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Abstract

Clinical data on the location of residence at the time of diagnosis of new Lupus

cases in Toronto, Canada, for the 40 years to 2007 are modelled with the aim

of finding areas of abnormally high risk. Inference is complicated by numerous

irregular changes in the census regions on which population is reported. A model

is introduced consisting of a continuous random spatial surface and fixed effects

for time and ages of individuals. The process is modelled on a fine grid and

Bayesian inference performed using Integrated Nested Laplace Approximations.

Predicted risk surfaces and posterior exceedance probabilities are produced for

Lupus and, for comparison, Psoratic Arthritis data from the same clinic.

Keywords: integrated nested Laplace approximation; changing boundaries; Bayesian

inference; disease mapping

1 Introduction

1.1 Lupus and Psoratic Arthritis

Lupus is an autoimmune disease characterized by acute and chronic inflammation of

various tissues of the body including the skin. It can be limited to the skin or can

involve several organ systems. When internal organs are involved, the condition is

referred to as SLE. This is an uncommon but incurable disease with a prevalence

estimated at 1:1000, and more than 90% of the cases are female (Simard & Costenbader,

2007; Bernatsky, 2007). The etiology remains unclear but there is mounting evidence
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that both genetic predispositions and environmental exposures are important in the

etiopathogenesis (Cooper et al., 2002). Psoriasis is a skin disease that presents with an

erythematosquamous rash that occurs most frequently on the elbows, knees and scalp,

but can cover much of the body. When arthritis occurs concomitantly with psoriasis,

it is called Psoriatic arthritis (PsA). PsA affects women and men equally with an

incidence of approximately 6 per 100,000 per year and a prevalence of about one to

two per 1,000 (Brockbank & Gladman, 2002). Genetic predispositions are thought

to contribute most to psoriasis and PsA and, contrary to SLE, there are fewer studies

addressing the environmental risk factors that may contribute to PsA (Alamanos et al.,

2008; Pattison et al., 2008).

The aim of this paper is to make inferences about the spatial distribution of SLE

in Toronto, Canada, with the objective of identifying areas of elevated incidence rates

which might be indicative of an underlying environmental risk factor. PsA is used as

a comparison group, which might be expected to share reporting biases and structural

patterns with SLE though should not exhibit spatial dependence caused by environ-

mental risk factors. To accumulate an adequate number of cases, data amassed over

a period of 40 years is considered. During this time the population of Toronto has

increased, with growth more pronounced in suburban areas, and the boundaries of

regions on which population figures are reported have changed with every census. The

main statistical challenge, therefore, is to address the problem spatial modelling with

changing census boundaries.

SLE and PsA cases in Toronto are referred to a single specialized clinic, the Centre

for Prognostic Studies in Rheumatic Diseases, with date of and residence at diagnosis

being recorded. There were 875 lupus cases referred from 1970 to 2006, with 88%

being female, and 527 PsA cases between 1978 and 2007, with 41% female. Details

regarding data collection and processing are described by al Maini (2008). The Census

of Canada provides population data and digitized boundaries of reporting regions for

the years 1971, 1981, and thereafter 5-yearly until 2006. The population (rounded

to the nearest 5) by five year age and sex group is provided for each census region.

The smallest census region for which data are available is the Dissemination Area (or

Enumeration Area before 1996), which contain on the order of 400 individuals. The

1986 and earlier censuses have digitized boundaries only for the larger Census Tracts

containing roughly 20000 individuals. Figure 1 shows the population density for census

year 2006 (per square meter) and the case locations of Female Lupus and Male PsA.
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(a) Female Lupus (b) Male PSA

Figure 1: 2006 population density by Dissemination Area and observed case locations

for all years

1.2 Spatial methods for disease incidence data

The most common approach for disease mapping is to model the case counts for a

set of non-overlapping subregions as Poisson distributed conditional on a normally-

distributed sub-region-level random effect. Spatial dependence is induced by having

each sub-region’s random effect depending on it’s neighbours using a Markov Ran-

dom Field model (see Lawson, 2008). The neighbourhood structure makes statistical

inference computationally feasible even when the number of sub-regions is large.

When location data, as opposed to spatially aggregated case counts, are available,

spatial point process methodology is often applied (see Diggle, 2003). The Log Gaus-

sian Cox Processes (LGCP) is a useful and popular model for location data which are

distributed inhomogeneously due to both deterministic effects (such as variations in

population) and stochastic, possibly environmental, heterogeneity. LGCP’s are equiv-

alent to the Poisson-Markov Random Fields described above if population and risk are

assumed to be constant within sub-regions.

Second order properties of disease risk can be explored with the use K-functions

(see Diggle, 2003, ch. 4) for point process data, and for aggregated data with spa-

tial variograms (Diggle et al., 1998) and tests such as Moran’s I (Cliff & Ord, 1981).
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Such methods are useful for evaluating a null hypothesis of spatial independence. For

predicting and making inference about the spatial distribution of risk (first order prop-

erties), the non-Gaussian nature of case counts suggest Bayesian inference based on

Markov chain Monte Carlo (MCMC) algorithms. Rue et al. (2009) introduce Integrated

Nested Laplace Approximations (INLA), which are a less computationally intensive and

potentially more robust alternative to MCMC.

2 Models and Methods

Separate models are fit for Lupus and PsA, and for each disease separate models

are fit for males and females. An alternative would be to assume the risk surfaces

were identical for each sex and to perform a combined analysis. Separate analyses

were undertaken as this assumption was deemed to be unreasonable due to possible

differences in risk factors for males and females for the diseases in question.

2.1 Model

Let Sjk and Tjk be the locations in space and time for case k in the j th age group,

Pj(s, t) be the population and λj(s, t) be the risk surface for location s and time t. The

locations and times are realisations from a spatio-temporal inhomogeneous Poisson

point process with

{Tjk, Sjk|U(s); k = 1...Kj} ∼ Poisson Point Process[λj(s, t)Pj(s, t)]

λj(s, t) = λ(s) exp(γ(t) + θj)

log(λ(s)) = µ+ U(s)

Cov[U(s), U(s+ h)] = σ2Matèrn(|h|/ϕ, ν).

Here γ(t) is the fixed time effect and θj is the age group effect, λ(s) is the pure spatial

risk surface and U(s) is the spatial relative risk surface on the log scale, which has a

Matèrn correlation structure with roughness ν and range ϕ.
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2.2 Inference

2.2.1 Approximation on Grid

The first assumption made is to assume that U(s) is constant within cells of a grid

covering the study region, with U(s) = U` when s is in grid cell G`. This serves two

purposes. First, it allows the Matèrn correlation of the U(s) to be approximated by a

Markov random field where each grid cell depends only an a small number of nearby

cells (Lindgren et al., 2010; Lindgren & Rue, 2007). This provides an analytical formula

for the inverse of the variance matrix, which is sparse, and results in the computations

being feasible for even fine grids with many thousands of cells.

Second, evaluating the risk surface on grid cells rather than the census regions pro-

vides geographic boundaries which are constant over time, and having the risk surface

constant within cells allows the problem to be reduced to a Generalized Linear Mixed

Model with Poisson distributed cell counts. The number of cases in cell G` from age

group j, written Nj` = ||k, Sjk ∈ G`||, is along with the times Tjk sufficient for perform-

ing inference on the spatial surface, i.e. [λj(sjk, tjk)|Sjk, Tjk] = [λj(sjk, tjk)|Nj`, Tjk] (see

Appendix A.1). By integrating the spatio-temporal risk λk(s, t) over grid cell G` and

through time, the distribution of of the cell counts is derived as

Nj`|U` ∼ Poisson

[
exp(U`θj)

∫
Pj`(t)e

γ(t)dt

]
Pj`(t) =

∫
G`

Pj`(s, t)ds.

2.2.2 Inference on age and time effects

An assumption regarding the distribution of population within census regions and

between census periods is necessary in order to obtain populations within grid cells.

Population density is taken to be constant between the midpoints of census years (5

year intervals after 1981), and within census regions (CT’s or DA’s). Let Ci denote

the ith census interval, and write Pj(s, t) = Pij(s); t ∈ Ci and Pij` =
∫
G`
Pij(s)ds. Note

that grid cells cross census region boundaries and populations are not assumed to be

constant within grid cells.

As shown in the following section, inference on the spatial surface U(s) depends
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only on the integrated time effects. Hence we define γi as

γi = log

∫ Ci

Ci−1

exp(γ(t))dt.

As a result, we estimate only γi rather than the full time trend γ(t). The case counts

by census period and age group Mij = ||k;Ci−1 <= Tjk < Ci|| are sufficient for making

inference on the γi and age effects θj, as shown in Appendix A.2. More specifically,

[θj, γi|Sjk, Tjk, U`, µ] ∝ [θj, γi|Mij, U`, µ] and estimation of these parameters is accom-

plished using

Mij|U` ∼ Poisson

(∫
Ci

∫
R2

λj(s, t)Pj(s, t)dsdt

)
∼ Poisson

(∑
i`

exp(µ+ θj + γi + U`)Pij`

)

2.2.3 Inference on the Spatial effects

Conditioning on θj and γi, the distribution of U` depends only the total case count Y`

for that cell, with Appendix A.3 showing that [U`|θj, γ(t), µ, Sjk, Tjk] = [U`|θj, γi, µ, Y`].
Integrating under the intensity surface and summing over age groups gives the cell

counts Y` being Poisson distributed

Y` ∼ Poisson(O`λ̄`) (1)

O` =
∑
i

∫
G`

γiθjPij`|Ci|ds

log(λ̄`) = µ+ U`

Cov(U`, Um) = σ2Matèrn(|G` −Gm|/φ; ν)

The O` are an offset parameter, interpretable as the expected number of cases when

λ(s) = 1. The λ̄` is the risk in cell G` and λ̄` =
∫
G`
λ(s)ds.

The model above is a fairly standard Generalized Linear Mixed Model, with U`

approximated by a Gaussian Markov Random Field. The number of neighbours which

need conditioning on depends on the roughness parameter ν and the and weights for

each neighbour are determined by the scale parameter φ.
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2.3 Implementation

Although it would be possible to use the preceding results in a fully Bayesian Gibbs

sampling algorithm, we instead use a two stage process which ignores uncertainty in the

θj and γi but greatly reduces the dimensionality of the problem. First, the Maximum

Likelihood Estimates for θj and γi are estimated from Mij with the spatial random

effects U` set to zero i.e. using Mij ∼ Poission(exp(µ + θj + γi)Pij). Then treating

the θ̂j and γ̂i as fixed known values, the offset parameters for each grid cell O` are

computed. Inference on the spatial surface U`, it’s variance σ and range φ, and the

mean parameter µ are made using the purely spatial Generalized Linear Mixed Model

with spatial random effects in (1).

Ignoring uncertainty in the age effects θj, and ignoring spatial dependence in esti-

mating them, is fairly common in purely spatial models of aggregated data (see Waller

& Gotway, 2004). The data are sufficiently informative about the age (and in this

instance time) effects that the parameters are estimated with sufficient precision that

the effect of uncertainty in these parameter estimates is believed to be negligible. Also

note that the intercept parameter µ is not treated as fixed, and in effect the age and

time parameters are only assumed known up to a constant of proportionality.

Even with the Markov random field approximation, computational limitations re-

quire the grid cells to number at most 20,000 to 25,000. As a result, a roughly 45km

by 20km central section of the Greater Toronto Area was covered with a grid of 104

by 230 cells spaced 200m apart. This was a compromise between creating a region as

large as possible to capture the greatest number of cases yet still using a fairly fine grid

in order minimize the effects of the assumption that risk is constant within grid cells.

Note that the age and time parameters γ and θ were estimated from the full dataset,

not only the data in the rectangular region.

The integrals of the populations over grid cells add further computational burden

to model fitting, though efficient routines have been developed by the Geographic

Information Systems research community and are available in R through the “raster”

package. Rasterizing produces a pixel image from a set of polygons by taking the

average of the values of the surface in each polygon intersecting a given grid cell,

weighted by the area of overlap. The offsets O` are produced by calculating the offsets

at the census region level for each census year, rasterizing and multiplying by constants

related to the grid cell size and area of each census region, and adding the rasterized

images over census periods pixel by pixel.
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2.4 Prior Distributions

The roughness parameter ν and range parameter φ are typically not well identified (see

Clark & Gelfand, 2006) in spatial models, Stein (1999) shows that the predicted spatial

surface depends on the product φσ2 but is insensitive to changes in the individual

parameters. As a result, we fix the roughness parameter at 2, and put a strong prior

on the range.

The range parameter is given a Gamma prior with 95% support between 400m and

4km, giving a mean of 2km and shape parameter 6.5. This reflects the expert opinion

solicited on lupus and its risk factors. The precesion 1/σ2 has a weaker prior of Gamma

with range 1 and shape 0.01, giving a prior mean for σ of 0.16 and 95% interval (0.052,

0.63). Idential priors were used for all disease and sex group combinations.

3 Results

Table 1 shows the total number of cases and the number of cases in the rectangular

region used for the spatial model, for each of the four disease and sex combinations.

Diseases Total Cases
Cases used

in model
Female Lupus 767 555

Male Lupus 108 75

Female PsA 216 156

Male PsA 311 222

Table 1: Number of cases for each sex and disease combination, both total numbers

and numbers in the rectangular region on which the spatial model was fit.

Figure 2 shows the expected incidence rate, in cases per km2 over the study period,

calculated as O`/0.4
2 with case locations superimposed as dots. Additional graphs for

female lupus and male PsA, as well as maps for individual census periods, are shown

in Appendix B.
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(a) Female Lupus (b) Male PSA

Figure 2: Expected count and observed case locations

Figure 3 shows the prior and posterior densities of the intercept, range and standard

deviation parameters for each outcome. Female Lupus is the most prevalent outcomes

and correspondingly has posterior distributions which are tighter than male lupus and

and PsA. As expected, the data are for the most part uninformative regarding the

range parameter with the posteriors in Figure 3c being similar to the prior. Female

lupus and male PsA, being the two most common outcomes, show posteriors with some

departure from the prior with female PsA and male lupus being indistinguishable from

the prior.
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Figure 3: Prior and Posterior of Hyperparameters for Female Lupus and Male PsA

Figure 4 shows the predicted values of the risk λ(s), or E(λ(s)|Y ), for each disease

and gender on a common scale. Male lupus and female PsA show flat risk surfaces,

with the more prevalent female lupus and male PsA show more spatial variation in

risk. As the precision with which risk is estimated varies throughout the study region,

regions with high predicted risk are not necessarily evidence of a “hot spot” or cluster.

Rather, this could merely reflect a region where risk is poorly estimated due to low
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population. Figure 5 reflects uncertainty in estimation by plotting 20% exceedance

probabilities, or pr(λ(s) > 1.2|S, T ). Using 20% as a rough figure for the excess risk

that would be expected in the presence of an environmental risk factor, regions with

an exceedance probablity above, say, 80% or 95% would be indicative or warranting

further investigation.

(a) Female Lupus (b) Male Lupus

(c) Female PsA (d) Male PsA

[0.058,0.58)

[0.58,1.105)

[1.105,1.1853)

[1.1853,1.247)

[1.247,1.32)

[1.32,1.426)

[1.426,1.577)

[1.577,1.87)

[1.87,2.415]

Figure 4: Posterior mean of relative risks, E(λ(s)|Y ) for each of the disease and sex

combinations

A sizable area in the bottom right corner of Figure 5A shows strong evidence of

elevated female Lupus risk. In the centre of this area is the former Toronto Wellesley

Hospital, where the Lupus clinic was located until 1997. Other areas of high predicted

risk, including Brampton, do not prove to be significant. A significant male PsA

cluster exists to the north and west of the Lupus cluster, with further modest evidence

of clustering to the north.

Male Lupus appears to have relative risk below 1.2 throughout the region, whereas

for female PsA the results are inconclusive. This is consistent with the upper 97.5%

posterior quantile of the intercept and standard deviation being lower for male Lupus

11



than female PsA.

(a) Female Lupus (b) Male Lupus

(c) Female PsA (d) Male PsA

(0, 0.2]

(0.2, 0.8]

(0.8, 0.95]

(0.95, 1]

Figure 5: Posterior probability of relative risks being more than 20% above the average

rate, pr(λ(s) > 1.2|Y ) for each of the disease and sex combinations

4 Discussion

The primary goal of this work was to identify areas of Toronto where spatially varying

social or environmental factors could be causing higher incidence of Lupus than would

be expected given the population. The conclusion that must be drawn from this

analysis is that the area in the vicinity of the Lupus clinic is the region which fits this

description. While reporting bias should certainly be suspected and investigated, the

presence of the Wellesley hospital is not the only unique feature of this neighbourhood.

Cusimano et al. (2010) have found this area to have the highest violent crime incidence

in the city, for instance. The absence of a PsA cluster around the hospital also suggests

reporting bias might not be the overriding factor. It is possible that the characteristics

of this neighbourhood have affected not only lupus incidence but also the decision to
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locate the hospital and clinic there.

Spatially referenced covariates could have been included to attempt to explain the

spatial variation. Average income, proportion of residents from various ethnic groups,

and distance from the clinic would be straightforward to gather or calculate. However,

a spatial analysis of this sort is not necessarily the optimal method for investigating the

hypotheses generated here. Returning to the paper records would yield information

on the education and ethnicity of cases and severity at time of diagnosis, which would

yield more information on social, genetic, and reporting effects respectively than using

spatial covariates as a proxy for individual effects.

Allowing changes in the risk surface over time will be an important future extension

to this work. A spatio-temporal Gaussian random field U(s, t) in place of the current

purely spatial U(s) would accomplish this. However, the relatively small number of

cases may not be sufficient to identify these changes over time. Exploratory analyses

were attempted using parametric basis function centred on the Wellesley hospital with

the coefficients on these basis functions changing over time. Lags, sometimes years,

between diagnosis and referral to the clinic should result in a gradual rather than

abrupt change in reporting bias following the clinic’s move in 1997. These results were

inconsistent, with negative reporting bias at some ranges and positive at others, likely

because radially symmetric basis functions are not sufficiently flexible to capture the

intricacies of the data. Fully non-parametric estimation or a spatio-temporal random

field would be an improvement, though given the small number of cases in the area

concerned an in-depth analysis of the medical charts by a clinician would be a more

sensible first step.

The use of INLA for inference has resulted in fast and efficient estimation. Com-

puting the offset parameters O` proved the most time consuming step as it involves

computing the areas of overlap between grid cells and the irregular census regions.

However, the price paid for the speed and robustness of INLA has been the need to

ignore uncertainty in the age and time effects.

Although the clinical data used here provided full street addresses which were

geocoded as points, many spatial surveillance problems involve the use of spatially cen-

sored data aggregated to the postal code or census region. Although a large proportion

of cases will be in dense areas where these regions are quite small, maps produced are

often dominated by larger less populated regions where the spatially censored data is

less precise. Methods for spatially aggregated data with changing boundaries would be
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more complex but would address a wide range of problems in epidemiology and public

health.
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A Proofs

A.1 Sufficiency of Nj`

Write Sj = {Sjk; k = 1 . . . Kj}, Tj = {Tjk; k = 1 . . . Kj}, and Nj = {Nj`; ` = 1 . . . L}.
To show [λj(·, ·)|Sj,Tj] = [λj(·, ·)|Nj,Tj] it suffices, from Bayes theorem, to prove that

[Sj,Tj|λj(·, ·)] ∝ [Nj,Tj|λj(·, ·)].

logPr[Sj,Tj|λj(·, ·)] =

Kj∑
k=1

log(λj(sjk, tjk)Pj(sjk, tjk))−
∫
S

∫
T

λj(s, t)Pj(s, t)dsdt

=
∑
k

(µ+ U(sjk) + θj + γ(tjk) + log(Pj(sjk, tjk)))

−
∫
S

∫
T

λj(s, t)Pj(s, t)dsdt

With the grid-cell process where U(s) = U`, s ∈ G` then

logPr(Sj,Tj|λj(·, ·)) =Nj`U` + (µ+ θj)
∑
`

Nj` +
∑
k

γ(tjk) (2)

+
∑
k

log(Pj(sjk, tjk)) (3)

−
∫
S

∫
T

λj(s, t)Pj(s, t)dsdt (4)

where (2) does not depends on Sj, (3) is constant with respect to Sj and (4),∫
S

∫
T

λj(s, t)Pj(s, t)dsdt =
∑
`

∫
C

exp[µ+ U` + θj + γ(t)]Pj`(t)dt

is independent of Sj. Therefore this conditional distribution is independent of Sj given

(Nj,Tj), Pj`(t)), which is proportion to [Nj,Tj|λj(·, ·)], therefore (Nj,Tj) is sufficient

for U`.
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A.2 Sufficiency of Mij

Write S̄ = {Sjk; j = 1 . . . J, k = 1 . . . Kj}, T̄ = {Tjk; j = 1 . . . J, k = 1 . . . Kj}, M̄ =

{Mij; i = 1 . . . I, j = 1 . . . J} θ̄ = {θj; j = 1 . . . J} and γ̄ = {γi; i = 1 . . . I}. To show

[θ̄, γ̄|S̄, T̄, U`, µ] ∝ [θ̄, γ̄|M̄, U`, µ], similar to the proof in Appendix A.1,

logPr(s̄, t̄|Ū , θ̄, γ̄, µ) ∝
∑
j

(∑
k

log(λj(sjk, tjk)Pj(sjk, tjk))−
∫
S

∫
T

λj(s, t)Pj(s, t)dsdt

)

logPr(θ̄, γ̄|S̄, T̄, Ū , µ) =
∑
ij

(∑
k

µ+ U(sijk) + θj + γi + logPij(sijk)

)
−
∑
ij

∫
S

λij(s)Pij(s)ds

= µ
∑
ij

Mij +
∑
ijk

U(sijk +
∑
ij

θj +
∑
ij

γi +
∑
ijk

logPij(sijk)

−
∑
ij`

exp((µ+ θj + γi + U`)Pij`)

= µ
∑
ij

Mij +
∑
`

U`Y` + I
∑
j

θj + J
∑
i

γi +
∑
ijk

logPij(sijk)

− eµ
∑
ij

eθjeγi

∑
`

eU`Pij`

which is independent of S̄ and T̄. Note that if U` = 0, it becomes the poission

likelihood.

A.3 Sufficiency of Y`

N̄ = {Nij; i = 1 . . . I, j = 1 . . . J} and Ȳ = {Y`; ` = 1 . . . L}, Ū = {U`; ` = 1 . . . L}. To

show Ȳ is sufficient for Ū, it suffices to show that [Ū|θ̄, γ(·), N̄, T̄, µ] ∝ [Ū|Ȳ, θ̄, γ̄, µ]

[U`|θ̄, γ(·), Nj`, Tjk, µ] ∝ [Nj`, Tjk|U`, θ̄, γ(·), µ][U`|θ̄, γ(·), µ]

∝ [Tjk|Nj`, U`, θ̄, γ(·), µ][Nj`|U`, θ̄, γ(·), µ][U`|θ̄, γ(·), µ]

We have shown that (N̄, T̄) is sufficient for Ū, so [T̄|N̄, Ū, θ̄, γ(·), µ] = [T̄|N̄, θ̄, γ(·), µ],

which is constant with respect to Ū, therefore,
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[Ū|θ̄, γ(·), N̄, T̄, µ] ∝ [N̄|Ū, θ̄, γ(·), µ][Ū|θ̄, γ(·), µ]

∝ [N̄|Ū, θ̄, γ(·), µ, Ȳ][Ȳ|Ū, θ̄, γ(·), µ][Ū|θ̄, γ(·), µ]

Again [N̄|Ū, θ̄, γ(·), µ, Ȳ] is constant as Y` =
∑

j Nj`, therefore,

[Ū|θ̄, γ(·), N̄, T̄, µ] ∝ [Ȳ|Ū, θ̄, γ(·), µ][Ū|θ̄, γ(·), µ]

∝ [Ȳ|Ū, θ̄, γ̄, µ][Ū|θ̄, γ(·), µ]∗
∝ [Ū|Ȳ, θ̄, γ̄, µ][Ū|θ̄, γ(·), µ][Ū]

∝ [Ū|Ȳ, θ̄, γ̄, µ]

So Ȳ is sufficient for Ū.

*Note that as we assumed popluation is constant between two census years, as a

consequence,

Y`|U` ∼ Poisson

(∫
G`

∫
T

λj(s, t)Pj(s, t)dsdt

)
E(Y`|U`) =

∫
G`

∑
i

Pij(s)

∫
T

λj(s, t)dsdt

=

∫
G`

∑
i

Pij(s)

∫
T

exp(γ(t) + θj + U` + µ)dsdt

=

∫
G`

∑
i

Pij(s)exp(θj + U` + µ)

∫
T

exp(γ(t))dsdt

=

∫
G`

∑
i

Pij(s)exp(θj + U` + µ)exp(γi)ds

=

∫
G`

∑
i

Pij(s)exp(θj + U` + µ+ γi)ds

which only depends on the intergrated temperoal effect γi instead of γ(t)
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B Additional figures

(a) Male Lupus (b) Female PSA

Figure 6: Expected Count and observed case locations
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(a) 1971 (b) 1981 (c) 1986

(d) 1991 (e) 1996 (f) 2001

(g) 2006

Figure 7: Maps of Female expected and observed Lupus cases for each census year
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(a) 1971 (b) 1981 (c) 1986

(d) 1991 (e) 1996 (f) 2001

(g) 2006

Figure 8: Maps of Male expected and observed Lupus cases for each census year
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(a) 1981 (b) 1986 (c) 1991

(d) 1996 (e) 2001 (f) 2006

Figure 9: Maps of Male expected and observed PsA cases for each census year
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(a) 1981 (b) 1986 (c) 1991

(d) 1996 (e) 2001 (f) 2006

Figure 10: Maps of Female expected and observed PsA cases for each census year
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