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Abstract
This article addresses the challenges of estimating loigigal spatial models to large
datasets. With the increasing availability of geocodedrsdic data, hierarchical models in-

volving spatial processes have become a popular methodafoying out spatial inference.
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Such models are customarily estimated using Markov chaint®Garlo algorithms that, while
immensely flexible, can become prohibitively expensiveparticular, fitting hierarchical spa-
tial models often involves expensive decompositions ofdamatrices whose computational
complexity increases in cubic order with the number of sphddications. Such matrix com-
putations are required in each iteration of the Markov cihdéamte Carlo algorithm, rendering
them infeasible for large spatial data sets.

This article proposes to address the computational clggeiin modeling large spatial
datasets by merging two recent developments. First, wehgspredictive process model as
a reduced-rank spatial process, to diminish the dimenkiprai the model. Then we pro-
ceed to develop a computational framework for estimatiregistive process models using
the integrated nested Laplace approximation. We discusaggewhere the first stage likeli-
hood is Gaussian or non-Gaussian. Issues such as prediatidmmodel comparisons are also
discussed. Results are presented for synthetic data, &mommental dataset and for a large

dataset on forest biomass.

Keywords: Approximate Bayesian inference; Computatistetistics; Gaussian processes;

Geostatistics; Laplace approximation; Predictive precaeedel.

1 Introduction

Recent advances in Geographical Information Systems (&18)Global Positioning Systems
(GPS) enable accurate geocoding of locations where siitedéta are collected. This has en-
couraged formation of large spatiotemporal datasets iryrfialdls and has generated considerable
interest in statistical modelling for such data; see, f@amegle, the books by Cressie (1993), Baner-
jee et al. (2004), and Schabenberger and Gotway (2004)., Weréocus upon the setting where
the number of locations yielding observations is too layefitting desired hierarchical spatial
random effects models. Full inference and accurate assesswh uncertainty involves matrix
decompositions whose complexity increaseg)és?®) in the number of locations;, hence the
infeasibility or “big n” problem for large datasets.

Modelling large spatial datasets have received much ateimtthe recent past. Vecchia (1988)



proposed approximating the likelihood with a product of rppiate conditional distributions to
obtain maximum-likelihood estimates. Stein et al. (200 this to restricted maximum likeli-
hood estimation. Another possibility is to approximateltkelihood using spectral representations
of the spatial process (Fuentes, 2007). These likelihopdoxgmations yield a joint distribution,
but not a process that facilitates spatial interpolatioat &hother approach considers compactly
supported correlation functions (Furrer et al., 2006; Kaah et al., 2008; Du et al., 2009) that
yield sparse correlation structures. More efficient spacdeers can then be employed for krig-
ing and variance estimation, but the tapered structureslmmtymodeling flexibility. Also, full
likelihood-based inference still requires determinamhpatations that may be problematic.

Rather than approximations, one could build models eslhegiaared towards handling of
large spatial datasets. These are representations of #ti@algprocess in a lower-dimensional
subspace and are often referred to as low-rank or reducgdsp@atial models (Higdon, 2002;
Kamman and Wand, 2003; Stein, 2007, 2008; Cressie and Jessom 2008; Banerjee et al.,
2008; Crainiceaniu et al., 2008). Many of these methods ar@amns of the so-called “subset of
regressors” methods used in Gaussian process regressidagye data sets in machine learning
(e.g. Rasmussen and Williams, 2006). The idea here is tad®na smaller set of locations,
or “knots”, sayS* = {sj,...,s:.}, where the number of knots/", is fixedto be much smaller
than the number of observed sites, and to express the spadcdss realizations overlocations
in terms of its realizations over the smaller set of knotsis Iteasonable to assume there will
be insignificant loss of spatial information in the undamtyiprocess from using a smaller set of
locations — the knots — with adequate domain coverage. §ubsdy, we will consider a special
class of low-rank processes called firedictive procesgBanerjee et al., 2008). This arises from
a conditional expectation of the original process (oftdemred to as thg@arent processgiven its
realization over the knots.

A key issue in such methods is the number and selection oEkmloich is a challenging prob-
lem with choice in two dimensions more difficult than in onehelchoice ofn* is governed by
computational cost and sensitivity to choice. Customgitig analysis is implemented over differ-

ent choices ofi*. The selection of the sites that will act as knots is an everercomplex problem



and raises the question of whether to use a subset of thevelblsgratial locations or a disjoint set
of locations. The issue is not dissimilar to a spatial degiggblem (e.g. Nychka and Saltzman,
1998; Xia et al., 2006; Diggle and Lophaven, 2006). Finlegle{2009) explored the knot selec-
tion issue for predictive processes. In practice, one natghate predictive process models with
different choices of knots to arrive at configurations vieddreliable and robust inference. Using
Markov chain Monte Carlo (MCMC) for such experimentatiori$f, lmowever, be a daunting task
and fast, accurate approximation methods will need to besaqgh.

In recent work Rue et al. (2009) propose an Integrated Nestplhce Approximation (INLA)
algorithm as an alternative to MCMC for latent Gaussian ned&LA presents a very versatile
template for estimating latent Gaussian models by repesiedf the Laplace approximation (LA),
(see Tierney and Kadane, 1986). Rue et al. (2009) use cotignahy effective Gaussian Markov
random field approximations (Rue and Held, 2005) to deligst &nd accurate approximations to
posterior marginals. Eidsvik et al. (2009) use the samedagtechniques for irregular moderate
size data from a spatial Generalized Linear Mixed Model (BJMExtensive studies conducted
by Eidsvik et al. (2009) and Rue et al. (2009) reveal thatafaside class of latent Gaussian mod-
els, INLA produces inference that is essentially indistiisable from MCMC in a mere fraction
of the time required by the latter. The key to succesful ustNof, is a reasonable Gaussian
approximation to the full conditional of the latent variab) including regression effects. A numer-
ical optimization and integration routine is used for theartance hyperparameters. The LA has
been a powerful tool in statistical inference. Frequeratgiroaches use the LA for marginalized
likelihood inference, see e.g. Breslow and Clayton (199®) Ainsworth and Dean (2006). In
the Bayesian context it has been applied for model choiagguBayes factors, but then the full
conditionals are usually approximated by sampling, see @b (1995) and Lewis and Raftery
(1997). Hsiao et al (2004) use the LA for related purposdsrniag to the Laplace expression by
Candidate’s formula.

This article presents a framework for estimating predefwocess models using INLA. The
remainder of the article evolves as follows. Section 2 dises the spatial predictive process,

its properties and how it is employed in hierarchical sp&BMM context. Section 3 outlines



approximate Bayesian inference using INLA. Section 4 aersia number of simulation experi-
ments as well as practical illustrations from fisheries amwddtry. Finally, Section 5 concludes the

article with a discussion and an eye towards future work.

2 Hierarchical modeling with the predictive process
2.1 The Gaussian Predictive Process

Geostatistical settings typically assume, at locatioasD C R?, a Gaussian response variable
Y (s) along with ap x 1 vector of spatially referenced predictat§s) which are associated through

a spatial regression model such as,
Y(s)=x(s)B+w(s)+e(s). (1)

That is, the residual comprises a spatial process,, and an independent procesés), often
called thenugget Thew(s) are spatial random effects, providing local adjustmenth(\struc-
tured dependence) to the mean, interpreted as capturirgffédet of unmeasured or unobserved
covariates with spatial pattern.

The customary process specification fofs) is a mean 0 Gaussian Process with covariance
function, C(sy, s2), denotedG P (0, C(sy, s2)). In applications, we often specif¢/(s, s2) =
o?p(s1, s2; @) wherep(-; @) is a correlation function ane includes decay and smoothness pa-
rameters, yielding a constant process variance. In anytgyein YN (0, 72) for every locations.
Prior distributions on the remaining parameters completehierarchical model. Customarily, the
regression effeB is assigned a multivariate Gaussian prior, Be~ N (us, ¥5), While the latent
variance component* and the nugget variance are assignedd(-, -) priors. The process cor-
relation parameter(sy, are usually assigned some informative priors (e.g. umfover a finite
range) based upon the underlying spatial domain.

With » locations, says = {si,...,s,}, the process realizations are collected intawar 1
vector, sayw = (w(s1),...,w(s,))’, which follows a multivariate normal distribution with mea
0 and dispersion matrix*R(¢) with p(s;, s;; ¢) being the(s, j)-th element ofR(¢). Letting

Y = (Y(s1),...,Y(s,)) be then x 1 vector of observed responses, we obtain a Gaussian likeli-
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hood that combines with the customary hierarchical spetifins to yield a posterior distribution

(B, w, 0% 7%, ¢ |Y) thatis proportional to
m(p) x IG(7* | ar,br) x IG(0% | as,by) X N(B| s, Xp)
N(w|0,0°R(¢)) x [ [ N(Y(s:) | 2(s:)'B +w(s:), ). 2)
=1

Often a marginalized likelihood is used that is obtainedrtggdrating out the spatial effecis and

the regression coefficient This yields
(0%, %, ¢|Y) (@) x IG(r* | ar, by) x IG (0% | ag, by)
N (Y | Xps,0’R(¢) + 71 + X35X'), (3)

where row; of matrix X is z(s;)’. This marginalization ovew andg can be interpreted as a ratio

of joints and conditionals since,

In fact, we will utilize this in the LA below. The marginal ptesior distribution of the spatial

”(Y|‘):/BW(Y,w,B|-)dwd6=Z(Y’“’»ﬁ!')

effects and regression parameters is given by
m(w,B|Y) = /7T (w,B|Y,0% 7%, ¢) n(c®, 7%, ¢|Y)do*drd¢,

wherer (w, 3|Y, 02, 7%, ¢) is a multivariate normal distribution.

Irrespective of whether we use (2) or (3), estimation andlipt®n will require matrix fac-
torizations involving the dense x n matrix R(¢) which may become prohibitively expensive
for largen. Recently Banerjee et al. (2008) proposed a class of kreebapatial process mod-
els for large spatial datasets. These models consider adgetedf “knots”S* = (s, ..., sk.)
with n* < n, which may or may not form a subset of the entire collectiorolo$erved loca-
tions inS. The Gaussian process(s) yields ann*-vector of realizations over the knots, say
w* = (w(s}),...,w(s;.)), which follow aN{0,c°R*(¢)} whereR*(¢) = {p(s}, s}: )},

is the corresponding* x n* dispersion matrix. Spatial interpolation (or “kriging”) a generic

site s is executed through

w(s) = E{w(s) |w'} = r(s; ) R (p)w". (5)
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This yields a spatial processs) ~ GP{0,0%5(-)} wherep(s, s'; @) = r(s; ) R (¢)r(s', ¢)
andr(s; ¢) is then* x 1 vector whosg-th element is given by(s, s3; ¢). We refer tow(s) as the
predictive procesderived from thearent process:(s). The predictive process is a spatially adap-
tive linear transformation of the realizationswofs) overS* with »(s; ¢)' R*~'(¢) comprising the
coefficients of the transformation. This also implies thé&$) is non-stationary, even though(s)

is not, allowing the model to adapt better to fit the data.

Replacingw(s) in (1) with w(s), we obtain the predictive process model,
Y(s) =x(s)'B+ w(s) + ¢(s). (6)
Using (6) as the likelihood, we obtain the predictive pr@cesunterpart of (2) as
() x IG(7* | ar, by) x IG (0% | ag, by) % N(B] pg, 5)
N [0,0°Re (@) x [[ NV (s0) | 258 + (s.), 7). )
i=1

Dimension reduction occurs since the computations nowlwevevaluating thex* x n* matrix
R*'(¢), wheren* is chosen to be much smaller than Unlike other knot-based methods, the
predictive process does not introduce any additional patars nor involves projecting data onto a
grid while enjoying attractive theoretical propertiestthestify its use as dest approximatiorfor
the parent process. For examplés) is an orthogonal projection af(s) on an appropriate linear
subspace (e.g. Stein, 1999) minimiziflg{w(s) — f(w*)}* |w*] over all real-valued functions
f(w?).

Rather than an approximation to the parent process, we dmmgie predictive process as
a dimension-reducing model for large point-referencecdsks. It is crucial, therefore, that its
parameters should be interpreted with respect to (6) andI)otin fact, being smoother than
the parent process, the predictive process tends to hawr Maviance which, in turn, leads to
an upward bias in the nugget. The following inequality rdemore formally, the shrinkage in

variability for the predictive process

var{w(s)} = var{E[w(s) | w*|} + E{varfw(s) | w*]} > var{E[w(s) |w"]} = var{w(s)}.



The diminished variability ino(s) is often manifested by an overestimation of the nugget mada
72. Banerjee et al. (2010) explore these biases in greateit.deta

Finley et al. (2009) consider modifying the predictive mss by adding a heteroscedastic
white-noise Gaussian process. More specifically, theygsepeplacingi(s) in (6) with @w.(s) =
w(s) + €(s), whereé(s) w N(0,0%(1 — r(s;0)' R (p)r(s; ¢))). Usingw,.(s) instead ofii(s)

as the spatial process in (7) yields

m(p) x IG(7% | ar,b:) X IG(0? | ag,bs) X N(B| pg, Xg)x

N(w"|0,0°R*(¢)) x N(i | F(¢)w",0°Re) x [[ N(Y (s:) |2(s:) B+ be(s:), 7°),

=1
(8)
wherew, = (10.(s1),...W(s,)), F(¢) = R(¢) R (¢), whereR(¢)' is then x n* matrix
whosei-th row is given byr(s;; ¢)’, fori = 1,. .., n, andR; is ann x n diagonal matrix withi-th
diagonal elemen{1 — 7(s;; @) R* ' (¢)r(s;; @) }. Now letv* = (w*, 3, &)’ be the(n* + p +
n) x 1 vector collecting all a priori latent Gaussian effeets An expression for the marginalized
posterior distribution, the bias-adjusted predictivegass counterpart to (3), can be obtained by

integrating ouw*, whereupon we have

(@) x IG(r? | ar,b,) x IG(0? | ag, by)x

N(Y | Xpg, X5 X' + °R(O)RT(S)R(P) + 0 Re + 7°L,).  (9)
2.2 Predictive process models with non-Gaussian likelihats

We now consider the setting with non-Gaussian likelihoddhere are two typical non-Gaussian
GLMM first stage settings: (i) binary response at locatiom&lglled using logit or probit regres-
sion and (ii) count data at locations modeled using Poissgression. Diggle et al. (1998) unify
the use of these GLMMs in spatial data contexts. See alsotlah é2000), Kammann and Wand
(2003) and Banerjee et al. (2004). Essentially, we constheclikelihood assuming conditional
independence of the outcomes, i.e. ¥s;)’s, which arise from an exponential family. In other

words, we replace (1) with the assumption that the expeakekvs linear on a transformed scale,
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i.e.,n(s) = g(E(Y(s))) = = (s) B+ w(s), whereg(-) is a suitable link function. More specifi-

cally, the resulting posterior would take a form analogaué):

7($) x IG(0? | az.b,) x N(B] 15, 55)

x N(w*|0,0°R*(¢)) x N(w. | F(¢p)w",0°Re) x [ [#(V(s:) In(s:)),  (10)

=1

wherer (Y (s;) | n(s;)) belongs to the exponential family of densities. For largeskets, we insert
the predictive processy(s), in the link function so that(s;) = x(s;)’3 + w(s;). The bias-
adjusted version would replaceg(s) with @w.(s). Unlike with Gaussian likelihoods, analytical
marginalization over the spatial and regression effecsn(&3) and (9)) is no longer possible.

Let againv* = (w*,3',¢) be the(n* + p + n) x 1 vector, comprising the realizations of
the spatial predictive process, the regression paramemerthe realizations of the bias-adjustment
process. The posteriot(v*, o, ¢|Y’) corresponding to the bias-adjusted predictive process is

proportional to

(@) x IG(0? | ag,by) x N(v*|pu*, %)

x [T 7Y (s0) [ r(si; ) R (p)w" + a(s:) B + &(s1)), (11)

=1

where mean vectqi* = (0,,-, 3, 0,), and the(n* + p +n) x (n* + p + n) covariance matrix

02R*(¢) On*><p On*Xn
T 0y Y5 Open | - (12)
0n><n* 0n><p U2R€

Then last diagonal entries in the covariance matrix in (12) feadi fast evaluation routines. The
canonical lengtm parameter vector in the GLM likelihood model can be defined)jby H*v,
whereH* = [F(¢), X, L,].

General settings can be treated using these ideas with gre@fate choice of an exponen-
tial family member and a link function. For instance, witmbmial data,7(Y (s;)|n(s;)) ~
Binomial N(s;), p(n(s;))), wherep(n(s;)) is the success probability af, defined by a link func-

tion, and whereV (s;) represents the fixed number of trials. A logit link functiqresifiesp(n(s;)) =
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exp(n(s;i))/(1 +exp(n(s;))). In some cases, the exponential family density could alsloide an
unknown vector of nuisance parameters, gayln the examples we present here, such nuisance
parameters do not arise; if they did, we would simply modify bierarchical model to accom-
modate a prior fory. Moreover, a more general unimodal non-Gaussian liketihooitside the

exponential family class, would also fit into our framework.

3 Approximate Bayesian inference
3.1 The Laplace approximation for predictive process model

MCMC algorithms are the current standard for inference @ndrichical Bayesian models. The
generality of MCMC allows fitting very flexible models, usifigil conditional Gibbs sampling
schemes in conjunction with Metropolis updates when fufidibonals are not directly available.
One challenge with MCMC is the slow mixing that can occurfstiat subsequent samples in the
Markov chain are very dependent, and a huge number of MCM#&tibas are required to explore
the sampling space and to reduce the Monte Carlo error bauffisently.

The Laplace approximation (Tierney and Kadane, 1986) wastoacted for deterministic
Bayesian inference, not for sampling based inference. Tpeoach presented in Rue et al.
(2009) is in the same spirit. Rather than sampling, anal®aussian approximations and nu-
merical routines are applied. The Gaussian approximasioiseéd for the latent effects, which are
a priori Gaussian. In our notation from the previous section | 0) = N(v* | u*,X"), where
v* = (w*, 3, &), including the bias correction term. We now é&tlenote the covariance param-
eters. For the Gaussian predictive process model this mad= (o2, ¢, 72), while 8 = (o2, ¢)
for the predictive process GLMM formulation. The LA apprbaexploits a recombination of the
marginals and conditionals so that
(Y |v*, 0)r(v*|0)m(0)

(Y)r(v*|Y,0)

(Y |v*, 0)r(v*|0)m(0)
7(v*|Y, 0) ’

m(6]Y)

(13)

where the numerator is defined by the model, while the lefdhside and the denominator are
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needed for posterior inference. The full conditional in temominator of (13) is Gaussian for
a Gaussian likelihood model (Section 2.1). Then, the pwste(#|Y’) in (13) can be evaluated
exactly, up to a normalizing constant. For posterior infieeeabout these covariance hyperparam-
eters we turn to numerical methods. Notice that MCMC alhaong can also be constructed for the
posterior in (13). In fact, this formula is identical to marglized model in (9). The LA approach
is in this way a marginalization method using the full coraial, rather than integrating out the
latent effects, see (4).

When the likelihood model is non-Gaussian, such as in the 8l#e full conditionalr (v*|Y, 6)
Is no longer analytically available. Nevertheless, fonged GLMs the inference of regression
effects is commonly obtained by an iterative scoring alfpon, computing the maximum likeli-
hood estimate, and then assessing the uncertainty fronkeidbod second derivatives (Hessian)
at the maximum location. The LA method uses similar idea8fyresian spatial inference:

7(Y |v*, 0)r(v* | 0)n(6)

T(0|Y 14
oY) e #(v* Y, 0) o (14)

wherer(v*|Y, 0) is a Gaussian approximation of
m(v*|Y,0) x n(Y|v*,0)r(v*|0), (15)

constructed to match the modéand the curvature at the mode of this full conditional expis
The LA gives a relative error in (14), see Tierney and Kadd®86). The Monte Carlo error is
additive, possibly giving a larger relative error in thddai

The posterior approximation(@|Y") is explored by numerical routines. For models of reason-
able complexity, the dimension éfis small (in our examples 2 or 3), and numerical routines can
efficiently find the mode, assess uncertainty bounds, and sBe&turning solely the mode is iden-
tical to the empirical Bayes estimate. We constra@|Y ) by a deterministic scheme returning
a discretized representation of the posterior. Our nurakrautine is run for a parameterization
with log precision parameters and logistic range. One mre&wsothis parameterization is variance
stabilization, another reason is that the surface of thecopate posterior marginal appears close
to Gaussian. The posterior percentiles for variance oragagameters can be derived by a direct

tranformation. The implementation is similar to Rue et 20q9) and goes as follows:
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1. Choose a starting val#e Evaluaten 7(0|Y") upto a constant.

2. Perform an optimization scheme to find the mod&af(0|Y").

3. Compute the Hessian bf 7(0|Y") at the mode.

4. Step along the main directions away from the mode until#|Y") is negligible.

5. Fill'in a grid ( or design) ob values within the defined region from stepping-out.
6. Evaluate and normalide 7(0|Y") on the set of nodes.

In Figure 1 we show the approximate posterior marginalsdgrdrecision and logistic range
parameters (integrated over the log nugget precision &Ghussian case ). The contours are con-
structed by rough interpolation over the evaluation pamésked as dots. Notice that the contours
appear in an almost Gaussian / quadratic form. Altogethernumerical optimization ( a sim-
plex algorithm in this case ), Hessian computation, stegyount and filling-in procedures required
aboutN,, =200 evaluations of the posterior. The number of evaluatmntp would depend on
the specific goals of an application. For instance, a stancamtral composite design approach in
the three parameter space uses ddlgvaluation points after the optimization and Hessian com-
putation, at the cost of a coarser approximation. For corspamwe display the firs200 samples
of a random-walk MCMC sampler (dashed line in Figure 1) witheptance probability of about
0.3. The random walk pattern is very different from the regulatt@rn of the numerical scheme.
The MCMC algorithm does not span the probability space vezlf im the 200 iterations shown
here.

We next outline the construction of the full conditionalweégd for the Laplace approximation
under the bias-corrected predictive process model. Ewetdyiation of7(0|Y") entails computing
this full conditional. The GLM likelihood i [, (Y (s;)|n(s;)), where the GLM parametey =
H*v* =[F(¢), X, I,]Jv*. We have priow* ~ N(u*, "), see (11) and (12).

Under Gaussian likelihood assumption&”|n) = N(H*v*, 721,,) the full conditional forv*

12



T(v*|Y,0) o« N(H*v*, T)N(p* X*) (16)
1 1
« epl (Y~ W TY ) - S s e )

1
x exp[—iv*’Qv* +v*'b),

whereT' = 721, the full conditional precision matriQ = H*T ' H*+X>*', and the canonical

parameteb = H*'T 'Y + X* ' . Thus, the full conditional is (v*|Y,0) ~ N(Q 'b,Q ).
We can compute the required inverse and determinant ofteéisi + p + n) x (n* 4+ p+n)

matrix Q by utilizing the structure oE* and H*, and thatl' = 721, is diagonal. Note that the

precision is given by

Q — T—QH*/H* + 2*71 — |: QO q ] ; (17)
q Q1
Q, - T?F(¢)F(p)+0 *R'(¢) 71F(9)X
’ T2 X'F(¢) XX 455 |

whereq' = 772(F(¢), X), while Q, = 7721, + 0 2R " is a sizen x n diagonal matrix. When

n > (n* + p), the matrix determinant and inverse are computed effigidmt

|Q| = QO e = |Q1||Q2|7 Q2 = Qo - qulq', (18)
q/ Q1
- 1 1 1
Q' — Q q _ Q; -Q1 9Q, | (19)
g Q -(Q7'dQy"Y Q' +Q1'dQ;'qQy!

exploiting thatQ, is diagonal. The cost of matrix inversion for the predicfwecess model is thus
O(n*3), sinceQ, isn* x n*, assuming:* > p. The main cost of inference is buildifdg(¢)' F(¢)
which require) (nn*?).

When the likelihood model is hon-Gaussian, we expand trediikod in a quadratic form.
For instance, with binomial dataY (s;)|n(s;)) < exp(Y (s;)n(s;) — N(s;) log(1 +exp(n(s;)))),

wherer(s;) is the fixed number of trials, we Taylor expand s;) log(1 + exp(n(s;))) to second

13



order. By expressing the result in a quadratic formvyofve obtain

1
log(n(Y|n) = —§U*'Tn_nl’0* + v*'¢jin 4 const (20)

whereconstdoes not depend o, and with
T.! = H'D,H*, cjn = H'Dy(Y —d, + D;H*%"). (21)
These derivative expressions are defined using comporsniaaltiplication and division to get

di = {NOexp(Hv")} o {1, +exp(H"v")}, (22)

D, = diag({N @ exp(H*v")} @ {(1, + exp(H"v"))**})

wherel,, is an x 1 vector of onesN = ((N(s1),...,N(s,)), andexp(-) also works compo-
nentwise. Given the quadratic expansion the approximditedaditional is similar to (16). Five
iterations are usually enough to detect the mode of the éutigional. At each iteration, the lin-
earization point is recomputed as the mode from the prewsteis Thus, this resembles a usual

GLM optimization method, except that the model has a spptedictive process representation.

3.2 The Integrated nested Laplace approximation for preditive process model

The posterior marginals for regression effects or spaffietts can be computed from the Gaus-
sian approximation of the full conditional by numericaldgtation over the covariance parameters.

For any effect; we have
T(VIY) = /fr(vj|Y, 0)7(0)Y)de, (23)

where(vi|Y', 0) is an elemeny of the joint approximate Gaussian. The integral is solved by
numerical integration over the evaluation points fd@|Y). Numerical integration is usually
superior to Monte Carlo integration in small dimensiong e have here. The full conditional
for latent Gaussian variables is computed for every eviangtoint of 7(6|Y"). Thus, all entries

in the integrand of (23) are readily available. This same enical integration formula can be

applied to spatial effects or a linear combination of regi@sparameters and spatial effects, which
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also has an approximate Gaussian full conditional. Rebali the numerical integration uses a
parameterization with the log precision parameters andtieggange parameter. In our experience,
this parameterization means that fewer numerical evalngioints are required to estimate the
integral. An empirical Bayes approach would use only onéuat@n point at the posterior mode
for 6.

These direct LA marginals in (23) can be improved by applyhegintegrated nested Laplace
routine, see Rue et al (2009) and Eidsvik et al. (2009). THisA approach allows one particular
regression effect;, or one spatial effect to be non-Gaussian, while all remaitatent effects

remain Gaussian. The INLA for posterior marginals of a latdfectv; is based on

©(Y|v*, 0)m(v*|0)
Y
T G v e

(24)
where the latent effeat; can again be a regression effect, spatial effect, or a lioeabination.
We will denote the INLA by7(v;|Y, ). Its computation uses (24) with a Gaussian approxi-
mation7(v* ,;[v;, Y, @) in the denominator, treating; as fixed (measured). Thus, the improved
approximate marginal becomes

©(Y|v*, 0)m(v* | 0)
7o, |0, Y,0) |

Y

T(v;|Y,0) o (25)

where the expression is evaluated at the full conditionadlendeepingy; fixed. Thus, INLA
uses a second round of the LA to cancel out the remaining ajppabe Gaussian variables ;,
and in this way provides a better approximation for the pastenarginals for spatial effects and
regression effects (Rue et al., 2009). The improved apprations (v} |Y", 8) can be computed on
a grid ofv; values, or fitted a parametric density. For instance, a Gauapproximation requires
only three evaluation points to assign a mean and covariance, and normalize.

The posterior marginal INLA is obtained by
F(l]Y) = / #(02| Y, 0)7(6]Y)d6. (26)

which is solved by numerical integration over the same ataa points of the covariance param-

eters. In our experience, INLA provides a shift of LA for regsion parameters, but very little for
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the spatial effects. Intuitively, the non-Gaussian datdraater effect on the regression parame-
ters, which are valid for the entire spatial domain. By assgna Gaussian full conditional (LA)
for these parameters, we could induce some bias. The spHitiats are local variables and learn
effectively from only parts of the data. Then the Gaussidarpnodel is more dominating, and the

LA is more accurate.

4 Analysis and Results

Four data sets are used to explore the candidate modeliy abiestimate parameters of inter-
est and predict at new locations. The first two are synth&he.third has been used to understand
the distribution of lake acidity and subsequent declinganttabundance in Norway. These first
data sets are moderate in size, and a full MCMC based datgsaa possible to perform. This
allows comparison between MCMC and INLA, and between dffiéipredictive process models.
The fourth is a large forest inventory data set used to predstimates of forest landuse across
northcentral United States. For this data set, full MCMCdoamference is too computationally
challenging for a modern desktop workstation. The follaywubsections describe these data sets
and accompanying modeling detalils.

The LA and INLA based analyses were conducted in Matlab #ar%.9. TheR package
spBayeswas used for MCMC based analyses. In this package the highelH code calls
C++ and Fortran that subsequently calls BLA&®.netlib.org/blas) and LAPACK @ww.
netlib.org/lapack) routines for efficient matrix computations. All analysesrevconducted on
a Linux workstation using two Intel Nehalem-based quad+Xpmcessors. The Matlab, BLAS,
and LAPACK routines were threaded and therefore leverageitipie CPUs for matrix opera-
tions. SpecificallyspBayesvas compiled to call Intel's Math Kernel Library version 2BLAS

and LAPACK implementations.

4.1 Synthetic data

Data sets of Gaussian and binomial outcome variables werergted. These synthetic data

are composed of 750 locations selected randomly frofh 80] x [1,100] square. The eight
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candidate models include a full geostatistical and thrediptive process specifications for both
MCMC and LA methods. The predictive process models are basddt, 100, and 256 regular
grid knot intensities covering this square.

Both Gaussian and binomial data were generated usitiQ & 3 covariates matrixXX , where
the first column is the intercept and the values in the sulm#qrolumns were randomly gener-
ated from aN (0, 1). The regression coefficients were sef@o= (0.1,0.5,1)’. An exponential
spatial correlation functiod®'(w(s), w(s + h)) = o2 exp(—¢|h|) was used with variance;*=5,
and spatial correlation parameter0.06, which corresponds to an effective spatial range%d
units. Here, effective spatial range is defined as the distém map units) at which the spatial
correlation drops to 0.05. For the continuous outcome degtantigget variance;?, was set to 1.

A subset of 250 observations were selected randomly to seneehold-out set to assess predic-
tive performance, while parameter estimates were baseldeoremaining 500 observations. All
candidate models were fit using the same independent praifegation with eacl following a
N(0,10000), anIG(2,1) for the variance parameters? andr2, and a broad uniform support for
the spatial correlation parameter~ U(0.03, 3).

Inference results of the Gaussian response model are giv@ahle 1. Here, 'full’ refers
to the MCMC or INLA method that uses all the data. When the da&gaGaussian, the LA is
exact, and for fixed knot configurations the small differenbetween MCMC and LA inference
in Table 1 are caused by Monte Carlo and numerical approlomatrors. These differences are
sometimes visible, especially for the 2.5 and 97.5 peremtiConsidering the predictive process
models, the estimates for regression parameters are edptery accurately, even with 64 knots.
The distributions for covariance parameters are also @litge to the results obtained using the
full data set, but the correlation range appears a littlertaoow for a small number of knots,
the nugget variance is slightly underestimated, while #w@ance in the latent process is a little
overestimated. When the knot size increases to 256, thepvedgrocess results get closer to that
of full data.

The mean square prediction error (MSPE) in Table 1 is conaparel summed over the hold-

out dataset. The MSPE values for MCMC and Laplace show siiitaease for predictive models
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with few knots. This increase (aboli /3.5 = 30% for 64 knots) is caused by the data reduction
idea that plays an intrinsic role in the predictive processnulation. The main prediction dif-
ferences between full sizemodel and predictive process models occur at hold-out gitgsare
close to data locations, but far from knots. More creativ&@gieof knot locations could reduce the
MSPE in this case (see e.g. Finley et al., 2009).

The last row in Table 1 shows the number of operations reduoaleliver the inference and
prediction results. The number of operations is the prodfiche number of evaluations and
the cost of every evaluation. For the full model the main eabn cost is matrix inversion at
O(n?®). For the predictive process model the main cosD{®an*?), which is the cost of build-
ing the required size* x n* matrix. The MCMC inference was based on three MCMC chains,
with unique starting values, running fd¥,,.,.. =10,000 iterations. The CODA package in
(www.r-project.org) was used to diagnose convergence by monitoring mixingtvélGelman-
Rubin diagnostics and autocorrelations (see, e.g., Ge&hah, 2004, Section 11.6). Acceptable
convergence was diagnosed within 5,000 iterations (whietewdiscarded as burn-in). Therefore,
the parameter estimates and posterior predictive infereffered in Table 1 are based on 15,000
post burn-in samples.

For the LA approach we count the number of evaluations netxde@ch a certain tolerance on
the numerical approximation. The tolerance is tuned in titeazation determining the poserior
mode, the step size moving out from the mode, and by the nuoflgeid / design points used to
compute the density approximation. Altogether we use abgut= 200 posterior evaluations for
the LA approach. Putting these numbers into Table 1 we seeaa rduction in the number of
operations when using the predictive process models andIRbr instance, with 64 predictive
process knots, we use 60 times less operations than witlhufrgata. Similarly, the LA approach
means a factor 50 reduction in computation time, for any efghedictive process or full data
models. By merging the two ideas we achieve sufficiently eateuresults in moderate time. Note
the operations counts are simply based on the order of the cmanputations. In practice the
constant in front of the order will vary, and the other congtiains as well, depending on predictive

process or full data approach, and other computer relaggetts Our counts should thus not be
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taken in earnest, but regarded more as a guideline.

In Figure 2 (left column) we visualize the predictive prazessults with LA for our parame-
terization with log precision (top), logistic range pardergcenter), and the log nugget precision
(bottom). Notice that high log precision means small varégrso the interpretation for these pa-
rameters is opposite that of Table 1. The displays are fothitee predictive process models with
64, 100, 256 knots (dashed) and the full data (solid). TheethEines are somewhat biased to the
right for precision and to the left for range. The posteriossg predictive process get closer to
the full data posterior when the knot size increases. Intféi@uright column) we similarly show
results for the regression effects. The predictive prooesdels with various knot configurations
and the full data provide almost the same posteriors, biit satme small visible differences, es-
pecially for covariate 1 (Figure 2, right column, centerhiSmight be caused by quite extreme
covariates at the edge of the domain, and where the knotoas®mense.

The binomial data are simulated in the same geographicitotsaas for the Gaussian case.
In each location we draw0 trials with the success probability at that location, usaniggit link
function. In Table 2 we show results of an MCMC algorithm ahd tNLA approach for this
synthetic data set. With the binomial reponse model diffees in Table 2 are caused by the LA
and numerical routine errors for the INLA approach, or by MoGarlo error and convergence and
mixing challenges for the MCMC algorithm. Two comparisoas e made here: knots intensity
versus full data and MCMC versus INLA. For comparing knoeirgities, we see the predictive
process models are quite close to the full data resultshibut is some overestimation for the scale
and underestimation for the range, when using few knotss iBhobserved both for MCMC and
INLA, and was also seen for the Gaussian response model ie TabThe effect of covariates
(6, andf3,) are accurately estimated with the predictive process.gplparameter shows the least
consistent pattern, and it has a very wide distribution. ganmg MCMC with INLA, we see that
most regression parameters and the range are very simiiée, the 5, distribution again varies a
lot, and the tails of the? distribution are a little different. This could be a consewce of using
the LA, but could also be caused by the Markov chain stayiegaag in a tail, or a too rough

truncation scheme for the numerical LA approach. Inferdoceghe regression parameters was
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done using the INLA approach. In this case evaluatingith&|Y", o2, ¢, 7) at three evaluation
points and fitting a Gaussian to this improved marginal. TAeapproach gives similar results as
INLA, but slightly shifted up or down.

The MSPE values for the spatial effects at the hold-out setvsimilar tendencies as for the
Gaussian data set. The predictive process models with feis krave slightly higher MSPE. The
un-marginalized models used to fit the binomial outcome degaired more MCMC iterations
to begin adequate mixing. The MCMC based inference in Tabtebased onV,,,.,,. =25,000
iterations. The LA approach is now only over two covarianaemetersdg,o?, no nugget), and it
uses fewer numerical steps than for the Gaussian data. Btiteoother hand, it takes about five
iterations to compute the Gaussian approximati¢o*|Y , o2, ¢) for the full conditional. Thus,
the number of posterior evaluations is still abdyt = 200. The operations counts in Table 2
show that the INLA solution with 64 predictive process knases a facto8.000 less operations

than the MCMC sampling with all the data.

4.2 Lake acidification

We next study a data set originally published by Varin et 2006). The focus of their study
was to model trout abundance in Norwegian lakes as a funcfidake acidity. The data were
collected during 1986 from interviews with local fishermétere, we use data from the southern
part of Norway. The response is ‘population status’ of tfoueach lake = 1, ..., 361, coded as
unaffected Y'(s;) = 0) or decreased/extinct{(s;) = 1). Lakes’ northing coordinates and Acid
Neutralizing Capacity (ANC) are used as covariates, aloitly &an intercept. ANC is a measure
for the overall buffering capacity against acidificatiom &solution.

As in the synthetic data analysis, the eight candidate nsadelude a full geostatistical and
three predictive process specifications for both MCMC andnhéthods. The predictive process
models are based on 54, 89, and 126 knot intensities. Talllev8ssthe inference results for all
candidates. For this data set we detect almost no diffesclnetveen the various predictive pro-
cess models. Of course there is variability in the regreggayameters and range, but considering

the wide confidence bounds these differences are very sifadl INLA results are similar to the
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MCMC, but show slight differences for the distribution@fando? parameters. For the? param-
eter the difference in MCMC and LA seems to be driven by a héeftyail in the MCMC results.
One possible explanation is the MCMC chain stays out in théotatoo long, in the limited time of
the Markov chain run. Another explanation is the truncatiorits of the numerical LA approach
misses this heavy tail. We constructed the INLA approxioraby evaluatingt(3,|Y, o2, ¢, 7) at
three points and fitting a Gaussian, and thus the marginaiis«ure of Gaussians. This INLA
solution is almost indistinguishable from the direct Gaarsd. A for the intercept and northing,
while it is visibly shifted to the left for the ANC effegt(). Still, the INLA using a Gaussian mix-
ture underestimates the tail a little, as extending to a@aunssian INLA gives a larger tail, but not
quite as large as the MCMC solution. We note the posteridrildigion for the range parameter
almost hits the boundary for the uniform distribution far This indicates there is limited infor-
mation about the large ranges in the data, and effects o€thiksl possibly cause some heavy tail
challenges for MCMC or LA.

Figure 3(top) shows predictions of latent effeatés)3 + w(s). This is displayed for the
full dataset using MCMC sampling (top, left) and for the 54otsnpredictive process model
using the LA (top, right). For the prediction results we seteldifference between these two
model/inference combinations. This emphasizes that sifdrences in the marginals for covari-
ance parameters or the regression effects (Table 3), ataristo miniscule prediction differences
in Figure 3. There are some minor changes when going to tluqgtikee process predictions, such
as a slightly smoother result for some of the northern datdgpdahat the knot configuration do not
capture, but this is hard to distinguish in a map like Figuend would hardly have much effect
on decision making. Similarly, Figure 3 (bottom) shows tl&&®prediction range intervals for
full dataset using MCMC sampling (left) and féd knots using LA (right). The differences in
prediction range are also small, but the full data resuk®e ader ranges at some sites.

The MCMC results takes a few hours to compute, while LA wittkBdts takes a few seconds.
If we would like to check sensitivity to the shape of the caaace model, perform cross validation,
or other such high-level inference tasks, this differemcedmputation time becomes important.

LA with predictive process makes it possible to compute éselits on-line on the laptop computer.
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We perform one such high-level task. We use cross-validaticompare the 54 knots predictive
process model using LA with a non-spatial model ( i.e. usinty ¢he regression part for the
explanatory variables ). This comparison is done over 18oamnzed leave-37-out sets. For each
of these sets we predi&(squ) for every hold-out site = 1, . . ., 37, using the most likely outcome
in the predictive distribution as the predictor. We compaeepredictions with the observed data
values. Table 4 shows the results summarized by a 2 by 2 ththle total number of classifications
(Y(s04), Y (504)) € (0,0), (0,1), (1,0), and(1, 1), where a good model gets mostly the diagonal
entries(0,0) and(1,1). The non-spatial model has large diagonal elements, anexihlanatory

variables catch much of the structure in the data. Eveniahggonal elements are achieved for

the spatial model, meaning the spatial residual process equanatory effect.

4.3 Forestland use

Here we analyze a large data set where full MCMC based inferegven using the predic-
tive process, is prohibitively expensive to run on a modegsktbp workstation. The analysis is
motivated by the need for spatially explicit estimates o&fb area which are useful for land use
change monitoring, carbon budgeting, and ecological antdér supply forecasting. The data
consist ofn =12,629 Forest Inventory and Analysis (FIA) plots measurelllichigan, USA, be-
tween 1999-2006. The FIA program of the USDA Forest Servasedstablished field plot centers
in permanent locations using a sampling design that is asgumproduce a systematic equal-
probability sample with a random spatial component (Bddraad Patterson, 2005). Locations of
plots are determined using GPS receivers. Plot locatiamsl@picted in Figure 4 (top left). Each
plot consists of a 7.3 radius circular area. For each plot= 1, ..., n, a field crew determined
the response variable value as forestiéds;) = 1) or non-forested¥((s;) = 0) given the FIA def-
inition of forest land (Bechtold and Patterson, 2005). Fegdi (top right) is a surface interpolation
of forest occupancy at the plot locations. This figure shdvas horthern Michigan is dominated
by forest while the south is primarily not forested. A Lands&TM+ satellite image30 x 30
m spatial resolution, taken in mid-summer 2002 was tasselpdransformed into its brightness,

greenness, and wetness components (Kauth and Thomas,dfiV63ed as covariates. Finley et
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al. (2008) show how these components can help explain véiailp the probability of forest
occupancy.

Non-spatial and spatial predictive process models, using@0, and 200 knot intensities, were
considered in this comparison. Knot locations were chosémguak-meansclustering algorithm
on the observed locations. Because our primary interesfagedicting forest occupancy, we com-
pare the candidate models’ using a set of 1,262 holdout (atateon) plots that were selected at
random from the 12,629 FIA plots. Model parameters wereneggd using the remaining 11,367
observations. Table 5 summarizes the results of paransiteration. As noted in previous studies
and seen here, the three remotely sensed covariates coasignificantly to explaining variability
in the probability of forest occupancy and do not changetsuitigilly among the candidate models.
The predictive process models produced very similar estisnaf the spatial range, and vari-
ance,o?, parameters. The median effective spatial ranges in km3réa and 73 for the 50, 100,
and 200 knot model, respectively. This large spatial rasgapturing the broad scale residual de-
pendence within the forested (north) and prairie/agnicel{south) landuse patterns. These results
suggest we could potentially use fewer than 50 knots; howélve minimum inter-site distance
among the knots of the 50 knot model is 45.6 km. Models usingféknots, and hence greater
distance between knots, could have trouble estimatingpgh&ad range parameter. The bottom
two plots in Figure 4 depict surface interpolation of the 5@ 200 knot models’ median fitted
probability of forest at the observed locations. The two sisgroduce nearly indistinguishable
surfaces, both of which capture the patterns in the noisstat surface generated using the actual
observations (top right).

Because our primary interest is in predicting forest ocagpave compare the candidate mod-
els’ using the 1,262 holdout sites. Extending the zero-aeeliption rule from the Norwegian
Lakes dataset in the previous section, we now consider aedfierent scoring rules to evaluate
the predictive performance of the candidate models. A sgormile provides a summary mea-
sure for evaluating a probabilistic prediction given thedctive distribution and the observed
outcome. In our setting the scoring rule functionSig(=, i), wherer is the vector of proba-

bilities associated with each category (haerés of lengthJ = 2 i.e., forest and non-forest) and
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i =Y (s) is the observed condition at a hold-out site. Given all thelat sites{ s, },2%? we can

1262 SR(7q,iq)

calculate summary statistics of the scores, e.g., the meae &SR = D aml i3 s Where

7w, = {P(Y(so) = 0Y), P(Y(so,) = 1|Y)}. Gneiting and Raftery (2007) offer four scoring

rules for prediction of categorical variables,

1 if 7, = max{m ... 7
Zero-one:SR(m,i) = {m 7
0 if otherwise

J
Quadratic:SR(,i) = 2m; — » 7 — 1
7=1
T
J 1
L

Spherical:SR(m, i) =
Logarithmic: SR(w, i) = log ;.

Following definitions in Gneiting and Raftery (2007), aléthoted scoring rules are stricfiyoper
but for the zero-one, which is only proper. The zero-oneisgaule uses only a portion of avail-
able information, ignoring variability in the predictivésttibution and returning either a zero or
one. Similarly, the logarithmic scoring rule considersyomhe of the probabilities in the predictive
distribution. The maximum values (i.e., perfect predigjiof the different scoring rules are 1 for
zero-one, 0 for quadratic, 1 for spherical, and O for logyanic. The results are shown in Table 6.
Here, for all rules, the spatial models offer improved pecéde performance. Further, there seems

to be only limited gain in predictions between the 50 and 208 knodel.

5 Conclusions

The main contribution of this paper is combining computadiadeas for modeling and infer-
ence of spatial data. Together, the predictive process Imade approximate Bayesian inference
using LA and INLA provide very fast analysis of large spatlata sets.

Predictive process models are efficient dimension redud¢gohniques that builds directly on
the spatial structure of the model. The predictive processals entail a selection of knot locations
that covers the domain of interest. The number of knots istnsuealler than the number of data

sites, and, as a result, matrix computations are feasibigerms of parameter estimation and
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prediction, the predictive process model performs adedyatspecially when one uses a bias
correction term in the modeling. Testing results from maiffecent predictive process models
would be easy using parallel computing.

The LA combined with numerical routines provides a very &asd accurate approximation for
the posterior of model parameters and for prediction inigpatodels. The numerical approach
offers flexibility in low parameter dimensions. In applicats with a larger dimension of the
covariance parameters one might still do better than eogpiBayes by allowing some evaluation
points on a design surface. Moreover, in several applicdtie covariance parameters are treated
as a nuisance parameters, while the main interest is inggigreor spatial effects. In such contexts
a refined posterior representation of the covariance paeasis not required. If the main interest
is in some function of the covariance parameters, one cagdrameterize the model such that
this main functional parameter becomes a key feature indh@enical assessment.

Further work might include predictive process modeling #dHA for multivariate spatial
data, space-time applications, or to situations where dfeession parameters change in space-
time, such as the spatially varying coefficients model. Tomgutational problems are further
aggravated in these situations, and combining predictigegss models and INLA appears very

appealing.
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Table 1: Synthetic Gaussian data set: Summary of candidatkelsi parameter estimates, 50 (2.5 97.5) percentilesl-tiol set mean squared error of
prediction (MSEP), and the number of operations.

MCMC

Pred. proc. knots

LA

Pred. proc. knots

True Full 64 100 256 Full 64 100 256

Bo 0.1 -1.11(-2.48,0.27) -1.07(-2.56,0.51) -1.10(-2.328). -1.12(-2.38,0.19) -1.11(-2.60,0.42) -1.10(-2.437). -1.11(-2.53,0.40) -1.13(-2.39,0.18)
B1 05 0.46(0.33,058) 0.42(0.29,0.56)  0.44(0.31,0.57) 5(0433,0.59)  0.46(0.33,0.58)  0.42(0.29,0.56)  0.44 (V)  0.45 (0.32, 0.58)
Ba 1 0.99 (0.86,1.11)  0.98(0.85,1.11)  0.99 (0.86,1.12) 00987 1.11)  0.99(0.86,1.11)  0.98(0.85,1.12)  0.99 (0.8R)l  0.99 (0.86, 1.11)
@ 0.06 0.06(0.03,0.10)  0.05(0.03,0.08)  0.06 (0.04,0.10) 070.03,0.11)  0.06(0.03,0.10)  0.06 (0.04,0.08)  0.0640.09)  0.07 (0.04, 0.10)
o2 5 4.07(2.72,6.81)  4.67(3.05,7.89)  4.51(3.08,7.16) 42185 6.78)  3.90(2.60,6.58)  4.55(3.11,6.96)  4.59 (3.8  4.05 (2.69, 6.30)
72 1 1.25(0.90,1.62)  0.74(0.24,1.39)  0.68(0.23,1.30)  10026,1.53)  1.23(0.86,1.68)  0.64(0.29,1.29)  0.67 (0.3)L  1.03 (0.55, 1.56)
MSPE 3.54 4.55 4.27 3.87 3.35 4.67 4.40 4.17
Operations (in billions) 1250 20 50 330 25 0.4 1.0 6.6
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Table 2: Synthetic binomial data set: Summary of candidaidefs’ parameter estimates, 50 (2.5 97.5) percentiles-bol set mean squared error of
prediction (MSEP), and the number of operations.

MCMC

Pred. proc. knots

INLA

Pred. proc. knots

True Full 64 100 256 Full 64 100 256

Bo 0.1 -0.74(-2.49,0.33) -1.04(-3.36,0.34) -0.99 (-3.085). -0.83(-2.78,0.39) -0.64(-2.13,0.40) -1.14(-3.585). -1.11(-3.27,0.46) -0.79 (-2.92,0.77)
B1 05  0.39(0.27,052)  0.42(0.27,0.56)  0.40(0.26,0.55) 1(0427,0.55)  0.39(0.25,0.54)  0.39(0.25,0.54)  0.40 (0ZB4)  0.40 (0.27, 0.54)
B2 1 1.08(0.95,1.22)  1.10(0.951.25  1.09(0.94,1.24)  10095,1.24)  1.04(0.87,1.22)  1.06(0.87,1.22)  1.07 (0.92)l  1.08 (0.93, 1.22)
é 0.05 0.07(0.04,0.11)  0.04(0.03,0.07)  0.05(0.03,0.08) 060.03,0.10)  0.07(0.04,0.11)  0.04(0.03,0.07)  0.054Q0C08)  0.06 (0.04, 0.10)
o? 5 4.40(2.93,7.90)  5.04(3.27,7.55)  4.90(3.17,7.90)  43B1(8.29)  4.20(2.786.96)  4.74(3.16,6.78)  4.60 (3.082)p. 4.42(2.91, 6.97)
MSPE 3.11 4.73 3.79 3.70 3.40 4.60 4.05 3.73
Operations (in billions) 3125 50 125 820 25 0.4 1.0 6.6




Table 3: Lakes data set: Summary of candidate models’ paeamsgtimates, 50 (2.5 97.5) percentiles.

MCMC INLA

Pred. proc. knots Pred. proc. knots

Full 54 89 126 Full 54 89 126

T€

Bo  1.72(-1.13,4.46)  1.58(-1.34,4.61)  173(-1.32,4.98) 61:1.00,4.84) 159 (-1.254.39)  1.50(-1.67,5.30)  1.6437 4.90)  1.62(-1.28,5.15)
B -5.99(-8.25,-4.39) -6.25(-8.95,-4.53) -6.23(-9.0853). -6.20(-8.88,-4.53) -5.75(-7.43,-4.26) -5.79(-73621) -5.77 (-7.46,-4.21) -5.77 (-7.33,-4.12)
By  -275(7.74,157) -2.56(-7.75,2.00)  -2.82(-8.30, 1.99)-2.80 (-8.15,1.98)  -2.65(-8.35,2.14)  -2.44 (-7.77,3.10)-2.57 (-8.48,2.38)  -2.57 (-7.48, 1.90)
6 007(0.03,020)  007(0.030.18)  0.07(0.03,0.20)  0.08(M.22)  0.06 (0.03,0.20)  0.06 (0.03,0.18)  0.06 (0.0230.  0.06 (0.03, 0.24)
0% 273(0.91,9.02)  3.12(0.98,11.34) 3.20(1.04,12.14)  @I03,11.69)  2.34(0.76,8.15)  252(0.70,8.31)  2.49 (BMB)  2.54(0.72,8.77)




Table 4: Lakes data set: Predictions and observed data lidotisets.
Spatial Pred. proc. model, 54 knots

Non-spatial

Y(S()yq) =0 Y(Squ) =1

Y(S()yq) =0 Y<50,q) =1

110 32
33 195

122 16
21 211

32



€€

Table 5: Forest landuse data set: Summary of candidate sigdehmeter estimates, 50 (2.5 97.5) percentiles.
INLA

Pred. proc. knots

Non-spatial 50 100 200
Bo 4.04 (3.82, 4.28) 4.19 (2.83, 5.60) 3.86 (2.44, 5.33) 3.9835.55)
B1 -0.0044 (-0.0046, -0.0042)  -0.0049 (-0.0051, -0.0046) 0089 (-0.0052, -0.0046)  -0.0049 (-0.0052, -0.0046)
B2 0.0051 (0.0048, 0.0054) 0.0059 (0.0055, 0.0061) 0.005WEH, 0.0062) 0.0059 (0.0056, 0.0062)
B3 -0.0027 (-0.0030, -0.0024)  -0.0033 (-0.0037, -0.0029) 00684 (-0.0037, -0.003) -0.0034 (-0.0037, -0.003)
@ - 0.036 (0.033, 0.042) 0.039 (0.036, 0.045) 0.041 (0.039).
o2 - 1.52 (1.40, 1.65) 1.68 (1.49, 1.89) 2.32(1.28, 3.98)




Table 6: Forest landuse data set: Mean scoring rules basgedittion of hold-out set.
INLA

Pred. proc. knots

Non-spatial 50 100 200

Zero-one 0.80 0.88 0.88 0.88
Quadratic -0.29 -0.18 -0.18 -0.18
Spherical 0.84 0.90 0.90 0.90

Logarithmic -0.45 -0.31 0.30 -0.30
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LA: Posterior marginal for logistic range and log precision. MCMC: Posterior marginal for log precision and logit range
T T T T T T T T T T

Logistic range
Logistic range

15 BT
Log precision

Figure 1: lllustration of posterior inference for logistiange and log precision, where nugget parameter is
marginalized out. Left) The dots are evaluation points fag humerical Laplace approach. The contours
are computed based on an these points. Right) The line segstaow the first 200 realizations of a MCMC
run.
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Figure 2: Synthetic Gaussian dataset: Left: LA approachhemposterior marginal of log precision (top), logistic
range (center), and log nugget precition (bottom). Riglt:alpproach for the posterior marginals of regression
parameters. The dashed curves represent three differensikes (64, 100, 256), while the solid curve is for
the full data set (n=500).
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Figure 3: Lakes data set: Prediction (top) and 95% prediatimge (bottom) of the latent intensity surface. Top
left: MCMC median, full data set. Top right: LA median, 54 kmedictive process. Bottom left: MCMC
range, full data set. Bottom right: LA range, 54 knot preg&process.
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Figure 4: Forest landuse data set: Inventory data and pilapaid forest occupancy surfaces. Top left: forest
inventory plot locations. Top right: observed forest ocoqy. Bottom left: median fitted probability of forest
occupancy for the 50 knot model. Bottom right: median fitteab@ability of forest occupancy for the 200 knot
model. Map units are in kilometers.

38



