ideas from finite element analysis and starts by representing the solution of the
SPDE as

x(u) =
n∑

k=1

ψk(u)wk (13)

for some chosen basis-functions {ψk} and Gaussian distributed weights {wk}. Here, n is the number of
vertices in the triangulation. We chose to use functions ψk that are piecewise linear in each triangle, defined
such that ψk is 1 at vertex k and zero at all other vertices. Another interpretation of (13), is that we try to
get the joint distribution of the solution of the SPDE at all vertices and then approximate the continuously
indexed solution using local interpolation guided by the triangles. With our choice of basis-functions, the
local interpolation is linear.

Define the inner product

〈f, g〉 =

∫
f(u)g(u)du (14)

where the integral is over the region of interest. The approximate stochastic weak solution of the SPDE is
found by requiring that

〈φj , (κ2 −∆)α/2x〉 d= 〈φj , ε〉, j = 1, 2, . . .

for some appropriate set of test functions {φj(u)}, where “ d=” denotes equality in distribution. The choice of
test functions, in relation to the basis functions, governs the properties of the approximation.

We now use our representation (13) and choose φk = (κ2 − ∆)1/2ψk for α = 1 and φk = ψk for
α = 2, 3, 4, . . .. These two approximations are denoted the least squares approximation and the Galerkin
approximation, respectively. In addition, for α ≥ 3, we let α = 2 in the left-hand side of (13), and replace the
right-hand side with a field generated by α−2. In essence, this generates a recursive formulation, terminating
in either α = 1 or α = 2. The background for these choices are given in Appendix C where a proper
derivations of the results are given.

Define the n× n-matrices C,G, andK with entries

Cij = 〈ψi, ψj〉 (15)

Gij = 〈∇ψi,∇ψj〉 (16)

Kij(κ
2) = κ2Cij +Gij . (17)

Using Neumann boundary conditions (zero normal-derivative at the boundary), we get our second main result,
expressed here for R1 and R2.

Main Result 2 Let Qα(κ2) be the precision matrix for the Gaussian weights w as defined in (13) for α =
1, 2, . . ., as a function of κ2. Then

Q1(κ2) = K(κ2) (18)

Q2(κ2) = K(κ2)C−1K(κ2) (19)

and for α = 3, 4, . . .
Qα(κ2) = K(κ2)C−1Qα−2C

−1K(κ2). (20)

Some remarks to this result:

1. The matrices C and G are easy to compute as their elements are non-zero only for pairs of basis-
functions which share common triangles (a line segment in R1), and their values do not depend on κ2.
Analytic formulas are give in Appendix A.
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2. A consequence of the previous remark is that we have an explicit mapping (the computational cost is
O(n)) between a GF and the GMRF representation in (13), for any triangulation, involving no comput-
ing at all!

3. The matrix C−1 is dense, which makes the precision matrix dense as well. In Section C.5, we give
good arguments why C−1 should be replaced by the diagonal matrix C̃

−1
where C̃ij = 〈ψi, 1〉, which

makes the precision matrices sparse.

4. For the special case where all the vertices are points on a regular lattice, the Main Result 2 reduces to
Main Result 1. Note that the neighbourhood of the corresponding GMRF in R2, is 3 × 3 for α = 1, is
5 × 5 for α = 2, and so on. Increased smoothness of the random field induces a larger neighbourhood
in the GMRF representation.

5. In terms of the smoothness parameter ν in the Matérn covariance function, these results correspond to
ν = 1/2, 3/2, 5/2, . . ., in R1 and ν = 0, 1, 2, . . ., in R2.

6. We are currently unable to provide results for other values of α; the main obstacle is the fractional
derivative in the SPDE which is defined using the Fourier transform (7). A result of Rozanov (1982,
Chapter 3.1) for the continuously indexed random field, says that a random field has a Markov prop-
erty if and only if the reciprocal of the spectrum is a polynomial. Our SPDE (3) corresponds to
α = 1, 2, 3, . . .; see (6). This result indicates that a different approach may be needed to provide
representation results when α is not an integer.

Although our approach does give a GMRF representation of the Matérn field on the triangulated region, it
is truly an approximation to the stochastic weak solution as we only use a subset of the test functions {φk}. To
see how well we now are able to approximate the Matérn covariance, panel (c) displays the non-zero entries
in the (reordered) sparse precision matrix derived using our GMRF representation and panel (d) displays the
empirical correlation function (dots) and the theoretical one for range equals 0.4 and ν = 1. The accuracy of
the GMRF-approximation is quite good as the empirical correlation function match quite well the true one.
Some dots shows some discrepancy from the true correlations, but these can be identified to be due to the
rather rough triangulation outside the area of interest included to reduce edge effects.

In practice there is a trade-off between accuracy of the GMRF representation and the number of vertices
used. In Figure 2(a) we chose to use a fine resolution in the study-area and a reduced resolution outside. A
minor drawback using GMRFs is that there are boundary effects, which is due to the boundary conditions of
the SPDE. In Main Result 2 we used Neumann conditions (see Section A.4 for details) but other choices are
also possible.

2.4 Leukaemia example

We will now return to the example from Henderson et al. (2002) which models spatial variation in leukaemia
survival data in Northwest England. The model for the log-hazard is

log(hazard) = log(basline(time)) + intercept + sex + age + wbc + tpi + spatial(location) (21)

where the smooth time-varying log(baseline)-model is piecewise constant model using 20 bins, “wbc” is the
white blood-cell count at diagnosis, “tpi” is the Townsend deprivation index (which measures the deprivation
for the related district) and “spatial” is the spatial component depending on the spatial location for each mea-
surement. The hyper-parameters in this model, is the marginal precision and range for the spatial component,
and the precision for the smoothness model for the log(baseline)-hazard.

Kneib and Fahrmeir (2007) reanalysed the same data-set using a similar model but was unable, for com-
putational reasons, to include a spatial model using a dense covariance matrix but had to rely on a low-rank
approximation. With our GMRF representation we easily work with a sparse 2535×2535 precision matrix for
the spatial component. We ran the model in R-inla (www.r-inla.org) using integrated nested Laplace
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Figure 3: The estimated spatial effect of the log-hazard using the GMRF representation.

approximations to do the full Bayesian analysis (Rue et al., 2009) and thus completely avoiding any MCMC.
Figure 3 displays the posterior mean of the spatial term, which shows a reduced hazard in the north-east cor-
ner. A full Bayesian analysis took about 60 seconds on a dual-core laptop, and factorising the 5258 × 5258
(total) precision matrix took about 0.07 seconds on average. We also note that the results are sensitive to prior
specifications of the marginal precision and range.

3 Extensions

In this section we will discuss four extensions to the SPDE, widening the usefulness of the results in various
ways. The first extension is to define the SPDE on a (regular) manifold, like the sphere, to define Matérn fields
on the sphere. The second extension is to allow for space-varying parameters in the SPDE which allows us to
construct non-stationary locally isotropic Gaussian fields. The third extension is to study a complex version
of (3) which makes it possible to construct oscillating fields. Finally, the fourth extension generalises the
non-stationary SPDE to non-isotropic fields.

An important feature in our approach, is that all these extensions still give explicit GMRF representations
similar to (13) and (20), even if all the extensions are combined. The rather amazing consequence, is that we
can construct the GMRF representations of non-stationary oscillating GFs on the sphere, still not requiring
any computation. In Section 4, we will illustrate the use of these extensions, with a non-stationary model for
global temperatures.

3.1 Matérn fields on manifolds

We will now move away from R2 and consider Matérn fields on differentiable manifolds. Our main objective
is to construct Matérn fields on the sphere, which is important for the analysis of spatial and spatio-temporal
models. To simplify the current discussion we will restrict the construction of Matérn fields to a unit radius
sphere S2 in three dimensions, leaving the general case for the technical appendices.

One way of defining covariance models on a sphere is to interpret the two-dimensional space, S2, as a
surface embedded in R3. Any three-dimensional covariance function can then be used to define the model
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on the sphere, considering only the restriction of the function to the surface. This has the interpretational
disadvantage of using chordal distances to determine the correlation between points. The simple alternative
of plugging in the great circle distances into the original covariance function does not work, since this does
not yield a valid positive definite covariance function. Thus, the Matérn covariance function in Rd can not be
used to define GFs on a unit sphere embedded in R3 with distance naturally defined with respect to distances
within the surface. However, we can still use its origin, the SPDE! For this purpose, we simply reinterpret the
SPDE to be defined on S2 instead or Rd, and the solution is still what we mean by a Matérn field, but defined
directly for the given manifold. The Gaussian white noise which drives the SPDE can easily be defined on
S2 as a (zero mean) random Gaussian measure W (·) with the property that the covariance between W (A)
and W (B) for any subsets A and B of S2, is proportional to the surface integral over A ∩ B. Any regular
2-manifold behaves locally like R2, which heuristically explains why the GMRF-representation of the weak
solution only needs to change the definition of the inner product (14) to a surface integral on S2. Details
appear in the technical appendices.

To illustrate the continuous index definition and the Markov representation of Matérn fields on a sphere,
Figure 4 shows an irregular triangulation of the globe, with small triangles in the vicinity of meteorological
measurement stations, the sparse structure of the optimally ordered precision matrix, a random realisation of
the field, and the resulting numerically calculated correlation values as a function of great circle distances.
Despite the highly irregular grid, the numerical correlations are tightly gathered around the theoretical values.
The discrepancy between the approximation and the theoretical model can be more easily interpreted through
the covariances, shown in Figure 5. The values deviate only for short distances, related to the local structure
of the triangles. Panel (b) of the figure shows numerically calculated variances, showing that the deviation
is approximately a linear function of the local triangle areas. This is to be expected, since the approximation
construction is adapted to approximate distributions of integrals rather than point-wise distributions, and the
variance at the vertices need then to be higher than the within-triangle variances.

3.2 Non-stationary fields

The most surprising extension within the SPDE-framework, is how we can model non-stationarity. Many
applications do require non-stationarity in the correlation function and there is a vast literature on this subject
(Cressie and Huang, 1999; Fuentes, 2001; Gneiting, 2002; Higdon, 1998; Higdon et al., 1999; Hughes-Oliver
et al., 1998; Jun and Stein, 2008; Paciorek and Schervish, 2006; Stein, 2005). The SPDE approach has the
additional huge advantage that the resulting (non-stationary) Gaussian field is a GMRF which allow for swift
computations and can additionally be defined on a regular manifold.

In the SPDE defined in (3), the parameters κ2 and the innovation variance are constant in space. In general,
we can allow both parameters to depend on the coordinate u, and we write

(κ2(u)−∆)α/2(τ(u)x(u)) =W(u). (22)

For simplicity, we chose to keep the variance for the innovation constant and scale the resulting process x(u)
with a scaling parameter τ(u). Non-stationarity is gained when one or both parameters is non-constant. Of
particular interest is the case where they vary slowly with u, for examples using a low-dimensional represen-
tation like

log(κ2(u)) =
∑

i

β
(κ2)
i B

(κ2)
i (u) and log(τ(u)) =

∑

i

β
(τ)
i B

(τ)
i (u) (23)

where the basis functions {B(·)
i (·)} are smooth over the domain of interest. In the global temperatures on the

earth example considered in Section 4, it is natural to use the spherical harmonics as the basis functions.
With slowly varying parameters κ2(u) and τ(u), the appealing local interpretation of (22) as a Matérn

field remains unchanged, whereas the actual form of the achieved non-stationary correlation function is un-
known. The actual process of “combining all local Matérn fields into a consistent global field”, is done
automatically by the SPDE.

11



(a) (b)

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) (d)

Figure 4: Panel (a) displays a triangulation of the earth (assuming it’s a perfect sphere), panel (b) shows the
(reordered) precision matrix for ν = 1, panel (c) shows a sample of the Matérn field with κ2 = 9 and in
panel (c) we display the numerically calculated correlation function, together with the theoretical correlation
function.
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Figure 5: Panel (a) displays the numerically calculated covariance function for the model in Figure 4, together
with the theoretical covariance function, and panel (b) displays the ratio between the numerical and theoretical
variances for each node, as a function of the local triangle areas.

The GMRF representation of (22) is found using the same approach as for the stationary case, with minor
changes. For convenience, we assume that both κ2 and τ can be considered as constant within the support of
the basis-functions {ψk}, hence inner products like

〈ψi, κ2ψj〉 =

∫
ψi(u)ψj(u)κ2(u) du ≈ Cijκ2(u∗j ) (24)

for a naturally defined u∗j in the support of ψi and ψj . The consequence is a simple scaling of the matrices
in (20) at no additional cost, see Section A.2. If we improve the integral approximation (24) from considering
κ2(u) locally constant to locally planar, the computational preprocessing cost increases, but is still O(1) for
each element in the precision matrixQα.

3.3 Oscillating covariance functions

In addition to non-stationary models, the SPDE framework admits many other extensions. One such possibility
is to consider a complex version of the basic equation (3). For simplicity, we only consider the case α = 2.
WithW1 andW2 as two independent white noise fields, and an oscillation parameter θ, the complex version
becomes

(κ2eiπθ −∆)(x1(u) + ix2(u)) =W1(u) + iW2(u), 0 ≤ θ < 1. (25)

The real and imaginary stationary solution components x1 and x2 are independent, with spectral densities

1

(2π)d
· 1

κ4 + 2 cos(πθ)κ2kTk + (kTk)2

on Rd. The corresponding covariance functions for R and R2 are given in Appendix A. For general manifolds,
no closed form expression can be found. In Figure 6, we illustrate the resonance effects obtained for compact
domains by comparing oscillating covariances for R2 and the unit sphere, S2. The precision matrices for
the resulting fields are obtained by a simple modification of the construction for the regular case, the precise
expression given in Appendix A.

For θ = 0, the regular Matérn covariance with ν = 2 − d/2 is recovered, with oscillations increasing
with θ. The limiting case θ = 1 generates intrinsic stationary random fields, invariant to addition of cosine
functions of arbitrary direction, with wave number κ.
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Figure 6: Correlation functions from oscillating SPDE models, for θ = 0, 0.1, . . . , 1, on R2 (panel (a)) and
on S2 (panel (b)), with κ2 = 12, ν = 1.

3.4 Non-isotropic models and spatial deformations

The non-stationary model defined above, in Section 3.2, has locally isotropic correlations, despite having glob-
ally non-stationary correlations. This can be relaxed by widening the class of considered SPDE:s, allowing a
non-isotropic Laplacian, and also by including a directional derivative term. The resulting models have close
links to the deformation method for non-stationary covariances introduced by Sampson and Guttorp (1992).

In the deformation method, the domain is deformed into a space where the field is stationary, resulting in
a non-stationary covariance model in the original domain. If the stationary field is generated by a stationary
SPDE, the non-stationary model is generated by a corresponding non-stationary SPDE.

For notational simplicity, assume that the deformation is between two d-manifolds Ω ⊆ Rd to Ω̃ ⊆ Rd,
with u = f(ũ), u ∈ Ω, ũ ∈ Ω̃. Restricting to the case α = 2, consider the stationary SPDE on the deformed
space Ω̃

(1− ∇̃Tm− ∇̃T∇̃)x̃(ũ) = σ̃W̃(ũ), (26)

wherem is a vector specifying a directional derivative, and σ̃2 is the variance of the driving white noise. Note
that the model is stationary but non-isotropic if m 6= 0. A change of variables onto the undeformed space Ω
yields (Smith, 1934)

1

det(F (u))

(
1−∇TF (u)m− det(F (u))∇TF (u)F (u)T

det(F (u))
∇
)
x(u) =

σ̃

det(F (u))1/2
W(u), (27)

where F (u) is the Jacobian of the deformation function f . When m = 0, this non-stationary SPDE exactly
reproduces the deformation method with Matérn covariances introduced by Sampson and Guttorp (1992).
A sparse GMRF approximation can be constructed using the same principles as for simpler non-stationary
model in Section 3.2. A possible option for parameterising the model without explicit construction of a
deformation function is to control the major axis of the local deformation given by F (u) through a vector field.
For example, on the sphere, this vector field could be parameterised as a weighted sum of vector spherical
harmonics. By also re-introducing a spatially varying κ2-parameter, a more general class of non-stationary
models is obtained.
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4 Example: Global temperature reconstruction

When analysing past observed weather and climate, the Global Historical Climatology Network (GHCN) data
set1 (Peterson and Vose, 1997) is commonly used. As of 2010-02-24, the data contains of meteorological
observations from 7280 stations spread across continents, where each of the 422615 rows of observations
contains the monthly mean temperatures from a specific station and year. The data spans the period 1702
through 2009, though counting, for each year, only stations with no missing values, yearly averages can be
calculated only as far back as 1835. The spatial coverage varies from less than 400 stations prior to 1880
up to 3700 in the 1970s. For each station, covariate information such as location, elevation, and land use is
available.

The GHCN data, or variants thereof, is used to analyse regional and global temperatures in the GISS
(Hansen et al., 1999, 2001) and HadCRUT3 (Brohan et al., 2006) global temperature series, together with
additional data such as ocean based measurements. Various techniques for handling station specific effects are
applied, and the information about the temperature anomaly (the difference in weather to the local climate, the
latter defined as the average weather over a 30 year reference period) is then aggregated to latitude-longitude
grid boxes. The grid box anomalies are then combined using area based weights into an estimate of the average
global anomaly for each year. The analysis is accompanied by a derivation of the resulting uncertainty of the
estimates.

Though different in details, the gridding procedures are algorithmically based, i.e. there is no underlying
statistical model for the weather and climate, only for the observations themselves. We will here present a basis
for a stochastic model based approach to the problem of estimating past regional and global temperatures, as
an example of how the non-stationary SPDE models can be used in practice. The ultimate goal is reconstruct
the entire spatio-temporal yearly average temperature field, with appropriate measures of uncertainty taking
the model parameter uncertainty into account.

Since most of the spatial variation is linked to the rotational nature of the globe in relation to the sun, we
will here restrict ourselves to a rotationally invariant model, which reduces the initial computational burden.
The model separates weather from climate by assuming that the climate can be parameterised by rotationally
invariant expectation and covariance parameters µ(u), κ(u), and τ(u), for u ∈ S2, and assuming that the
yearly weather follows the model defined by (22), given the climate. Using the triangulation in Figure 4 with
piecewise linear basis function, the GMRF representation given in Section A.2 will be used, with xt denoting
the discretised field at time t.

Introducing observation matrices At, that extract the nodes from xt for each observation, the full model
can be summarised as follows:

• Climate (θ,B· = rotationally invariant spherical harmonics up to order 3):

– Expectation field µ(u): µ = Bµθµ

– Local spatial dependence κ(u): log κ2 = Bκθκ

– Local variance scaling τ(u): log τ = Bτθτ

• Weather/spatial yearly temperature means (xt):

(xt|θ) ∼ N(µ(θµ),Q−1
x (θκ, θτ ))

• Temperature data (yt):

– Station specific effects: Stθy
– Observation precision: Qy(θε) = eθεI

– Observed weather: (yt|xt,θ) ∼ N(Atxt + Stθy,Q
−1
y (θε))

1http://www.ncdc.noaa.gov/ghcn/ghcn.html
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Figure 7: Temperature data and global reconstruction for 1980.
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Figure 8: Estimated parameter fields, µ, κ and τ .

Since we only use the data for illustrative purposes here, we will ignore the station specific effects, that need to
be included in a future more complete analysis. We also ignore any spatial dependencies between consecutive
years, which for yearly data is small, analysing only the marginal distribution properties of each year.

Just as for the example in Section 2.4, we implemented the model in the INLA framework. Due to the
large size of the data set, this initial analysis is based on data only from the period 1980 to 1989, requiring on
the order of 120000 nodes in a joint model for the temperature fields and measurements, with 9500 nodes in
each field, and on average 2500 observations per year. Further enhancements to the INLA implementation are
needed to smoothly handle the full data set in an automated joint estimation.

In Figure 7(a), the measured temperatures for 1980 are shown, with the corresponding posterior recon-
struction E(x1980(u)|y) shown in panel (b). The point estimates of the climate parameters in shown in Fig-
ure 8. As expected, the temperatures are low near the poles and high near the equator. The covariance
parameters are more difficult to interpret, but they indicate that the correlation range is high at the poles,
smaller at the equator, and small around the ±40 latitudes, as illustrated in Figure 9.

The estimated model standard deviations are shown in Figure 10(a). Note the small deviations from rota-
tional symmetry, due to the simple approximation of the non-stationary GMRF representation. Integrating out
the parameter uncertainty with the INLA method, we calculated posterior point-wise variances Var(xt(ui)|y),
shown as standard deviations in Figure 10(b). To see how well the simple expectation model captures the tem-
poral averages, we calculated the difference between the posterior temporal averages, 1

30

∑1989
t=1980 E(xt(u)|y)
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Figure 9: Correlation functions centered at latitudes 90N, 45N, equator, and 45S. The correlation range varies
with latitude.
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Figure 10: Standard deviation, posterior standard deviation, spatial differences between average (over 1980–
1989) of posterior means and the expectation.
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and the estimated µ, as shown in Figure 10(c) and (d). The overall structure has been captured, apart from
some extra warming around the North Atlantic and north-east Pacific coasts, due to ocean currents. Not sur-
prisingly, a clear effect of regional topography can be seen, showing cold areas for high elevations such as in
the Himalayas. This effect can be handled naturally using the station elevations as covariate information. The
uncertain extent of the ocean-induced warm areas might be accounted for by using a more general expectation
model, but that would require incorporating ocean based data as well, to improve the identifiability of the
parameters due to the sparse spatial coverage.

5 Discussion

The main result in this work is that we can construct an explicit link between (some) Gaussian fields and
Gaussian Markov random fields using an approximate weak solution of the corresponding stochastic partial
differential equation. Although this result is not generally applicable for all covariance functions, the subclass
of models where this result is applicable is substantial, and we expect to find additional versions and extensions
in the future; see for example Bolin and Lindgren (2009a). The explicit link makes these Gaussian fields much
more practically applicable, as we might model and interpret the model using covariance functions while doing
the computations using the GMRF representation which allow for sparse-matrix numerical linear algebra. In
most cases, we can make use of the INLA approach for doing (approximate) Bayesian inference (Rue et al.,
2009), which require the latent field to be a GMRF. It is our hope that the SPDE link might help bridging
the literature of (continuously indexed) Gaussian fields and Geostatistics on one side, and Gaussian Markov
random fields/Conditional auto-regressions on the other.

Furthermore, the simplicity of the SPDE parameter specifications provides a new modelling approach that
is not dependent on the theory for constructing positive definite covariance functions. Although still slightly
puzzled by the apparent simplicity of the SPDE approach, we are still in a mild shock of what this result
implies. The ease of how non-stationary models can be defined using spatially varying parameters of the
SPDE is both natural, gives good local interpretation, and is computationally very efficient, as we still obtain a
GMRF representation. The extension to manifolds is also useful, with fields on the globe as the main example.

A third issue not yet discussed, is that the SPDE approach might help interpret external covariates (for
example wind speed) as an appropriate drift term or similar in the related SPDE and then this covariate would
enter correctly in the spatial dependence models. This is again an argument for more physics based spatial
modelling, but as we have shown in this report, such an approach can also provide a huge computational
benefit.

On the negative side, our approach comes with an implementation and preprocessing cost for setting up
the models, as it involves the SPDE, triangulations, and GMRF representations, but we firmly believe that
such costs are unavoidable when efficient computations are required.

A Explicit coefficients and covariances

This section includes some explicit expressions and results not included in the main text.

A.1 Grid based precisions

We will here give some explicit precision expressions for grid based models on R and R2. Consider the SPDE

(κ2 −∇TFF T∇)α/2x(u) =W(u), Ω = Rd, d = 1 or 2, (28)

where F is a diagonal d-dimensional matrix.
For any given ordered discretisation u1, . . . , un on R, let γi = ui − ui−1, δi = ui+1 − ui, and si =

(γi + δi)/2. Then, the elements on row i, around the diagonal, of the precision are given by

Q1 : si ·
[
−ai ci −bi

]

Q2 : si ·
[
aiai−1 −ai(ci−1 + ci) aibi−1 + c2

i + biai+1 −bi(ci + ci+1) bibi+1

]
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where ai = F 2/(γisi), bi = F 2/(δisi), and ci = κ2 + ai + bi. If the spacing is regular, s = δ = γ, and the
expressions simplify to

Q1 : s ·
[
−a c −a

]

Q2 : s ·
[
a2 −2ac 2a2 + c2 −2ac a2

]

where a = F 2/δ2 and c = κ2+2a. The special case α = 2 with κ = 0 and irregular spacing is a generalisation
of Lindgren and Rue (2008).

For R2, assume a given regular grid discretisation, with horizontal (coordinate component 1) distances γ
and vertical (coordinate component 2) distances δ. Let s = γδ, a = F 2

11/γ
2, b = F 2

22/δ
2, and c = κ2+2a+2b.

The precision elements are then given by

Q1 : s · −b
c −a

Q2 : s ·
b2

−2bc 2ab
2a2 + 2b2 + c2 −2ac a2

Q3 : s ·
−b3
3b2c −3ab2

−3b(2a2 + b2 + c2) 6abc −3a2b
c(6a2 + 6b2 + c2) −3a(a2 + 2b2 + c2) 3a2c −a3

Q4 : s ·

b4

−4b3c 4ab3

2b2(6a2 + 2b2 + 3c2) −12ab2c 6a2b2

−4bc(6a2 + 3b2 + c2) 12ab(a2 + b2 + c2) −12a2bc 4a3b
6(a4 + b4 + 4a2b2) + 12(a2 + b2)c2 + c4 −4ac(3a2 + 6b2 + c2) 2a2(2a2 + 6b2 + 3c2) −4a3c a4

If the grid distances are proportional to the corresponding diagonal elements of F (such as in the isotropic
case γ = δ and F11 = F22), the expressions simplify to

s = γδ

a = F 2
11/γ

2 = F22/δ
2

c = κ2 + 4a

Q2 : s ·
a2

−2ac 2a2

4a2 + c2 −2ac a2

Q3 : s ·
−a3

3a2c −3a3

−3a(3a2 + c2) 6a2c −3a3

c(12a2 + c2) −3a(3a2 + c2) 3a2c −a3

Q4 : s ·

a4

−4a3c 4a4

2a2(8a2 + 3c2) −12a3c 6a4

−4ac(9a2 + c2) 12a2(2a2 + c2) −12a3c 4a4

36a4 + 24a2c2 + c4 −4ac(9a2 + c2) 2a2(8a2 + 3c2) −4a3c a4

A.2 Non-stationary and oscillating precision matrices

For easy reference, we give specific precision matrix expressions for the case α = 2 for arbitrary triangulated
manifold domains Ω.
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The stationary and simple oscillating models for α = 2 have precision matrices given by

Q2(κ2, θ) = κ4C + 2κ2 cos(πθ)G+GC−1G, (29)

where θ = 0 corresponds to the regular Matérn case and 0 < θ < 1 are oscillating models.
Using the approximation from (24), the non-stationary model (22) with α = 2 has precision matrix given

by

Q2(κ2(·), τ(·)) = τ
(
κ2Cκ2 + κ2G+Gκ2 +GC−1G

)
τ (30)

where κ2 and τ are diagonal matrices, with κ2
ii = κ(ui)

2 and τ ii = τ(ui).

A.3 Precision building blocks for triangulated domains

In this section, we derive explicit expressions for the building blocks for the precision matrices, for general
triangulated domains with piecewise linear basis functions. We need to calculate

C̃i,i = 〈ψi, 1〉Ω , (31)

Ci,j = 〈ψi, ψj〉Ω , (32)

Gi,j = 〈∇ψi,∇ψj〉Ω , (33)

Bi,j = 〈ψi, ∂nψj〉∂Ω . (34)

For 2-manifolds such as regions in R2 or on S2, we require a triangulation with a set of vertices v1, . . . ,vn,
embedded in R3. Each vertex vk is assigned a continuous piecewise linear basis function ψk with support on
the triangles attached to vk. In order to obtain explicit expressions for (31)–(34), we need to introduce some
notation for geometry of an arbitrary triangle. For notational convenience, we number the corner vertices of a
given triangle T = (v0,v1,v2). The edge vectors opposite each corner are

e0 = v2 − v1, e1 = v0 − v2, e2 = v1 − v0,

and the corner angles are θ0, θ1, and θ2.
The triangle area |T | can be obtained from the formula

|T | = 1

2
‖e0 × e1‖ (35)

i.e. half the length of the vector product in R3. The contributions from the triangle to the C̃ and C matrices
are given by

[
C̃i,i(T )

]
i=0,1,2

=
|T |
3

[
1 1 1

]
, (36)

[
Ci,j(T )

]
i,j=0,1,2

=
|T |
12




2 1 1
1 2 1
1 1 2


 (37)

The contribution to G0,1 from the triangle T is

G0,1(T ) = |T |(∇ψ0)T(∇ψ1) = −cot(θ2)

2
=

1

4|T |e
T
0 e1,

and the entire contribution from the triangle is

[
Gi,j(T )

]
i,j=0,1,2

=
1

4|T |



‖e0‖2 eT0 e1 eT0 e2

eT1 e0 ‖e1‖2 eT1 e2

eT2 e0 eT2 e1 ‖e2‖2


 =

1

4|T |
[
e0 e1 e2

]T [
e0 e1 e2

]
. (38)
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For the boundary integrals in (34), the contribution from the triangle is

[
Bi,j(T )

]
i,j=0,1,2

=
−1

4|T |




0 e0 e0

e1 0 e1

e2 e2 0



T 

e0I
e1I
e2I


 [e0 e1 e2

]
, (39)

where ek = I(Edge k in T lies on ∂Ω)). Summing the contributions from all the triangles yields the complete
C̃, C,G, andB matrices.

For the anisotropic version, parameterised as in Section C.4, with H = FF T in (28), the modified G
matrix elements are given by

[
Gi,j(T )

]
i,j=0,1,2

=
1

4|T |
[
e0 e1 e2

]T adj(H)
[
e0 e1 e2

]
, (40)

where adj(H) is the adjugate matrix ofH , for non-singular matrices defined as det(H)H−1.

A.4 Neumann boundary effects

The effects on the covariance functions resulting from using Neumann boundary conditions can be explicitly
expressed as a folding effect. When the full SPDE is

{
(κ2 −∆)α/2x(u) =W(u), u ∈ Ω

∂n(κ2 −∆)jx(u) = 0, u ∈ ∂Ω, j = 0, 1, . . . , b(α− 1)/2c ,
(41)

the following theorem provides a direct answer, in terms of the Matérn covariance function.

Theorem 1 If x is a solution to the boundary value problem (41) for Ω = [0, L] and a positive integer α, then

Cov(x(u), x(v)) =
∞∑

k=−∞
(rM (u, v − 2kL) + rM (u, 2kL− v)) (42)

where rM is the Matérn covariance as defined on the whole of R.

The theorem, that extends naturally to arbitrary generalised rectangles in Rd, is proved in Appendix D.1. In
practice, when the effective range is small, only the three main terms need to be included for a very close
approximation:

Cov(x(u), x(v)) ≈ rM (u, v) + rM (u,−v) + rM (u, 2L− v) (43)

= rM (0, v − u) + rM (0, v + u) + rM (0, 2L− (v + u)). (44)

Moreover, the resulting covariance is nearly indistinguishable from the stationary Matérn covariance at dis-
tances greater than twice the range away form the borders of the domain.

A.5 Oscillating covariances

The covariances for the oscillating model can be calculated explicitly for R and R2, from the spectrum. On
R, complex analysis gives

r(u, v) =
1

2 sin(πθ)κ3
e−κ cos(πθ/2)|v−u| sin (πθ/2 + κ sin(πθ/2)|v − u|) , (45)

which has variance (4 cos(πθ/2)κ3)−1. On R2, complicated Bessel function integrals yield

r(u,v) =
1

4π sin(πθ)κ2
=
(
K0(κ‖v − u‖e−iπθ/2)−K0(κ‖v − u‖eiπθ/2)

)
(46)

which has variance (4πκ2 sinc(θ))−1.
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B Manifolds, random measures, and operator identities

B.1 Manifold basics

Although the theory needed for the analysis of stochastic partial differential equations on manifolds is well
developed in principle, it can be difficult to locate a concise summary of the needed concepts and definitions.
Therefore, we here give a brief summary of the necessary theory, aimed at statisticians familiar with measure
theory and stochastic calculus on Rd. For more details on manifolds, differential calculus and geometric
measure theory see for example Auslander and MacKenzie (1977), Federer (1978) and Krantz and Parks
(2008).

Loosely, we say that a space Ω is a d-manifold if it locally behaves as Rd. We only consider manifolds
with well-behaved boundaries, in the sense that the boundary ∂Ω of a manifold, if present, is required to be
a (d − 1)-manifold. By also requiring the manifolds to be orientable, possibly problematic domains such as
Möbius strips are ruled out.

Definition 1 (Metric manifolds) A Riemannian manifold (Ω,m) is a smooth manifold with a metric m. The
metric defines a smoothly varying family of inner products for the collection of tangent spaces to points in Ω.
The metric induces natural notions of lengths of curves, areas or volumes of subregions, angles, as well as
rules for calculus. Common terms related to the topology of a manifold:

1. A manifold is connected if every pair of points in Ω can be joined by a curve in Ω.

2. The geodesic distance d(u,v) between two points u,v ∈ Ω is the infimum of the lengths of all curves
in Ω connecting u and v.

3. A geodesic is a curve in Ω with length d(u,v) that connects two points u,v ∈ Ω.

4. If the geodesic distances on a manifold are bounded, i.e. supu,v∈Ω d(u,v) < ∞, the manifold is
bounded. The maximal geodesic distance is called the diameter of Ω.

5. A compact manifold is a bounded, complete manifold, i.e. every Cauchy sequence on Ω has a limit in
Ω, so Ω includes its boundary, if any, denoted ∂Ω.

6. A closed manifold is a compact manifold with no boundary.

7. The metricm∂ for the (d−1)-manifold boundary is defined by the restriction ofm to the tangent spaces
of ∂Ω. If Ω is compact, ∂Ω is closed.

The most common Riemannian manifolds are subsets of Rd equipped with the Euclidean metric. For the
most part, we will consider submanifolds of Rd, with metrics defined by the restriction of the Euclidean metric
to each manifold. For brevity of notation, we write “a manifold Ω” throughout. Examples of manifolds include
intervals on R, regions in R2, the surface of the unit radius sphere S2 embedded in R3, a torus embedded in
R3, and a flat torus, i.e. a manifold with torus topology, but with a different metric. The flat torus commonly
appears as a tool to make a periodic continuation of a rectangle in R2.

Some useful definitions for calculus on Ω follows.

Definition 2 (Manifold differential calculus) Let φ denote a function φ : Ω 7→ R.

1. The gradient of φ at u is a vector∇φ(u) in the tangent space of Ω at u, such that for any tangent vector
t at u, the inner product ism(∇φ, t) = ∂tφ where ∂tφ denotes the directional derivative along t. In Rd

with Euclidean metric, the gradient operator∇ is formally given by the column vector
[
∂
∂u1
· · · ∂

∂ud

]T
.

2. The Laplacian ∆ of φ at u (or the Laplace or Laplace-Beltrami operator) is defined as the sum of the
second order directional derivatives, with respect to a local orthonormal basis for the tangent space. In
Euclidean metric on Rd, we can write ∆φ = ∇T∇φ, and formally, ∆ = ∂2

∂u2
1

+ · · ·+ ∂2

∂u2
d

.
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3. The vector n∂(u) denotes the unit length outward normal vector at a point u on the boundary of Ω,
i.e. n∂ is orthogonal to the tangent space of ∂Ω at u. The normal derivative of a function φ at u ∈ ∂Ω
is the directional derivative, i.e. ∂nφ(u) = n∂(u)T∇φ(u) in Euclidean metric.

4. For notational convenience, we let ∇∂ and ∆∂ denote the restrictions of ∇ and ∆ to a boundary
manifold ∂Ω. In particular, we have∇∂ = ∇− n∂∂n and, for the Euclidean metric, ∆∂ = ∇T

∂∇∂ .

5. The length of a differentiable curve γ(t) : [a, b] 7→ Ω is given by

|γ|Ω =

∫ b

a

{
m

(
dγ

dt
,
dγ

dt

)}1/2

dt.

Definition 3 (Measure and integration theory on manifolds) Unless noted otherwise, let φ denote a func-
tion φ : Ω 7→ R, and we state commonly used concepts in measure and integration theory.

1. On general metric d-manifolds, normalised Hausdorff measures (Federer, 1951, 1978), here denoted
Hd

Ω(du), can be used to define areas. This leads to a natural generalisation of Lebesgue measure
and integration, that coincides with the regular theory on Rd. A common equivalent alternative is to
define integration on manifolds by mapping to Rd. We write the area of an d-dimensional Hausdorff
measurable subset A of Ω as

|A|Ω = Hd
Ω(A) =

∫

u∈A
Hd

Ω(du),

and the (Hausdorff or Lebesgue) integral of a function φ as

Hd
Ω(φ) =

∫

u∈Ω
φ(u)Hd

Ω(du).

2. The inner product of scalar and vector valued functions with respect to Hausdorff measure on Ω is
defined as

〈φ, ψ〉Ω = Hd
Ω(φTψ) =

∫

u∈Ω
φ(u)Tψ(u)Hd

Ω(du).

A function φ : Ω 7→ Rd is said to be square integrable if and only if 〈φ, φ〉Ω <∞, denoted φ ∈ L2(Ω).

3. A fundamental relation, that corresponds to integration by parts for functions on R, is Green’s first
identity: Whenever∇φ ∈ L2(Ω) and ∆ψ ∈ L2(Ω),

〈φ,−∆ψ〉Ω = 〈∇φ,∇ψ〉Ω − 〈φ, ∂nψ〉∂Ω .

4. If µ is a measure relative to the Hausdorff measure on Ω (i.e. µ is absolutely continuous with respect to
the Hausdorff measure on Ω), and φ is integrable, these notational conventions are equivalent:

〈φ, µ〉Ω = 〈φ(u), µ(u)〉Hd
Ω(du) =

∫

u∈Ω
φ(u)µ(u)Hd

Ω(du)

=

∫

u∈Ω
φ(u)µ(du) = 〈φ(u), 1〉µ(du) = 〈φ, 1〉µ = µ(φ)

5. Convenient notation for the inner products with respect to a measure µ(u,v) on a product space Ω1 ×
Ω2,

〈φ, ψ〉µ =

∫

u∈Ω1

∫

v∈Ω2

φ(u)Tψ(v)µ(du,dv)
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Definition 4 (Generalised Fourier representations) The Fourier transform pair for functions {φ ∈ L2 :
Rd 7→ R} is given by





φ̂(k) = (Fφ)(k) =
1

(2π)d

〈
φ(u), e−ik

Tu
〉
Rd(du)

,

φ(u) = (F−1φ̂)(u) =
〈
φ̂(k), eik

Tu
〉
Rd(dk)

.

(Here, we briefly abused our notation by including complex functions in the inner products.)
If Ω is a compact manifold, a countable subset {Ek, k = 0, 1, 2, . . .} of orthogonal and normalised eigen-

functions to the negated Laplacian, −∆Ek = λkEk, can be chosen as basis, and the Fourier representation
for functions {φ ∈ L2 : Ω 7→ R} is given by





φ̂(k) = (Fφ)(k) = 〈φ,Ek〉Ω ,

φ(u) = (F−1φ̂)(u) =
∞∑

k=0

φ̂(k)Ek(u).

The normalisation for Rd was chosen for convenient scaling in Bochner’s theorem, where a positive definite
covariance function φ for some stationary random field is written as the inverse Fourier transform of some
spectral power measure φ̂. For the case Ω = S2, a corresponding Bochner-adapted scaling can be obtained,
see Appendix E. However, for more general manifolds it is not possible to define global stationarity.

Finally, we define a subspace of L2 functions, with inner product adapted to the differential operators we
will study in the remainder of this paper.

Definition 5 The Hilbert space H1(Ω, κ), for a given κ ≥ 0, is the space of functions {φ : Ω 7→ R} with
∇φ ∈ L2(Ω), equipped with inner product

〈φ, ψ〉H1(Ω,κ) = κ2 〈φ, ψ〉Ω + 〈∇φ,∇ψ〉Ω .

The inner product induces a norm, given by ‖φ‖H1(Ω,κ) = 〈φ, φ〉1/2H1(Ω,κ)
. The boundary case κ = 0 is also

well defined, since ‖φ‖H1(Ω,0) is a semi-norm, and H1(Ω, 0) is a space of equivalence classes of functions,
that can be identified by functions with 〈φ, 1〉Ω = 0.

The Hilbert spaceH1 is a quintessential Sobolev space.

B.2 Gaussian measures

We now turn to the problem of characterising random measures on Ω. We restrict ourselves to Gaussian
measures that are at most as irregular as white noise. The distributions of such Gaussian measures are deter-
mined by the properties of expectations and covariances of integrals of functions with respect to the random
measures, the so called finite dimensional distributions.

Definition 6 A Gaussian random measure E on Ω is a measure such that for every finite set of test functions
{φk ∈ L2(Ω) : Ω 7→ R, k = 1, . . . , n}, the inner products

〈φk, E〉Ω , k = 1, . . . , n,

are jointly Gaussian. More precisely, if there is a constant b ≥ 0 such that Var(〈φ, E〉Ω) ≤ b ‖φ‖2Ω for every
φ ∈ L2(Ω), we say that E is an L2(Ω)-bounded Gaussian measure. For convenience, we denote the measure
of a function φ by E(φ) = 〈φ, E〉Ω.
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Definition 7 Gaussian white noiseW on a manifold Ω is an L2(Ω)-bounded random measure such that for
any set of test functions {φi ∈ L2 : Ω 7→ R, i = 1, . . . , n}, the integrals 〈φi,W〉Ω, i = 1, . . . , n, are jointly
Gaussian, with expectation- and covariance-measures given by

E(〈φi,W〉Ω) = E(W(φi)) = 0,

Cov
(
〈φi,W〉Ω , 〈φj ,W〉Ω

)
= Cov(W(φi),W(φj)) = 〈φi, φj〉Ω .

In particular, the covariance-measure of W over two subregions A,B ⊆ Ω is equal to the area measure of
their intersection, |A ∩B|Ω, so that the variance-measure ofW over a region is proportional to the area.

We note that the popular approach to defining white noise on Rd via a Brownian sheet is not applicable for
general manifolds, since the notion of globally orthogonal directions is not present. The closest equivalent
would be to define a set-indexed Gaussian random functionW(A) : {A;A ⊆ Ω} 7→ R, such that E(W(A)) =
0 and Cov(W(A),W(B)) = |A∩B|Ω. This definition is equivalent to the one above, and the Brownian sheet
is a special case that only considers rectangular regions along the axes of Rd, with one corner fixed at the
origin.

B.3 Operator identities

In defining and solving the considered SPDEs, the half-Laplacian operator needs to be characterised in a way
that permits practical calculations on general manifolds, and the regular notion of integration by parts needs
to be extended not only to manifolds, but to random measures that are not differentiable in the classic sense.

B.3.1 The half-Laplacian

The fractional modified Laplacian operators (κ2 − ∆)α/2, κ, α ≥ 0, are commonly (Samko et al., 1992, p.
483) defined through the Fourier transform, as defined above:

(F(κ2 −∆)α/2φ)(k) = (κ2 + kTk)α/2(Fφ)(k), on Rd

(F(κ2 −∆)α/2φ)(k) = (κ2 + λk)
α/2(Fφ)(k), on compact Ω.

The formal definition if mostly of theoretical interest, since in practice, the generalised Fourier basis and
eigenvalues for the Laplacian are unknown. The following Lemma provides an integration identity that allows
practical calculations involving the half-Laplacian.

Lemma 1 Let φ and ψ be functions inH1(Ω, κ). Then, the Fourier-based modified half-Laplacians satisfy
〈

(κ2 −∆)1/2φ, (κ2 −∆)1/2ψ
〉

Ω
= 〈φ, ψ〉H1(Ω,κ)

whenever either

1. Ω = Rd,

2. Ω is closed, or

3. Ω is compact, and 〈φ, ∂nψ〉∂Ω = 〈∂nφ, ψ〉∂Ω = 0.

It would be tempting to eliminate the qualifiers by subtracting the average of the two boundary integrals to
the relation, and extend the Lemma to an equivalence relation. However, the motivation is problematic, since
the half-Laplacian is defined for a wider class of functions than the Laplacian, and it is yet unclear whether
such a generalisation yields the same half-Laplacian as the Fourier definition for functions that are not of the
class ∆φ ∈ L2(Ω). An obvious solution would be to reduce the admitted class of functions, but that would
eliminate the usefulness of the result, as we will later have that ∇ψ is an L2(Ω)-bounded random measure.
It is however clear that the Lemma can be used also for suitably well-behaved unbounded manifolds with no
boundary. For such manifolds the issue is instead that of defining the Fourier representation.
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B.3.2 Stochastic Green’s first identity

Identities for differentiation and integration on manifolds are usually stated as requiring functions in C1, C2,
or even C∞, which is much too restrictive to be applied to general random measures, and unnecessarily so.
We state without proof a generalisation of Green’s first identity, noting that the identity applies to general
Gaussian measures, as opposed to only differentiable functions.

Proposition 1 If x and y are Gaussian measures on Ω such that∇x and ∆y are L2(Ω)-bounded,

〈x,−∆y〉Ω = 〈∇x,∇y〉Ω − 〈x, ∂ny〉∂Ω .

C Hilbert space approximation

We are now ready to formulate the main results of the paper in more technical detail. The idea is to approxi-
mate the full SPDE solutions with functions in finite Hilbert spaces, showing that the approximations converge
to the true solutions as the finite Hilbert space approaches the full space. In Section C.1, we state the needed
convergence and stochastic Finite Element definitions. The main result for Matérn covariance models is stated
in Section C.2, followed by generalisations to intrinsic and oscillating fields in Section C.3 and Section C.4.
Finally, the full Finite Element constructions are modified to Markov models in Section C.5.

C.1 Weak convergence and stochastic FEM

The following definitions concern the formal definitions of convergence of Hilbert spaces and random mea-
sures in such spaces (Definition 8 and 9) and the definition of the Finite Element constructions that will be
used (Definition 10).

Definition 8 A finite subspace H1
n(Ω, κ) ⊂ H1(Ω, κ) is spanned by a finite set of basis functions Ψn =

{ψ1, . . . , ψn}. We say that a sequence of subspaces {H1
n} is dense in H1 if for any f ∈ H1 there is a

sequence {fn}, fn ∈ H1
n, such that limn→∞ ‖f − fn‖2H1(Ω,κ) = 0.

Definition 9 A sequence of L2(Ω)-bounded Gaussian random measures {xn} is said to converge weakly to
an L2(Ω)-bounded Gaussian random measure x if for all f, g ∈ L2(Ω),

E (〈f, xn〉Ω)→ E (〈f, x〉Ω) ,

Cov (〈f, xn〉Ω , 〈g, xn〉Ω)→ Cov (〈f, x〉Ω , 〈g, x〉Ω) ,

as n→∞. We denote such convergence xn
D(L2(Ω))−−−−−−⇀
n→∞

x.

Definition 10 Let L be a linear differential operator, and let E be a Gaussian random measure on Ω. Let
xn =

∑
j ψjwj ∈ H1

n(Ω, κ) denote approximate weak solutions to the SPDE Lx = E on Ω.

a) The weak Galerkin approximations are given by random w = {w1, . . . , wn} such that

E(〈fn,Lxn〉Ω) = E(〈fn, E〉Ω)

Cov(〈fn,Lxn〉Ω , 〈gn,Lxn〉Ω) = Cov(〈fn, E〉Ω , 〈gn, E〉Ω)

for any pair of test functions fn, gn ∈ H1
n(Ω, κ).

b) The weak least squares solutions are given by random w = {w1, . . . , wn} such that

E(〈Lfn,Lxn〉Ω) = E(〈Lfn, E〉Ω)

Cov(〈Lfn,Lxn〉Ω , 〈Lgn,Lxn〉Ω) = Cov(〈Lfn, E〉Ω , 〈Lgn, E〉Ω)

for any pair of test functions fn, gn ∈ H1
n(Ω, κ).

26



C.2 The basic Matérn-like cases

In the classic Matérn case, the SPDE

(κ2 −∆)α/2x =W (47)

can be unravelled into a recursive formulation

(κ2 −∆)1/2y1 =W,

(κ2 −∆)y2 =W,

(κ2 −∆)yk = yk−2, k = 3, 4, . . . , α.

For integers α = 1, 2, 3, . . ., yα is a solution to the original SPDE. To avoid solutions in the null-space
of (κ2 − ∆), we require Neumann boundaries, i.e. the solutions must have zero normal derivatives at the
boundary of Ω. In the Hilbert space approximation, this can be achieved by requiring that all basis functions
have zero normal derivatives. For piecewise linear basis functions, arbitrarily small regions near the boundary
of Ω can be altered to fulfil the requirement.

We now formulate the three main theorems of the paper, that show what the precision matrices should
look like for given basis functions (Theorem 2), that the finite Hilbert representations converge to the true
distributions for α = 1 and α = 2 and dense Hilbert space sequences (Theorem 3), and finally that the
iterative constructions for α ≥ 3 also converge (Theorem 4). Note that a sequence H1

n(Ω, κ) of piecewise
linear Hilbert spaces defined on triangulations of Ω is a dense sequence in H1(Ω, κ) if the maximal triangle
diameter decreases to 0. Thus, the theorems are applicable for piecewise linear basis functions, showing weak
convergence of the field itself and its derivatives up to order min(2, α).

Theorem 2 Define matrices C andG through

Ci,j = 〈ψi, ψj〉Ω , Gi,j = 〈∇ψi,∇ψj〉Ω ,

and denote the distribution for w with N(0,Q−1), where the precision matrix Q is the inverse of the co-
variance matrix, and let xn =

∑
k ψkwk be a weak H1

n(Ω, κ) approximation to Lx = E with Neumann
boundaries, and ∂nψk = 0 on ∂Ω.

a) When L = κ2 − ∆ and E is Gaussian white noise, the weak Galerkin approximation is obtained for
Q = KTC−1K, whereK = κ2C +G.

b) WhenL = (κ2−∆)1/2 and E is Gaussian white noise, the weak least squares approximation is obtained
forQ = κ2C +G.

c) When L = κ2 −∆ and E is a Gaussian measure on H1
n(Ω, κ) with mean zero and precision QE,n, the

weak Galerkin approximation is obtained forQ = KTC−1QE,nC
−1K, whereK = κ2C +G.

Theorem 3 Let x be a weak solution to an SPDE Lx = W with Neumann boundaries on a manifold Ω, and
let xn be a weakH1

n(Ω, κ) approximation, when E is an L2(Ω)-bounded random measure. Then,

xn
D(L2(Ω))−−−−−−⇀
n→∞

x, (I)

Lxn
D(L2(Ω))−−−−−−⇀
n→∞

Lx, (II)

if the sequence {H1
n(Ω, κ), n→∞} is dense inH1(Ω, κ), and either

1. L = (κ2 −∆), and xn is the Galerkin approximation, or

2. L = (κ2 −∆)1/2 and xn is the least squares approximation.
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Theorem 4 Let y be a weak solution to an linear SPDE Lyy = E on a manifold Ω, for some L2(Ω)-bounded
random measure E , and let x be a weak solution to the SPDE LyLxx = E , where Lx = κ2 −∆. Further, let
yn be a weakH1

n(Ω, κ) approximation to y such that

yn
D(L2(Ω))−−−−−−⇀
n→∞

y, (I)

and let xn be the weak Galerkin approximation inH1
n(Ω, κ) to the SPDEs Lxx = yn on Ω. Then,

xn
D(L2(Ω))−−−−−−⇀
n→∞

x. (II)

Lxxn
D(L2(Ω))−−−−−−⇀
n→∞

Lxx. (III)

C.3 The intrinsic cases

When κ = 0, the Hilbert space from Definition 5 is a space of equivalence classes of functions, corresponding
to SPDE solutions where arbitrary functions in the null-space of (−∆)α/2 can be added. Such solution fields
are known as intrinsic fields, and have well-defined properties. With piecewise linear basis functions, the
intrinsicness can be exactly reproduced for α = 1 for all manifolds, and for α = 2 on subsets of R2, by
relaxing the boundary constraints to free boundaries. For larger α or more general manifolds, the intrinsicness
will only be approximately represented. To approximate intrinsic fields, the matrix K in Theorem 2 should
be replaced byG−B (due too Green’s identity), where the elements of the (possibly asymmetric) boundary
integral matrixB are given by

Bi,j = 〈ψi, ∂nψj〉∂Ω .

The formulations and proofs of Theorem 3 and Theorem 4 remain unchanged, but with the convergence only
defined with respect to test functions f and g orthogonal to the null-space of the linear SPDE operator.

The notion of non-null-space convergence allows us to formulate a simple proof of the result from Besag
and Mondal (2005), that says that a 1st order intrinsic CAR model on infinite lattices in R2 converge to the
measure valued de Wij process. As seen in Section A.1, for α = 1 and κ = 0, theQ-matrix for a triangulated
regular grid matches the ordinary intrinsic 1st order CAR model. The null-space of the half-Laplacian are
constant functions. Choose non-trivial test functions f and g that integrate to zero, and apply Theorem 3 and
Definition 9. This shows that the regular CAR model, seen as a Hilbert space representation with linear basis
functions, converges to the de Wij process, which is the special SPDE case α = 1, κ = 0 in R2.

C.4 The oscillating and non-isotropic cases

To construct the Hilbert space approximation for the oscillating model introduced in Section 3.3, as well as
non-isotropic versions, we introduce a coupled system of SPDEs for α = 2,

[
h1 −∇TH1∇ −h2 +∇TH2∇
h2 −∇TH2∇ h1 −∇TH1∇

] [
x1

x2

]
=

[
E1

E2

]
(48)

which is equivalent to the complex SPDE

(h1 + ih2 −∇T(H1 + iH2)∇)(x1(u) + ix2(u)) = E1(u) + iE2(u). (49)

The model in Section 3.3 corresponds to h1 = κ2 cos(πθ), h2 = κ2 sin(πθ),H1 = I , andH2 = 0.
To solve the coupled SPDE system (48) we take a set {ψk, k = 1, . . . , n} of basis functions forH1

n(Ω, κ)

and construct a basis for the solution space for
[
x1 x2

]T as
[
ψ1

0

]
, . . . ,

[
ψn
0

]
,

[
0
ψ1

]
, . . . ,

[
0
ψn

]
.
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The definitions of theG andK matrices are modified as follows:

(Gk)i,j =
〈
H

1/2
k ∇ψi,H

1/2
k ∇ψj

〉
Ω
, k = 1, 2,

Kk = hkC +Gk, k = 1, 2.

Using the same construction as in the regular case, the precision for the solutions are given by

[
K1 −K2

K2 K1

]T [
C 0
0 C

]−1 [
QE 0
0 QE

] [
C 0
0 C

]−1 [
K1 −K2

K2 K1

]
=

[
Q 0
0 Q

]
,

where Q = Q2(h1,H1) +Q2(h2,H2) and Q2(·, ·) is the precision generated for the regular Matérn model
with α = 2 and the given parameters. Surprisingly, regardless of the choice of parameters, the solution
components are independent.

C.5 Markov approximation

By choosing piecewise linear basis functions, the practical calculation of the matrix elements in the precision
construction is straightforward, and the local support make the basic matrices sparse. However, since they are
not orthogonal, theC matrix will be non-diagonal, and therefore the FEM-construction does not directly yield
Markov fields for α ≥ 2, since C−1 is not sparse. However, C can be approximated with a diagonal matrix
as follows. Let C̃ be a diagonal matrix, with C̃ii =

∑
j Cij = 〈φi, 1〉Ω, and note that this can be interpreted

as a lower order integration matrix. Substituting C−1 with C̃
−1

yields a Markov approximation to the FEM
solution.

Let f and g be test functions inH1(Ω, κ) and let fn and gn be their projections ontoH1
n(Ω, κ), with basis

weights wf and wg. Taking the difference between the covariances for the FEM and the Markov models in
the worst case scenario κ→∞ yields

wf (C − C̃)wg → 0

as n → ∞. An even better Markov approximation is obtained by also replacing the C matrix in K with C̃.
In this case, the covariance difference is

wf (C −CC̃−1
C)wg

which has a smaller error in numerical comparisons. The intuitive explanation for this is that the approxima-
tion errors cancel, but further study is needed to determine the precise effects of the approximation. See Bolin
and Lindgren (2009b) for a comparison of the resulting Kriging errors for different methods, showing negli-
gible differences between the exact FEM representation and the Markov approximation.

D Proofs

D.1 Folded covariance

Proof: [Theorem 1] Writing the covariance of the SPDE solutions on the interval Ω = [0, L] ⊂ R in terms of
the spectral representation gives an infinite series,

Cov(x(u), x(v)) = λ0 +
∞∑

k=1

cos(uπk/L) cos(vπk/L)λk, (50)

where λ0 = (κ2αL)−1 and λk = 2L−1(κ2 + (πk/L)2)−α are the variances of the weights for the basis
functions cos(uπk/L), k = 0, 1, 2, . . ..
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We use the spectral representation of the Matérn covariance in the theorem statement, and show that the
resulting expression is equal to the spectral representation of the covariance for the solutions to the given
SPDE. First, let r̃(u, v) denote the folded covariance in the theorem statement, and note that on R, the Matérn
covariance (with the given variance) can be written as

rM (u, v) =
1

2π

∫ ∞

−∞
(κ2 + ω2)−α cos((v − u)ω) dω.

Thus,

r̃(u, v) =
∞∑

k=−∞
(rM (u, v − 2kL) + rM (u, 2kL− v))

=
1

2π

∞∑

k=−∞

∫ ∞

−∞
(κ2 + ω2)−α (cos((v − u− 2kL)ω) + cos((v + u− 2kL)ω)) dω

=
1

2π

∫ ∞

−∞
(κ2 + ω2)−α

∞∑

k=−∞
(cos((v − u− 2kL)ω) + cos((v + u− 2kL)ω)) dω

Rewriting the cosines via Euler’s formulas, we obtain

∞∑

k=−∞
(cos((v − u− 2kL)ω) + cos((v + u− 2kL)ω))

=
1

2

∞∑

k=−∞

(
ei(v−u−2kL)ω + e−i(v−u−2kL)ω + ei(v+u−2kL)ω + e−i(v+u−2kL)ω

)

=
1

2

∞∑

k=−∞

(
eiuω + e−iuω

) (
ei(v−2kL)ω + e−i(v−2kL)ω

)

= cos(uω)

(
eivω

∞∑

k=−∞
e−2ikLω + e−ivω

∞∑

k=−∞
e2ikLω

)

= 2π cos(uω)
(
eivω + e−ivω

) ∞∑

k=−∞
δ(2Lω − 2πk)

=
2π

L
cos(uω) cos(vω)

∞∑

k=−∞
δ(ω − πk/L)

where we used the Dirac-measure representation
∑∞

k=−∞ e
iks = 2π

∑∞
k=−∞ δ(s−2πk) . Finally, combining

the results yields

r̃(u, v) =
1

L

∫ ∞

−∞
(κ2 + ω2)−α cos(uω) cos(vω)

∞∑

k=−∞
δ(ω − πk/L) dω

=
1

L

∞∑

k=−∞
(κ2 + (πk/L)2)−α cos(uπk/L) cos(vπk/L)

=
1

κ2αL
+

2

L

∞∑

k=1

(κ2 + (πk/L)2)−α cos(uπk/L) cos(vπk/L),

which is precisely the sought expression in (50). �
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D.2 Modified half-Laplacian equivalence

Proof: [Lemma 1] We begin with the case Ω = Rd. First, we note that∇eik
Tu = ikeik

Tu. We use the Fourier
representations of φ and ψ and change the order of integration in the Hilbert space inner product:

〈φ, ψ〉H1(Rd,κ) =

〈〈
φ̂(k), eik

Tu
〉
Rd(dk)

,
〈
ψ̂(k′), eik

′Tu
〉
Rd(dk′)

〉

H1(Rd(du),κ)

=

〈
φ̂(k)ψ̂(k′),

〈
eik

Tu, eik
′Tu
〉
H1(Rd(du),κ)

〉

Rd(dk)×Rd(dk′)

=

〈
φ̂(k)ψ̂(k′), (κ2 − kTk′)

〈
eik

Tu, eik
′Tu
〉
Rd(du)

〉

Rd(dk)×Rd(dk′)

=
〈
φ̂(k)ψ̂(−k), κ2 + kTk

〉
Rd(dk)

where we used the identity
〈

eik
Tu, eik

′Tu
〉
Rd(du)

= δ(k+k′), where δ(·) is a Dirac delta measure. Similarly,

the Fourier definition can be rewritten as〈
(κ2 −∆)1/2φ, (κ2 −∆)1/2ψ

〉
Rd

=

〈〈
(κ2 + kTk)1/2φ̂(k), eik

Tu
〉
Rd(dk)

,
〈

(κ2 + k′Tk′)1/2ψ̂(k′), eik
′Tu
〉
Rd(dk′)

〉

Rd(du)

=

〈
(κ2 + kTk)1/2(κ2 + k′Tk′)1/2φ̂(k)ψ̂(k′),

〈
eik

Tu, eik
′Tu
〉
Rd(du)

〉

Rd(dk)×Rd(dk′)

=
〈

(κ2 + kTk)φ̂(k)ψ̂(−k), 1
〉
Rd(dk)

,

so the two definitions are equivalent.
The proof for compact manifolds is similar. Let λk ≥ 0 be the eigenvalue corresponding to eigenfunction

Ek in Definition 4. Then, the modified half-Laplacian is defined by (κ2 −∆)1/2φ = F−1((κ2 + λk)
1/2Fφ),

and we obtain
〈

(κ2 −∆)1/2φ, (κ2 −∆)1/2ψ
〉

Ω
=

〈 ∞∑

k=0

(κ2 + λk)
1/2φ̂(k)Ek,

∞∑

k′=0

(κ2 + λk′)
1/2φ̂(k′)Ek′

〉

Ω

,

and, since φ, ψ ∈ H1(Ω, κ), we can change the order of integration and summation,

=

∞∑

k=0

∞∑

k′=0

(κ2 + λk)
1/2(κ2 + λk′)

1/2φ̂(k)φ̂(k′) 〈Ek, Ek′〉Ω .

=
∞∑

k=0

(κ2 + λk)φ̂(k)φ̂(k),

since the eigenfunctions Ek and Ek′ are orthonormal.
Now, starting from the Hilbert space inner product,

〈φ, ψ〉H1(Ω,κ) = κ2 〈φ, ψ〉Ω + 〈∇φ,∇ψ〉Ω

= κ2

〈 ∞∑

k=0

φ̂(k)Ek,

∞∑

k′=0

ψ̂(k′)Ek′

〉

Ω

+

〈
∇
∞∑

k=0

φ̂(k)Ek,∇
∞∑

k′=0

ψ̂(k′)Ek′

〉

Ω

and, since φ, ψ ∈ H1(Ω, κ) and Ek, Ek′ ∈ L2(Ω), we can change the order of differentiation and summation,

= κ2

〈 ∞∑

k=0

φ̂(k)Ek,
∞∑

k′=0

ψ̂(k′)Ek′

〉

Ω

+

〈 ∞∑

k=0

φ̂(k)∇Ek,
∞∑

k′=0

ψ̂(k′)∇Ek′
〉

Ω
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and, since in addition∇Ek,∇Ek′ ∈ L2(Ω), we can change the order of summation and integration,

= κ2
∞∑

k=0

∞∑

k′=0

φ̂(k)ψ̂(k′) 〈Ek, Ek′〉Ω +
∞∑

k=0

∞∑

k′=0

φ̂(k)ψ̂(k′) 〈∇Ek,∇Ek′〉Ω .

Further, Green’s identity for 〈∇Ek,∇Ek′〉Ω yields

〈∇Ek,∇Ek′〉Ω = 〈Ek,−∆Ek′〉Ω + 〈Ek, ∂nEk′〉∂Ω

= λk′ 〈Ek, Ek′〉Ω + 〈Ek, ∂nEk′〉∂Ω .

Since∇φ,∇ψ ∈ L2(Ω) we can change the order of summation, integration and differentiation for the bound-
ary integrals,

∞∑

k=0

∞∑

k′=0

φ̂(k)ψ̂(k′) 〈Ek, ∂nEk′〉∂Ω = 〈φ, ∂nψ〉∂Ω .

By the boundary requirements in the Lemma, whenever Green’s identity holds, the boundary integral vanishes,
either because the boundary is empty, or the integrand is zero, so collecting all the terms, we obtain

〈φ, ψ〉H1(Ω,κ) =
∞∑

k=0

∞∑

k′=0

(κ2 + λ′k)φ̂(k)ψ̂(k′) 〈Ek, Ek′〉Ω + 0

=
∞∑

k=0

(κ2 + λk)φ̂(k)ψ̂(k),

and the proof is complete. �

D.3 Hilbert space convergence

Proof: [Theorem 2] The proofs are straightforward applications of the definitions. Let wf and wg be the
Hilbert space coordinates of two test functions fn, gn ∈ H1

n(Ω, κ).

a) When L = κ2 −∆ and E =W ,

〈fn,Lxn〉Ω =
∑

i,j

wf,i 〈ψi,Lψj〉Ωwj =
∑

i,j

wf,i(κ
2Ci,j +Gi,j)wj = wT

fKw

due to Green’s identity, so that

Cov(〈fn,Lxn〉Ω , 〈gn,Lxn〉Ω) = wT
fKCov(w,w)KTwg.

This covariance is equal to

Cov(〈fn,W〉Ω , 〈gn,W〉Ω = 〈fn, gn〉Ω =
∑

i,j

wf,i 〈ψi, ψj〉Ωwg,j =
∑

i,j

wf,iCi,jwg,j = wT
fCwg

for every pair of test functions fn, gn when

Cov(w,w) = K−1CK−T, i.e. when

Q = KTC−1K.
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b) Now, L = (κ2 −∆)1/2 and E = W . Using the same technique as in a), but with Lemma 1 instead of
Green’s identity,

〈Lfn,Lxn〉Ω = wT
fKw

and

Cov(〈Lfn,W〉Ω , 〈Lgn,W〉Ω = 〈Lfn,Lgn〉Ω = wT
fKwg

so that

Cov(w,w) = K−1KK−T, i.e.

Q = K,

noting thatK is a symmetric matrix since both C andG are symmetric.

c) Now, L = κ2 − ∆ and E = En is a Gaussian measure on H1
n(Ω, κ) with precision QE,n. Using the

same technique as in a),

Cov(〈fn,Lxn〉Ω , 〈gn,Lxn〉Ω) = wT
fKCov(w,w)KTwg

and

Cov(〈fn, En〉Ω , 〈gn, En〉Ω = wT
fCQ

−1
E,nCwg.

Requiring equality for all pairs of test functions yields

Cov(w,w) = K−1CQ−1
E,nCK

−T, i.e.

Q = KTC−1QE,nC
−1K.

�

Proof: [Theorem 3] First, we show that part (I) follows from part (II).
Let f and g be functions inH1(Ω, κ), and let f ′ be a solution to the PDE

{
(κ2 −∆)f ′(u) = f(u), u ∈ Ω,

∂nf
′(u) = 0, u ∈ ∂Ω,

and equivalently for g. Then f ′ and g′ are also inH1(Ω, κ), and fulfil the requirements of Lemma 1, so that

〈f, xn〉Ω =
〈
(κ2 −∆)f ′, xn

〉
Ω

=
〈

(κ2 −∆)1/2f ′, (κ2 −∆)1/2xn

〉
Ω

=
〈
f ′, (κ2 −∆)xn

〉
Ω

and

〈f, x〉Ω =
〈
f ′, (κ2 −∆)x

〉
Ω
.

The convergence of xn to x follows from part (II). In the Galerkin case, we have

Cov(〈f, xn〉Ω , 〈g, xn〉Ω) = Cov(
〈
f ′,Lxn

〉
Ω
,
〈
g′,Lxn

〉
Ω

)

→ Cov(
〈
f ′,Lx

〉
Ω
,
〈
g′,Lx

〉
Ω

)

= Cov(〈f, x〉Ω , 〈g, x〉Ω),
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and similarly for the Least Squares case.
Part (II):
Let fn =

∑
k ψkwf,k and gn =

∑
k ψkwg,k be the projections of f and g ontoH1

n(Ω, κ). In case (a), then

〈f,Lxn〉Ω = κ2 〈f, xn〉Ω + 〈∇f,∇xn〉Ω − 〈f, ∂nxn〉∂Ω

= 〈f, xn〉H1(Ω,κ) − 0

= 〈f − fn, xn〉H1(Ω,κ) + 〈fn, xn〉H1(Ω,κ)

= 〈fn, xn〉H1(Ω,κ) ,

and

Cov(〈f,Lxn〉Ω , 〈g,Lxn〉Ω) = Cov(〈fn, xn〉H1(Ω,κ) , 〈gn, xn〉H1(Ω,κ))

= Cov(〈fn,W〉Ω , 〈gn,W〉Ω)

= 〈fn, gn〉Ω
→ 〈f, g〉Ω
= Cov(〈f,W〉Ω , 〈g,W〉Ω)

as n→∞. Similarly in case (b), for any f ∈ H1(Ω, κ) fulfilling the requirements of Lemma 1,

〈Lf,Lxn〉Ω = 〈f, xn〉H1(Ω,κ)

= 〈fn, xn〉H1(Ω,κ) ,

and

Cov(〈Lf,Lxn〉Ω , 〈Lg,Lxn〉Ω) = Cov(〈fn, xn〉H1(Ω,κ) , 〈gn, xn〉H1(Ω,κ))

= Cov(〈Lfn,W〉Ω , 〈Lgn,W〉Ω)

= 〈fn, gn〉H1(Ω,κ)

→ 〈f, g〉H1(Ω,κ)

= 〈Lf,Lg〉Ω
= Cov(〈Lf,W〉Ω , 〈Lg,W〉Ω)

as n→∞. �

Proof: [Theorem 4] First, we show that part (II) follows from part (III).
Let f ′ and g′ be defined as in the proof of Theorem 3. Then, since Lx = κ2 −∆,

〈f, xn〉Ω =
〈
f ′,Lxxn

〉
Ω

and

〈f, x〉Ω =
〈
f ′,Lxx

〉
Ω
,

and the convergence of xn to x follows from part (III).
As in the proof of Theorem 3,

〈f,Lxxn〉Ω = 〈fn, xn〉H1(Ω,κ) ,

and

Cov(〈f,Lxxn〉Ω , 〈g,Lxxn〉Ω) = Cov(〈fn, xn〉H1(Ω,κ) , 〈gn, xn〉H1(Ω,κ))

= Cov(〈fn, yn〉Ω , 〈gn, yn〉Ω)

= Cov(〈f, yn〉Ω , 〈g, yn〉Ω)

→ Cov(〈f, y〉Ω , 〈g, y〉Ω)

= Cov(〈f,Lxx〉Ω , 〈g,Lxx〉Ω)

as n→∞, due to requirement (I). �

34



E Spherical harmonics

In R2, the harmonic functions, sine and cosine, play an important role as basis functions in spectral represen-
tations of functions and random fields. On the sphere, this role is instead taken by the spherical harmonics.
This section introduces these functions and their most important properties. The functions are used for the
global climate parameters in the example in Section 4.

Definition 11 The spherical harmonic Yk,m(u), u =
[
u1, u2, u3

]T ∈ S2 ⊂ R3, of order k = 0, 1, 2, . . . and
mode m = −k, . . . , k is defined by

Yk,m(u) =

√
(2k + 1) · (k − |m|)!

(k + |m|)! ·





√
2 sin(mφ)Pk,−m(cos θ) −k ≤ m < 0,

Pk,0(cos θ) m = 0,√
2 cos(mφ)Pk,m(cos θ) 0 < m ≤ k,

where φ is the longitude and θ = arccos(u3) is the colatitude, and Pk,|m|(u3) are associated Legendre
functions (Pk,0(u3) are Legendre polynomials). Note that sinφ = u2/

√
u2

1 + u2
2, cosφ = u1/

√
u2

1 + u2
2,

and cos θ = u3.

Theorem 5 (Mostly from Wahba (1981)) Some properties of the spherical harmonics:

1. The spherical harmonics form an orthogonal basis for functions on the unit sphere, S2:

〈
Yk,m, Yk′,m′

〉
S2 =

{
4π, k′ = k,m′ = m,

0, otherwise.

2. The addition formula for spherical harmonics is

k∑

m=−k
Yk,m(u)Yk,m(v) = (2k + 1)Pk,0(uTv).

3. The spherical harmonics are eigenfunctions to the Laplacian on S2,

∆Yk,m(u) = −k(k + 1)Yk,m(u).

4. Let φ(u) be a square-integrable function on S2. Then φ(u) has series expansion

φ(u) = (F−1φ̂)(u) =

∞∑

k=0

k∑

m=−k
φ̂(k,m)Yk,m(u),

with Fourier Bessel coefficients

φ̂(k,m) = (Fφ)(k,m) =
1

4π
〈φ(u), Yk,m(u)〉S2(du) .

Also,

〈φ, 1〉S2 = 4πφ̂(0, 0) and 〈φ, φ〉S2 = 4π
∑

k,m

φ̂(k,m)2.
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