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Håvard Rue

Department of Mathematical Sciences,

Norwegian University of Science and Technology, Norway

May 17, 2010

Abstract

This article addresses the challenges of estimating hierarchical spatial models to large

datasets. With the increasing availability of geocoded scientific data, hierarchical models in-

volving spatial processes have become a popular method for carrying out spatial inference.

1



Such models are customarily estimated using Markov chain Monte Carlo algorithms that, while

immensely flexible, can become prohibitively expensive. Inparticular, fitting hierarchical spa-

tial models often involves expensive decompositions of dense matrices whose computational

complexity increases in cubic order with the number of spatial locations. Such matrix com-

putations are required in each iteration of the Markov chainMonte Carlo algorithm, rendering

them infeasible for large spatial data sets.

This article proposes to address the computational challenges in modeling large spatial

datasets by merging two recent developments. First, we use the predictive process model as

a reduced-rank spatial process, to diminish the dimensionality of the model. Then we pro-

ceed to develop a computational framework for estimating predictive process models using

the integrated nested Laplace approximation. We discuss settings where the first stage likeli-

hood is Gaussian or non-Gaussian. Issues such as predictions and model comparisons are also

discussed. Results are presented for synthetic data, an environmental dataset and for a large

dataset on forest biomass.

Keywords: Approximate Bayesian inference; Computationalstatistics; Gaussian processes;

Geostatistics; Laplace approximation; Predictive process model.

1 Introduction

Recent advances in Geographical Information Systems (GIS)and Global Positioning Systems

(GPS) enable accurate geocoding of locations where scientific data are collected. This has en-

couraged formation of large spatiotemporal datasets in many fields and has generated considerable

interest in statistical modelling for such data; see, for example, the books by Cressie (1993), Baner-

jee et al. (2004), and Schabenberger and Gotway (2004). Here, we focus upon the setting where

the number of locations yielding observations is too large for fitting desired hierarchical spatial

random effects models. Full inference and accurate assessment of uncertainty involves matrix

decompositions whose complexity increases asO(n3) in the number of locations,n, hence the

infeasibility or “big n” problem for large datasets.

Modelling large spatial datasets have received much attention in the recent past. Vecchia (1988)
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proposed approximating the likelihood with a product of appropriate conditional distributions to

obtain maximum-likelihood estimates. Stein et al. (2004) adapt this to restricted maximum likeli-

hood estimation. Another possibility is to approximate thelikelihood using spectral representations

of the spatial process (Fuentes, 2007). These likelihood approximations yield a joint distribution,

but not a process that facilitates spatial interpolation. Yet another approach considers compactly

supported correlation functions (Furrer et al., 2006; Kaufman et al., 2008; Du et al., 2009) that

yield sparse correlation structures. More efficient sparsesolvers can then be employed for krig-

ing and variance estimation, but the tapered structures maylimit modeling flexibility. Also, full

likelihood-based inference still requires determinant computations that may be problematic.

Rather than approximations, one could build models especially geared towards handling of

large spatial datasets. These are representations of the spatial process in a lower-dimensional

subspace and are often referred to as low-rank or reduced-rank spatial models (Higdon, 2002;

Kamman and Wand, 2003; Stein, 2007, 2008; Cressie and Johannesson 2008; Banerjee et al.,

2008; Crainiceaniu et al., 2008). Many of these methods are variants of the so-called “subset of

regressors” methods used in Gaussian process regressions for large data sets in machine learning

(e.g. Rasmussen and Williams, 2006). The idea here is to consider a smaller set of locations,

or “knots”, sayS∗ = {s∗1, . . . , s∗n∗}, where the number of knots,n∗, is fixed to be much smaller

than the number of observed sites, and to express the spatialprocess realizations overn locations

in terms of its realizations over the smaller set of knots. Itis reasonable to assume there will

be insignificant loss of spatial information in the underlying process from using a smaller set of

locations – the knots – with adequate domain coverage. Subsequently, we will consider a special

class of low-rank processes called thepredictive process(Banerjee et al., 2008). This arises from

a conditional expectation of the original process (often referred to as theparent process) given its

realization over the knots.

A key issue in such methods is the number and selection of knots which is a challenging prob-

lem with choice in two dimensions more difficult than in one. The choice ofn∗ is governed by

computational cost and sensitivity to choice. Customarily, the analysis is implemented over differ-

ent choices ofn∗. The selection of the sites that will act as knots is an even more complex problem
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and raises the question of whether to use a subset of the observed spatial locations or a disjoint set

of locations. The issue is not dissimilar to a spatial designproblem (e.g. Nychka and Saltzman,

1998; Xia et al., 2006; Diggle and Lophaven, 2006). Finley etal. (2009) explored the knot selec-

tion issue for predictive processes. In practice, one must estimate predictive process models with

different choices of knots to arrive at configurations yielding reliable and robust inference. Using

Markov chain Monte Carlo (MCMC) for such experimentations will, however, be a daunting task

and fast, accurate approximation methods will need to be explored.

In recent work Rue et al. (2009) propose an Integrated NestedLaplace Approximation (INLA)

algorithm as an alternative to MCMC for latent Gaussian models. INLA presents a very versatile

template for estimating latent Gaussian models by repeateduse of the Laplace approximation (LA),

(see Tierney and Kadane, 1986). Rue et al. (2009) use computationally effective Gaussian Markov

random field approximations (Rue and Held, 2005) to deliver fast and accurate approximations to

posterior marginals. Eidsvik et al. (2009) use the same Laplace techniques for irregular moderate

size data from a spatial Generalized Linear Mixed Model (GLMM). Extensive studies conducted

by Eidsvik et al. (2009) and Rue et al. (2009) reveal that, fora wide class of latent Gaussian mod-

els, INLA produces inference that is essentially indistinguishable from MCMC in a mere fraction

of the time required by the latter. The key to succesful use ofINLA, is a reasonable Gaussian

approximation to the full conditional of the latent variables, including regression effects. A numer-

ical optimization and integration routine is used for the covariance hyperparameters. The LA has

been a powerful tool in statistical inference. Frequentistapproaches use the LA for marginalized

likelihood inference, see e.g. Breslow and Clayton (1993) and Ainsworth and Dean (2006). In

the Bayesian context it has been applied for model choice using Bayes factors, but then the full

conditionals are usually approximated by sampling, see e.g. Chib (1995) and Lewis and Raftery

(1997). Hsiao et al (2004) use the LA for related purposes, referring to the Laplace expression by

Candidate’s formula.

This article presents a framework for estimating predictive process models using INLA. The

remainder of the article evolves as follows. Section 2 discusses the spatial predictive process,

its properties and how it is employed in hierarchical spatial GLMM context. Section 3 outlines
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approximate Bayesian inference using INLA. Section 4 considers a number of simulation experi-

ments as well as practical illustrations from fisheries and forestry. Finally, Section 5 concludes the

article with a discussion and an eye towards future work.

2 Hierarchical modeling with the predictive process

2.1 The Gaussian Predictive Process

Geostatistical settings typically assume, at locationss ∈ D ⊆ ℜ2, a Gaussian response variable

Y (s) along with ap×1 vector of spatially referenced predictorsx(s) which are associated through

a spatial regression model such as,

Y (s) = x (s)′ β + w (s) + ǫ (s) . (1)

That is, the residual comprises a spatial process,w(s), and an independent process,ǫ(s), often

called thenugget. Thew(s) are spatial random effects, providing local adjustment (with struc-

tured dependence) to the mean, interpreted as capturing theeffect of unmeasured or unobserved

covariates with spatial pattern.

The customary process specification forw(s) is a mean 0 Gaussian Process with covariance

function, C(s1, s2), denotedGP (0, C(s1, s2)). In applications, we often specifyC(s1, s2) =

σ2ρ(s1, s2;φ) whereρ(·;φ) is a correlation function andφ includes decay and smoothness pa-

rameters, yielding a constant process variance. In any event, ǫ(s)
iid∼ N(0, τ 2) for every locations.

Prior distributions on the remaining parameters complete the hierarchical model. Customarily, the

regression effectβ is assigned a multivariate Gaussian prior, i.e.β ∼ N(µβ, Σβ), while the latent

variance componentσ2 and the nugget varianceτ 2 are assignedIG(·, ·) priors. The process cor-

relation parameter(s),φ, are usually assigned some informative priors (e.g. uniform over a finite

range) based upon the underlying spatial domain.

With n locations, sayS = {s1, . . . , sn}, the process realizations are collected into ann × 1

vector, sayw = (w(s1), . . . , w(sn))′, which follows a multivariate normal distribution with mean

0 and dispersion matrixσ2R(φ) with ρ(si, sj;φ) being the(i, j)-th element ofR(φ). Letting

Y = (Y (s1), ..., Y (sn))′ be then × 1 vector of observed responses, we obtain a Gaussian likeli-
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hood that combines with the customary hierarchical specifications to yield a posterior distribution

π(β,w, σ2, τ 2,φ |Y ) that is proportional to

π(φ)× IG(τ 2 | aτ , bτ )× IG(σ2 | aσ, bσ)×N(β |µβ, Σβ)

N(w | 0, σ2R(φ))×
n∏

i=1

N(Y (si) |x(si)
′β + w(si), τ

2). (2)

Often a marginalized likelihood is used that is obtained by integrating out the spatial effectsw and

the regression coefficientsβ. This yields

π(σ2, τ 2,φ |Y ) ∝ π(φ)× IG(τ 2 | aτ , bτ )× IG(σ2 | aσ, bσ)

N
(
Y |Xµβ, σ2R(φ) + τ 2I +XΣβX

′) , (3)

where rowi of matrixX isx(si)
′. This marginalization overw andβ can be interpreted as a ratio

of joints and conditionals since,

π(Y | ·) =

∫
w,β

π(Y ,w,β | ·)dwdβ =
π(Y ,w,β | ·)
π(w,β |Y , ·) . (4)

In fact, we will utilize this in the LA below. The marginal posterior distribution of the spatial

effects and regression parameters is given by

π(w,β |Y ) =

∫
π

(
w,β |Y , σ2, τ 2,φ

)
π(σ2, τ 2,φ |Y )dσ2dτ 2dφ,

whereπ (w,β |Y , σ2, τ 2,φ) is a multivariate normal distribution.

Irrespective of whether we use (2) or (3), estimation and prediction will require matrix fac-

torizations involving the densen × n matrixR(φ) which may become prohibitively expensive

for largen. Recently Banerjee et al. (2008) proposed a class of knot-based spatial process mod-

els for large spatial datasets. These models consider a fixedset of “knots”S∗ = (s∗1, . . . , s
∗
n∗)

with n∗ ≪ n, which may or may not form a subset of the entire collection ofobserved loca-

tions in S. The Gaussian processw(s) yields ann∗-vector of realizations over the knots, say

w∗ = (w(s∗1), . . . , w(s∗n∗))
′, which follow aN{0, σ2R∗(φ)} whereR∗(φ) = {ρ(s∗i , s

∗
j ;φ)}n∗

i,j=1

is the correspondingn∗ × n∗ dispersion matrix. Spatial interpolation (or “kriging”) at a generic

sites is executed through

w̃(s) = E{w(s) |w∗} = r(s;φ)′R∗−1(φ)w∗. (5)
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This yields a spatial process̃w(s) ∼ GP{0, σ2ρ̃(·)}whereρ̃(s, s′;φ) = r(s;φ)′R∗−1(φ)r(s′,φ)

andr(s;φ) is then∗×1 vector whosej-th element is given byρ(s, s∗j ;φ). We refer tow̃(s) as the

predictive processderived from theparent processw(s). The predictive process is a spatially adap-

tive linear transformation of the realizations ofw(s) overS∗ with r(s;φ)′R∗−1(φ) comprising the

coefficients of the transformation. This also implies thatw̃(s) is non-stationary, even thoughw(s)

is not, allowing the model to adapt better to fit the data.

Replacingw(s) in (1) with w̃(s), we obtain the predictive process model,

Y (s) = x(s)′β + w̃(s) + ǫ(s). (6)

Using (6) as the likelihood, we obtain the predictive process counterpart of (2) as

π(φ)× IG(τ 2 | aτ , bτ )× IG(σ2 | aσ, bσ)×N(β |µβ , Σβ)

N(w∗ | 0, σ2R∗(φ))×
n∏

i=1

N(Y (si) |x(si)
′β + w̃(si), τ

2). (7)

Dimension reduction occurs since the computations now involve evaluating then∗ × n∗ matrix

R∗−1(φ), wheren∗ is chosen to be much smaller thann. Unlike other knot-based methods, the

predictive process does not introduce any additional parameters nor involves projecting data onto a

grid while enjoying attractive theoretical properties that justify its use as abest approximationfor

the parent process. For example,w̃(s) is an orthogonal projection ofw(s) on an appropriate linear

subspace (e.g. Stein, 1999) minimizingE[{w(s)− f(w∗)}2 |w∗] over all real-valued functions

f(w∗).

Rather than an approximation to the parent process, we consider the predictive process as

a dimension-reducing model for large point-referenced datasets. It is crucial, therefore, that its

parameters should be interpreted with respect to (6) and not(1). In fact, being smoother than

the parent process, the predictive process tends to have lower variance which, in turn, leads to

an upward bias in the nugget. The following inequality reflects, more formally, the shrinkage in

variability for the predictive process

var{w(s)} = var{E[w(s) |w∗]}+ E{var[w(s) |w∗]} ≥ var{E[w(s) |w∗]} = var{w̃(s)}.
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The diminished variability iñw(s) is often manifested by an overestimation of the nugget variance

τ 2. Banerjee et al. (2010) explore these biases in greater detail.

Finley et al. (2009) consider modifying the predictive process by adding a heteroscedastic

white-noise Gaussian process. More specifically, they propose replacing̃w(s) in (6) with w̃ǫ(s) =

w̃(s) + ǫ̃(s), whereǫ̃(s)
iid∼ N(0, σ2(1− r(s;φ)′R∗−1(φ)r(s;φ))). Usingw̃ǫ(s) instead ofw̃(s)

as the spatial process in (7) yields

π(φ)× IG(τ 2 | aτ , bτ )× IG(σ2 | aσ, bσ)×N(β |µβ , Σβ)×

N(w∗ | 0, σ2R∗(φ))×N(w̃ǫ |F (φ)w∗, σ2Rǫ̃)×
n∏

i=1

N(Y (si) |x(si)
′β + w̃ǫ(si), τ

2),

(8)

wherew̃ǫ = (w̃ǫ(s1), . . . w̃ǫ(sn))′, F (φ) = R(φ)′R∗−1(φ), whereR(φ)′ is then × n∗ matrix

whosei-th row is given byr(si;φ)′, for i = 1, . . . , n, andRǫ̃ is ann×n diagonal matrix withi-th

diagonal element
{
1− r(si;φ)′R∗−1(φ)r(si;φ)

}
. Now letv∗ = (w∗′ ,β′, ǫ̃′)′ be the(n∗ + p +

n)× 1 vector collecting all a priori latent Gaussian effectsv∗. An expression for the marginalized

posterior distribution, the bias-adjusted predictive process counterpart to (3), can be obtained by

integrating outv∗, whereupon we have

π(φ)× IG(τ 2 | aτ , bτ )× IG(σ2 | aσ, bσ)×

N(Y |Xµβ,XΣβX
′ + σ2R(φ)R∗−1(φ)R(φ)′ + σ2Rǫ̃ + τ 2In). (9)

2.2 Predictive process models with non-Gaussian likelihoods

We now consider the setting with non-Gaussian likelihoods.There are two typical non-Gaussian

GLMM first stage settings: (i) binary response at locations modelled using logit or probit regres-

sion and (ii) count data at locations modeled using Poisson regression. Diggle et al. (1998) unify

the use of these GLMMs in spatial data contexts. See also Lin et al. (2000), Kammann and Wand

(2003) and Banerjee et al. (2004). Essentially, we construct the likelihood assuming conditional

independence of the outcomes, i.e. theY (si)’s, which arise from an exponential family. In other

words, we replace (1) with the assumption that the expected value is linear on a transformed scale,
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i.e.,η(s) ≡ g(E(Y (s))) = x (s)′ β + w (s), whereg(·) is a suitable link function. More specifi-

cally, the resulting posterior would take a form analogous to (8):

π(φ)× IG(σ2 | aσ, bσ)×N(β |µβ , Σβ)

×N(w∗ | 0, σ2R∗(φ))×N(w̃ǫ |F (φ)w∗, σ2Rǫ̃)×
n∏

i=1

π(Y (si) | η(si)), (10)

whereπ(Y (si) | η(si)) belongs to the exponential family of densities. For large datasets, we insert

the predictive process,̃w(s), in the link function so thatη(si) = x(si)
′β + w̃(si). The bias-

adjusted version would replacẽw(s) with w̃ǫ(s). Unlike with Gaussian likelihoods, analytical

marginalization over the spatial and regression effects (as in (3) and (9)) is no longer possible.

Let againv∗ = (w∗′,β′, ǫ̃′)′ be the(n∗ + p + n) × 1 vector, comprising the realizations of

the spatial predictive process, the regression parametersand the realizations of the bias-adjustment

process. The posteriorπ(v∗, σ,φ |Y ) corresponding to the bias-adjusted predictive process is

proportional to

π(φ)× IG(σ2 | aσ, bσ)×N(v∗ |µ∗,Σ∗)

×
n∏

i=1

π(Y (si) | r(si;φ)′R∗−1(φ)w∗ + x(si)
′β + ǫ̃(si)), (11)

where mean vectorµ∗ = (0n∗,µβ, 0n), and the(n∗ + p + n)× (n∗ + p + n) covariance matrix

Σ∗ =


σ2R∗(φ) 0n∗×p 0n∗×n

0p×n∗ Σβ 0p×n

0n×n∗ 0n×p σ2Rǫ̃

 . (12)

Then last diagonal entries in the covariance matrix in (12) facilitate fast evaluation routines. The

canonical lengthn parameter vector in the GLM likelihood model can be defined byη = H⋆v,

whereH⋆ = [F (φ),X, In].

General settings can be treated using these ideas with the appropriate choice of an exponen-

tial family member and a link function. For instance, with binomial data,π(Y (si) | η(si)) ∼
Binomial(N(si), p(η(si))), wherep(η(si)) is the success probability atsi, defined by a link func-

tion, and whereN(si) represents the fixed number of trials. A logit link function specifiesp(η(si)) =
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exp(η(si))/(1 + exp(η(si))). In some cases, the exponential family density could also include an

unknown vector of nuisance parameters, sayψ. In the examples we present here, such nuisance

parameters do not arise; if they did, we would simply modify our hierarchical model to accom-

modate a prior forψ. Moreover, a more general unimodal non-Gaussian likelihood, outside the

exponential family class, would also fit into our framework.

3 Approximate Bayesian inference

3.1 The Laplace approximation for predictive process model

MCMC algorithms are the current standard for inference in hierarchical Bayesian models. The

generality of MCMC allows fitting very flexible models, usingfull conditional Gibbs sampling

schemes in conjunction with Metropolis updates when full conditionals are not directly available.

One challenge with MCMC is the slow mixing that can occur, such that subsequent samples in the

Markov chain are very dependent, and a huge number of MCMC iterations are required to explore

the sampling space and to reduce the Monte Carlo error boundssufficiently.

The Laplace approximation (Tierney and Kadane, 1986) was constructed for deterministic

Bayesian inference, not for sampling based inference. The approach presented in Rue et al.

(2009) is in the same spirit. Rather than sampling, analytical Gaussian approximations and nu-

merical routines are applied. The Gaussian approximation is used for the latent effects, which are

a priori Gaussian. In our notation from the previous sectionπ(v∗ | θ) = N(v∗ |µ∗,Σ∗), where

v∗ = (w∗′,β′, ǫ̃′)′, including the bias correction term. We now letθ denote the covariance param-

eters. For the Gaussian predictive process model this wouldbeθ = (σ2,φ, τ 2), whileθ = (σ2,φ)

for the predictive process GLMM formulation. The LA approach exploits a recombination of the

marginals and conditionals so that

π(θ|Y ) =
π(Y |v∗, θ)π(v∗|θ)π(θ)

π(Y )π(v∗|Y , θ)
, (13)

∝ π(Y |v∗, θ)π(v∗|θ)π(θ)

π(v∗|Y , θ)
,

where the numerator is defined by the model, while the left hand side and the denominator are
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needed for posterior inference. The full conditional in thedenominator of (13) is Gaussian for

a Gaussian likelihood model (Section 2.1). Then, the posterior π(θ|Y ) in (13) can be evaluated

exactly, up to a normalizing constant. For posterior inference about these covariance hyperparam-

eters we turn to numerical methods. Notice that MCMC algorithms can also be constructed for the

posterior in (13). In fact, this formula is identical to marginalized model in (9). The LA approach

is in this way a marginalization method using the full conditional, rather than integrating out the

latent effects, see (4).

When the likelihood model is non-Gaussian, such as in the GLMM, the full conditionalπ(v∗|Y , θ)

is no longer analytically available. Nevertheless, for standard GLMs the inference of regression

effects is commonly obtained by an iterative scoring algorithm, computing the maximum likeli-

hood estimate, and then assessing the uncertainty from the likelihood second derivatives (Hessian)

at the maximum location. The LA method uses similar ideas forBayesian spatial inference:

π̂(θ |Y ) ∝ π(Y | v∗, θ)π(v∗ | θ)π(θ)

π̂(v∗ |Y , θ)

∣∣∣∣
v̂∗

(14)

whereπ̂(v∗|Y , θ) is a Gaussian approximation of

π(v∗|Y , θ) ∝ π(Y |v∗, θ)π(v∗|θ), (15)

constructed to match the modev̂∗ and the curvature at the mode of this full conditional expression.

The LA gives a relative error in (14), see Tierney and Kadane (1986). The Monte Carlo error is

additive, possibly giving a larger relative error in the tails.

The posterior approximation̂π(θ|Y ) is explored by numerical routines. For models of reason-

able complexity, the dimension ofθ is small (in our examples 2 or 3), and numerical routines can

efficiently find the mode, assess uncertainty bounds, and so on. Returning solely the mode is iden-

tical to the empirical Bayes estimate. We constructπ̂(θ|Y ) by a deterministic scheme returning

a discretized representation of the posterior. Our numerical routine is run for a parameterization

with log precision parameters and logistic range. One reason for this parameterization is variance

stabilization, another reason is that the surface of the approximate posterior marginal appears close

to Gaussian. The posterior percentiles for variance or range parameters can be derived by a direct

tranformation. The implementation is similar to Rue et al. (2009) and goes as follows:
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1. Choose a starting valueθ. Evaluateln π̂(θ|Y ) upto a constant.

2. Perform an optimization scheme to find the mode ofln π̂(θ|Y ).

3. Compute the Hessian ofln π̂(θ|Y ) at the mode.

4. Step along the main directions away from the mode untilln π̂(θ|Y ) is negligible.

5. Fill in a grid ( or design) ofθ values within the defined region from stepping-out.

6. Evaluate and normalizeln π̂(θ|Y ) on the set of nodes.

In Figure 1 we show the approximate posterior marginals for log precision and logistic range

parameters ( integrated over the log nugget precision in this Gaussian case ). The contours are con-

structed by rough interpolation over the evaluation pointsmarked as dots. Notice that the contours

appear in an almost Gaussian / quadratic form. Altogether, the numerical optimization ( a sim-

plex algorithm in this case ), Hessian computation, stepping-out and filling-in procedures required

aboutNla =200 evaluations of the posterior. The number of evaluation points would depend on

the specific goals of an application. For instance, a standard central composite design approach in

the three parameter space uses only14 evaluation points after the optimization and Hessian com-

putation, at the cost of a coarser approximation. For comparison we display the first200 samples

of a random-walk MCMC sampler (dashed line in Figure 1) with acceptance probability of about

0.3. The random walk pattern is very different from the regular pattern of the numerical scheme.

The MCMC algorithm does not span the probability space very well in the 200 iterations shown

here.

We next outline the construction of the full conditional required for the Laplace approximation

under the bias-corrected predictive process model. Every evaluation ofπ̂(θ|Y ) entails computing

this full conditional. The GLM likelihood is
∏

i π(Y (si)|η(si)), where the GLM parameterη =

H⋆v⋆ = [F (φ),X, In]v∗. We have priorv∗ ∼ N(µ∗,Σ∗), see (11) and (12).

Under Gaussian likelihood assumptionsπ(Y |η) = N(H⋆v⋆, τ 2In) the full conditional forv⋆
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is

π(v⋆|Y , θ) ∝ N(H⋆v⋆,T )N(µ∗,Σ∗) (16)

∝ exp[−1

2
(Y −H⋆v⋆)′T−1(Y −H⋆v⋆)− 1

2
(v⋆ − µ∗)′Σ∗−1(v⋆ − µ∗)]

∝ exp[−1

2
v⋆′Qv⋆ + v⋆′b],

whereT = τ 2In, the full conditional precision matrixQ = H⋆′T−1H⋆+Σ∗−1, and the canonical

parameterb = H⋆′T−1Y + Σ∗−1µ. Thus, the full conditional isπ(v⋆|Y , θ) ∼ N(Q−1b,Q−1).

We can compute the required inverse and determinant of the size(n∗ + p + n)× (n∗ + p + n)

matrixQ by utilizing the structure ofΣ∗ andH⋆, and thatT = τ 2In is diagonal. Note that the

precision is given by

Q = τ−2H⋆′H⋆ + Σ∗−1 =

 Q0 q

q′ Q1

 , (17)

Q0 =

 τ−2F (φ)′F (φ) + σ−2R∗−1(φ) τ−2F ′(φ)X

τ−2X ′F (φ) τ−2X ′X + Σ−1
β

 ,

whereq′ = τ−2(F (φ),X), whileQ1 = τ−2In + σ−2R−1
ǫ̃ is a sizen× n diagonal matrix. When

n ≫ (n∗ + p), the matrix determinant and inverse are computed efficiently by

|Q| =
∣∣∣∣∣∣ Q0 q

q′ Q1

∣∣∣∣∣∣ = |Q1||Q2|, Q2 = Q0 − qQ−1
1 q

′, (18)

Q−1 =

 Q0 q

q′ Q1

−1

=

 Q−1
2 −Q−1

1 q
′Q−1

2

−(Q−1
1 q

′Q−1
2 )′ Q−1

1 +Q−1
1 q

′Q−1
2 qQ

−1
1

 , (19)

exploiting thatQ1 is diagonal. The cost of matrix inversion for the predictiveprocess model is thus

O(n∗3), sinceQ2 is n∗×n∗, assumingn⋆ ≫ p. The main cost of inference is buildingF (φ)′F (φ)

which requiresO(nn∗2).

When the likelihood model is non-Gaussian, we expand the likelihood in a quadratic form.

For instance, with binomial dataπ(Y (si)|η(si)) ∝ exp(Y (si)η(si)−N(si) log(1+ exp(η(si)))),

whereτ(si) is the fixed number of trials, we Taylor expandN(si) log(1 + exp(η(si))) to second
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order. By expressing the result in a quadratic form ofv∗ we obtain

log(π(Y |η) = −1

2
v⋆′T −1

lin v
⋆ + v⋆′clin + const (20)

whereconstdoes not depend onv⋆, and with

T−1
lin = H⋆′D2H

⋆, clin = H⋆′D2(Y − d1 +D2H
⋆v̂⋆). (21)

These derivative expressions are defined using componentwise multiplication and division to get

d1 = {N ⊙ exp(H∗v∗)} ⊘ {1n + exp(H∗v∗)}, (22)

D2 = diag
({N ⊙ exp(H∗v∗)} ⊘ {(1n + exp(H∗v∗))⊛2}) ,

where1n is an × 1 vector of ones,N = ((N(s1), . . . , N(sn))′, andexp(·) also works compo-

nentwise. Given the quadratic expansion the approximate full conditional is similar to (16). Five

iterations are usually enough to detect the mode of the full conditional. At each iteration, the lin-

earization point is recomputed as the mode from the previousstep. Thus, this resembles a usual

GLM optimization method, except that the model has a spatialpredictive process representation.

3.2 The Integrated nested Laplace approximation for predictive process model

The posterior marginals for regression effects or spatial effects can be computed from the Gaus-

sian approximation of the full conditional by numerical integration over the covariance parameters.

For any effectv∗j we have

π̂(v∗j |Y ) =

∫
π̂(v∗j |Y , θ)π̂(θ|Y )dθ, (23)

whereπ̂(v∗j |Y , θ) is an elementj of the joint approximate Gaussian. The integral is solved by

numerical integration over the evaluation points forπ̂(θ|Y ). Numerical integration is usually

superior to Monte Carlo integration in small dimensions like we have here. The full conditional

for latent Gaussian variables is computed for every evaluation point of π̂(θ|Y ). Thus, all entries

in the integrand of (23) are readily available. This same numerical integration formula can be

applied to spatial effects or a linear combination of regression parameters and spatial effects, which
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also has an approximate Gaussian full conditional. Recall that the numerical integration uses a

parameterization with the log precision parameters and logistic range parameter. In our experience,

this parameterization means that fewer numerical evaluation points are required to estimate the

integral. An empirical Bayes approach would use only one evaluation point at the posterior mode

for θ.

These direct LA marginals in (23) can be improved by applyingthe integrated nested Laplace

routine, see Rue et al (2009) and Eidsvik et al. (2009). This INLA approach allows one particular

regression effectβj , or one spatial effect to be non-Gaussian, while all remaining latent effects

remain Gaussian. The INLA for posterior marginals of a latent effectv∗j is based on

π(v∗j |Y , θ) ∝ π(Y |v∗, θ)π(v∗|θ)
π(v∗−j |v∗j ,Y , θ)

, (24)

where the latent effectv∗j can again be a regression effect, spatial effect, or a linearcombination.

We will denote the INLA byπ̃(v∗j |Y , θ). Its computation uses (24) with a Gaussian approxi-

mationπ̂(v∗−j|v∗j ,Y , θ) in the denominator, treatingv∗j as fixed (measured). Thus, the improved

approximate marginal becomes

π̃(v∗j |Y , θ) ∝ π(Y |v∗, θ)π(v∗ | θ)
π̂(v∗−j | v∗j ,Y , θ)

∣∣∣∣
v̂∗−j

, (25)

where the expression is evaluated at the full conditional mode, keepingv∗j fixed. Thus, INLA

uses a second round of the LA to cancel out the remaining approximate Gaussian variablesv∗−j,

and in this way provides a better approximation for the posterior marginals for spatial effects and

regression effects (Rue et al., 2009). The improved approximationπ̃(v∗j |Y , θ) can be computed on

a grid ofv∗j values, or fitted a parametric density. For instance, a Gaussian approximation requires

only three evaluation pointsv∗j to assign a mean and covariance, and normalize.

The posterior marginal INLA is obtained by

π̃(v∗j |Y ) =

∫
π̃(v∗j |Y , θ)π̂(θ|Y )dθ, (26)

which is solved by numerical integration over the same evaluation points of the covariance param-

eters. In our experience, INLA provides a shift of LA for regression parameters, but very little for
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the spatial effects. Intuitively, the non-Gaussian data has greater effect on the regression parame-

ters, which are valid for the entire spatial domain. By assuming a Gaussian full conditional (LA)

for these parameters, we could induce some bias. The spatialeffects are local variables and learn

effectively from only parts of the data. Then the Gaussian prior model is more dominating, and the

LA is more accurate.

4 Analysis and Results

Four data sets are used to explore the candidate models’ ability to estimate parameters of inter-

est and predict at new locations. The first two are synthetic.The third has been used to understand

the distribution of lake acidity and subsequent decline in trout abundance in Norway. These first

data sets are moderate in size, and a full MCMC based data analysis is possible to perform. This

allows comparison between MCMC and INLA, and between different predictive process models.

The fourth is a large forest inventory data set used to produce estimates of forest landuse across

northcentral United States. For this data set, full MCMC based inference is too computationally

challenging for a modern desktop workstation. The following subsections describe these data sets

and accompanying modeling details.

The LA and INLA based analyses were conducted in Matlab version 7.9. TheR package

spBayeswas used for MCMC based analyses. In this package the higher level R code calls

C++ and Fortran that subsequently calls BLAS (www.netlib.org/blas) and LAPACK (www.

netlib.org/lapack) routines for efficient matrix computations. All analyses were conducted on

a Linux workstation using two Intel Nehalem-based quad-Xeon processors. The Matlab, BLAS,

and LAPACK routines were threaded and therefore leveraged multiple CPUs for matrix opera-

tions. Specifically,spBayeswas compiled to call Intel’s Math Kernel Library version 10.2 BLAS

and LAPACK implementations.

4.1 Synthetic data

Data sets of Gaussian and binomial outcome variables were generated. These synthetic data

are composed of 750 locations selected randomly from a[1, 100] × [1, 100] square. The eight
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candidate models include a full geostatistical and three predictive process specifications for both

MCMC and LA methods. The predictive process models are basedon 64, 100, and 256 regular

grid knot intensities covering this square.

Both Gaussian and binomial data were generated using a750× 3 covariates matrixX, where

the first column is the intercept and the values in the subsequent columns were randomly gener-

ated from aN(0, 1). The regression coefficients were set toβ = (0.1, 0.5, 1)′. An exponential

spatial correlation functionC(w(s), w(s + h)) = σ2 exp(−φ|h|) was used with variance,σ2=5,

and spatial correlation parameter,φ=0.06, which corresponds to an effective spatial range of∼50

units. Here, effective spatial range is defined as the distance (in map units) at which the spatial

correlation drops to 0.05. For the continuous outcome data the nugget variance,τ 2, was set to 1.

A subset of 250 observations were selected randomly to serveas a hold-out set to assess predic-

tive performance, while parameter estimates were based on the remaining 500 observations. All

candidate models were fit using the same independent prior specification with eachβ following a

N(0, 10000), anIG(2, 1) for the variance parameters,σ2 andτ 2, and a broad uniform support for

the spatial correlation parameterφ ∼ U(0.03, 3).

Inference results of the Gaussian response model are given in Table 1. Here, ’full’ refers

to the MCMC or INLA method that uses all the data. When the dataare Gaussian, the LA is

exact, and for fixed knot configurations the small differences between MCMC and LA inference

in Table 1 are caused by Monte Carlo and numerical approximation errors. These differences are

sometimes visible, especially for the 2.5 and 97.5 percentiles. Considering the predictive process

models, the estimates for regression parameters are captured very accurately, even with 64 knots.

The distributions for covariance parameters are also quiteclose to the results obtained using the

full data set, but the correlation range appears a little toonarrow for a small number of knots,

the nugget variance is slightly underestimated, while the variance in the latent process is a little

overestimated. When the knot size increases to 256, the predictive process results get closer to that

of full data.

The mean square prediction error (MSPE) in Table 1 is computed and summed over the hold-

out dataset. The MSPE values for MCMC and Laplace show similar increase for predictive models

17



with few knots. This increase (about4.5/3.5 = 30% for 64 knots) is caused by the data reduction

idea that plays an intrinsic role in the predictive process formulation. The main prediction dif-

ferences between full sizen model and predictive process models occur at hold-out sitesthat are

close to data locations, but far from knots. More creative design of knot locations could reduce the

MSPE in this case (see e.g. Finley et al., 2009).

The last row in Table 1 shows the number of operations required to deliver the inference and

prediction results. The number of operations is the productof the number of evaluations and

the cost of every evaluation. For the full model the main evaluation cost is matrix inversion at

O(n3). For the predictive process model the main cost isO(nn∗2), which is the cost of build-

ing the required sizen∗ × n∗ matrix. The MCMC inference was based on three MCMC chains,

with unique starting values, running forNmcmc =10,000 iterations. The CODA package inR

(www.r-project.org) was used to diagnose convergence by monitoring mixing withthe Gelman-

Rubin diagnostics and autocorrelations (see, e.g., Gelmanet al., 2004, Section 11.6). Acceptable

convergence was diagnosed within 5,000 iterations (which were discarded as burn-in). Therefore,

the parameter estimates and posterior predictive inference offered in Table 1 are based on 15,000

post burn-in samples.

For the LA approach we count the number of evaluations neededto reach a certain tolerance on

the numerical approximation. The tolerance is tuned in the optimization determining the poserior

mode, the step size moving out from the mode, and by the numberof grid / design points used to

compute the density approximation. Altogether we use aboutNla = 200 posterior evaluations for

the LA approach. Putting these numbers into Table 1 we see a clear reduction in the number of

operations when using the predictive process models and INLA. For instance, with 64 predictive

process knots, we use 60 times less operations than with the full data. Similarly, the LA approach

means a factor 50 reduction in computation time, for any of the predictive process or full data

models. By merging the two ideas we achieve sufficiently accurate results in moderate time. Note

the operations counts are simply based on the order of the main computations. In practice the

constant in front of the order will vary, and the other computations as well, depending on predictive

process or full data approach, and other computer related aspects. Our counts should thus not be
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taken in earnest, but regarded more as a guideline.

In Figure 2 (left column) we visualize the predictive process results with LA for our parame-

terization with log precision (top), logistic range parameter (center), and the log nugget precision

(bottom). Notice that high log precision means small variance, so the interpretation for these pa-

rameters is opposite that of Table 1. The displays are for thethree predictive process models with

64, 100, 256 knots (dashed) and the full data (solid). The dashed lines are somewhat biased to the

right for precision and to the left for range. The posteriorsusing predictive process get closer to

the full data posterior when the knot size increases. In Figure 2 (right column) we similarly show

results for the regression effects. The predictive processmodels with various knot configurations

and the full data provide almost the same posteriors, but with some small visible differences, es-

pecially for covariate 1 (Figure 2, right column, center). This might be caused by quite extreme

covariates at the edge of the domain, and where the knots are not so dense.

The binomial data are simulated in the same geographic locations as for the Gaussian case.

In each location we draw10 trials with the success probability at that location, usinga logit link

function. In Table 2 we show results of an MCMC algorithm and the INLA approach for this

synthetic data set. With the binomial reponse model differences in Table 2 are caused by the LA

and numerical routine errors for the INLA approach, or by Monte Carlo error and convergence and

mixing challenges for the MCMC algorithm. Two comparisons can be made here: knots intensity

versus full data and MCMC versus INLA. For comparing knot intensities, we see the predictive

process models are quite close to the full data results, but there is some overestimation for the scale

and underestimation for the range, when using few knots. This is observed both for MCMC and

INLA, and was also seen for the Gaussian response model in Table 1. The effect of covariates

(β1 andβ2) are accurately estimated with the predictive process. Theβ0 parameter shows the least

consistent pattern, and it has a very wide distribution. Comparing MCMC with INLA, we see that

most regression parameters and the range are very similar, while theβ0 distribution again varies a

lot, and the tails of theσ2 distribution are a little different. This could be a consequence of using

the LA, but could also be caused by the Markov chain staying too long in a tail, or a too rough

truncation scheme for the numerical LA approach. Inferencefor the regression parameters was
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done using the INLA approach. In this case evaluating theπ̃(βj |Y , σ2, φ, τ) at three evaluation

points and fitting a Gaussian to this improved marginal. The LA approach gives similar results as

INLA, but slightly shifted up or down.

The MSPE values for the spatial effects at the hold-out set show similar tendencies as for the

Gaussian data set. The predictive process models with few knots have slightly higher MSPE. The

un-marginalized models used to fit the binomial outcome datarequired more MCMC iterations

to begin adequate mixing. The MCMC based inference in Table 2is based onNmcmc =25,000

iterations. The LA approach is now only over two covariance parameters (φ,σ2, no nugget), and it

uses fewer numerical steps than for the Gaussian data. But, on the other hand, it takes about five

iterations to compute the Gaussian approximationπ̂(v∗|Y , σ2, φ) for the full conditional. Thus,

the number of posterior evaluations is still aboutNla = 200. The operations counts in Table 2

show that the INLA solution with 64 predictive process knotsuses a factor8.000 less operations

than the MCMC sampling with all the data.

4.2 Lake acidification

We next study a data set originally published by Varin et al. (2005). The focus of their study

was to model trout abundance in Norwegian lakes as a functionof lake acidity. The data were

collected during 1986 from interviews with local fishermen.Here, we use data from the southern

part of Norway. The response is ’population status’ of troutfor each lakei = 1, . . . , 361, coded as

unaffected (Y (si) = 0) or decreased/extinct (Y (si) = 1). Lakes’ northing coordinates and Acid

Neutralizing Capacity (ANC) are used as covariates, along with an intercept. ANC is a measure

for the overall buffering capacity against acidification for a solution.

As in the synthetic data analysis, the eight candidate models include a full geostatistical and

three predictive process specifications for both MCMC and LAmethods. The predictive process

models are based on 54, 89, and 126 knot intensities. Table 3 shows the inference results for all

candidates. For this data set we detect almost no differences between the various predictive pro-

cess models. Of course there is variability in the regression parameters and range, but considering

the wide confidence bounds these differences are very small.The INLA results are similar to the
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MCMC, but show slight differences for the distribution ofβ1 andσ2 parameters. For theσ2 param-

eter the difference in MCMC and LA seems to be driven by a heavyleft tail in the MCMC results.

One possible explanation is the MCMC chain stays out in the tail for too long, in the limited time of

the Markov chain run. Another explanation is the truncationlimits of the numerical LA approach

misses this heavy tail. We constructed the INLA approximation by evaluating̃π(β1|Y , σ2, φ, τ) at

three points and fitting a Gaussian, and thus the marginal is amixture of Gaussians. This INLA

solution is almost indistinguishable from the direct Gaussian LA for the intercept and northing,

while it is visibly shifted to the left for the ANC effect(β1). Still, the INLA using a Gaussian mix-

ture underestimates the tail a little, as extending to a non-Gaussian INLA gives a larger tail, but not

quite as large as the MCMC solution. We note the posterior distribution for the range parameter

almost hits the boundary for the uniform distribution forφ. This indicates there is limited infor-

mation about the large ranges in the data, and effects of thiscould possibly cause some heavy tail

challenges for MCMC or LA.

Figure 3(top) shows predictions of latent effectsx(s)β + w̃(s). This is displayed for the

full dataset using MCMC sampling (top, left) and for the 54 knots predictive process model

using the LA (top, right). For the prediction results we see little difference between these two

model/inference combinations. This emphasizes that smalldifferences in the marginals for covari-

ance parameters or the regression effects (Table 3), translate into miniscule prediction differences

in Figure 3. There are some minor changes when going to the predictive process predictions, such

as a slightly smoother result for some of the northern datapoints, that the knot configuration do not

capture, but this is hard to distinguish in a map like Figure 3and would hardly have much effect

on decision making. Similarly, Figure 3 (bottom) shows the 95% prediction range intervals for

full dataset using MCMC sampling (left) and for54 knots using LA (right). The differences in

prediction range are also small, but the full data results have wider ranges at some sites.

The MCMC results takes a few hours to compute, while LA with 54knots takes a few seconds.

If we would like to check sensitivity to the shape of the covariance model, perform cross validation,

or other such high-level inference tasks, this difference in computation time becomes important.

LA with predictive process makes it possible to compute the results on-line on the laptop computer.
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We perform one such high-level task. We use cross-validation to compare the 54 knots predictive

process model using LA with a non-spatial model ( i.e. using only the regression part for the

explanatory variables ). This comparison is done over 10 randomized leave-37-out sets. For each

of these sets we predict̂Y (s0,q) for every hold-out siteq = 1, . . . , 37, using the most likely outcome

in the predictive distribution as the predictor. We comparethe predictions with the observed data

values. Table 4 shows the results summarized by a 2 by 2 table of the total number of classifications

(Ŷ (s0,q), Y (s0,q)) ∈ (0, 0), (0, 1), (1, 0), and(1, 1), where a good model gets mostly the diagonal

entries(0, 0) and(1, 1). The non-spatial model has large diagonal elements, and theexplanatory

variables catch much of the structure in the data. Even larger diagonal elements are achieved for

the spatial model, meaning the spatial residual process adds explanatory effect.

4.3 Forest land use

Here we analyze a large data set where full MCMC based inference, even using the predic-

tive process, is prohibitively expensive to run on a modern desktop workstation. The analysis is

motivated by the need for spatially explicit estimates of forest area which are useful for land use

change monitoring, carbon budgeting, and ecological and timber supply forecasting. The data

consist ofn =12,629 Forest Inventory and Analysis (FIA) plots measured in Michigan, USA, be-

tween 1999-2006. The FIA program of the USDA Forest Service has established field plot centers

in permanent locations using a sampling design that is assumed to produce a systematic equal-

probability sample with a random spatial component (Bechtold and Patterson, 2005). Locations of

plots are determined using GPS receivers. Plot locations are depicted in Figure 4 (top left). Each

plot consists of a 7.31m radius circular area. For each plot,i = 1, . . . , n, a field crew determined

the response variable value as forested (Y (si) = 1) or non-forested (Y (si) = 0) given the FIA def-

inition of forest land (Bechtold and Patterson, 2005). Figure 4 (top right) is a surface interpolation

of forest occupancy at the plot locations. This figure shows that northern Michigan is dominated

by forest while the south is primarily not forested. A Landsat 7 ETM+ satellite image,30 × 30

m spatial resolution, taken in mid-summer 2002 was tasseledcap transformed into its brightness,

greenness, and wetness components (Kauth and Thomas, 1976)and used as covariates. Finley et
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al. (2008) show how these components can help explain variability in the probability of forest

occupancy.

Non-spatial and spatial predictive process models, using 50, 100, and 200 knot intensities, were

considered in this comparison. Knot locations were chosen using ak-meansclustering algorithm

on the observed locations. Because our primary interest is in predicting forest occupancy, we com-

pare the candidate models’ using a set of 1,262 holdout (or validation) plots that were selected at

random from the 12,629 FIA plots. Model parameters were estimated using the remaining 11,367

observations. Table 5 summarizes the results of parameter estimation. As noted in previous studies

and seen here, the three remotely sensed covariates contribute significantly to explaining variability

in the probability of forest occupancy and do not change substantially among the candidate models.

The predictive process models produced very similar estimates of the spatial range,φ, and vari-

ance,σ2, parameters. The median effective spatial ranges in km are 83, 76, and 73 for the 50, 100,

and 200 knot model, respectively. This large spatial range is capturing the broad scale residual de-

pendence within the forested (north) and prairie/agriculture (south) landuse patterns. These results

suggest we could potentially use fewer than 50 knots; however, the minimum inter-site distance

among the knots of the 50 knot model is 45.6 km. Models using fewer knots, and hence greater

distance between knots, could have trouble estimating the spatial range parameter. The bottom

two plots in Figure 4 depict surface interpolation of the 50 and 200 knot models’ median fitted

probability of forest at the observed locations. The two models produce nearly indistinguishable

surfaces, both of which capture the patterns in the non-statistical surface generated using the actual

observations (top right).

Because our primary interest is in predicting forest occupancy, we compare the candidate mod-

els’ using the 1,262 holdout sites. Extending the zero-one prediction rule from the Norwegian

Lakes dataset in the previous section, we now consider several different scoring rules to evaluate

the predictive performance of the candidate models. A scoring rule provides a summary mea-

sure for evaluating a probabilistic prediction given the predictive distribution and the observed

outcome. In our setting the scoring rule function isSR(π, i), whereπ is the vector of proba-

bilities associated with each category (hereπ is of lengthJ = 2 i.e., forest and non-forest) and
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i = Y (s0) is the observed condition at a hold-out site. Given all the holdout sites{s0q}1262
q=1 we can

calculate summary statistics of the scores, e.g., the mean score isŜR =
∑1262

q=1
SR(πq ,iq)

1262
, where

πq = {P (Y (s0q) = 0|Y ), P (Y (s0q) = 1|Y )}. Gneiting and Raftery (2007) offer four scoring

rules for prediction of categorical variables,

Zero-one:SR(π, i) =

 1 if πi = max {π1 . . . πJ}
0 if otherwise

Quadratic:SR(π, i) = 2πi −
J∑

j=1

π2
j − 1

Spherical:SR(π, i) =
πi

(
∑J

j=1 π2
j )

1
2

Logarithmic:SR(π, i) = log πi.

Following definitions in Gneiting and Raftery (2007), all the noted scoring rules are strictlyproper

but for the zero-one, which is only proper. The zero-one scoring rule uses only a portion of avail-

able information, ignoring variability in the predictive distribution and returning either a zero or

one. Similarly, the logarithmic scoring rule considers only one of the probabilities in the predictive

distribution. The maximum values (i.e., perfect prediction) of the different scoring rules are 1 for

zero-one, 0 for quadratic, 1 for spherical, and 0 for logarithmic. The results are shown in Table 6.

Here, for all rules, the spatial models offer improved predictive performance. Further, there seems

to be only limited gain in predictions between the 50 and 200 knot model.

5 Conclusions

The main contribution of this paper is combining computational ideas for modeling and infer-

ence of spatial data. Together, the predictive process models and approximate Bayesian inference

using LA and INLA provide very fast analysis of large spatialdata sets.

Predictive process models are efficient dimension reduction techniques that builds directly on

the spatial structure of the model. The predictive process models entail a selection of knot locations

that covers the domain of interest. The number of knots is much smaller than the number of data

sites, and, as a result, matrix computations are feasible. In terms of parameter estimation and
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prediction, the predictive process model performs adequately, especially when one uses a bias

correction term in the modeling. Testing results from many different predictive process models

would be easy using parallel computing.

The LA combined with numerical routines provides a very fastand accurate approximation for

the posterior of model parameters and for prediction in spatial models. The numerical approach

offers flexibility in low parameter dimensions. In applications with a larger dimension of the

covariance parameters one might still do better than empirical Bayes by allowing some evaluation

points on a design surface. Moreover, in several application the covariance parameters are treated

as a nuisance parameters, while the main interest is in regression or spatial effects. In such contexts

a refined posterior representation of the covariance parameters is not required. If the main interest

is in some function of the covariance parameters, one could reparameterize the model such that

this main functional parameter becomes a key feature in the numerical assessment.

Further work might include predictive process modeling andINLA for multivariate spatial

data, space-time applications, or to situations where the regression parameters change in space-

time, such as the spatially varying coefficients model. The computational problems are further

aggravated in these situations, and combining predictive process models and INLA appears very

appealing.
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Table 1: Synthetic Gaussian data set: Summary of candidate models’ parameter estimates, 50 (2.5 97.5) percentiles, hold-out set mean squared error of
prediction (MSEP), and the number of operations.

MCMC LA

Pred. proc. knots Pred. proc. knots

True Full 64 100 256 Full 64 100 256

β0 0.1 -1.11 (-2.48, 0.27) -1.07 (-2.56, 0.51) -1.10 (-2.39, 0.28) -1.12 (-2.38, 0.19) -1.11 (-2.60, 0.42) -1.10 (-2.47, 0.37) -1.11 (-2.53, 0.40) -1.13 (-2.39, 0.18)

β1 0.5 0.46 (0.33, 0.58) 0.42 (0.29, 0.56) 0.44 (0.31, 0.57) 0.45 (0.33, 0.59) 0.46 (0.33, 0.58) 0.42 (0.29, 0.56) 0.44 (0.30, 0.57) 0.45 (0.32, 0.58)

β2 1 0.99 (0.86, 1.11) 0.98 (0.85, 1.11) 0.99 (0.86, 1.12) 0.99 (0.87, 1.11) 0.99 (0.86, 1.11) 0.98 (0.85, 1.12) 0.99 (0.86, 1.12) 0.99 (0.86, 1.11)

φ 0.06 0.06 (0.03, 0.10) 0.05 (0.03, 0.08) 0.06 (0.04, 0.10) 0.07 (0.03, 0.11) 0.06 (0.03, 0.10) 0.06 (0.04, 0.08) 0.06 (0.04 0.09) 0.07 (0.04, 0.10)

σ2 5 4.07 (2.72, 6.81) 4.67 (3.05, 7.89) 4.51 (3.08, 7.16) 4.13 (2.76, 6.78) 3.90 (2.60, 6.58) 4.55 (3.11, 6.96) 4.59 (3.03, 6.86) 4.05 (2.69, 6.30)

τ2 1 1.25 (0.90, 1.62) 0.74 (0.24, 1.39) 0.68 (0.23, 1.30) 1.02 (0.36, 1.53) 1.23 (0.86, 1.68) 0.64 (0.29, 1.29) 0.67 (0.31, 1.30) 1.03 (0.55, 1.56)

MSPE 3.54 4.55 4.27 3.87 3.35 4.67 4.40 4.17

Operations (in billions) 1250 20 50 330 25 0.4 1.0 6.6
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Table 2: Synthetic binomial data set: Summary of candidate models’ parameter estimates, 50 (2.5 97.5) percentiles, hold-out set mean squared error of
prediction (MSEP), and the number of operations.

MCMC INLA

Pred. proc. knots Pred. proc. knots

True Full 64 100 256 Full 64 100 256

β0 0.1 -0.74 (-2.49, 0.33) -1.04 (-3.36, 0.34) -0.99 (-3.06, 0.45) -0.83 (-2.78, 0.39) -0.64 (-2.13, 0.40) -1.14 (-3.52, 0.55) -1.11 (-3.27, 0.46) -0.79 (-2.92, 0.77)

β1 0.5 0.39 (0.27, 0.52) 0.42 (0.27, 0.56) 0.40 (0.26, 0.55) 0.41 (0.27, 0.55) 0.39 (0.25, 0.54) 0.39 (0.25, 0.54) 0.40 (0.26, 0.54) 0.40 (0.27, 0.54)

β2 1 1.08 (0.95, 1.22) 1.10 (0.95, 1.25) 1.09 (0.94, 1.24) 1.09 (0.95, 1.24) 1.04 (0.87, 1.22) 1.06 (0.87, 1.22) 1.07 (0.92, 1.22) 1.08 (0.93, 1.22)

φ 0.05 0.07 (0.04, 0.11) 0.04 (0.03, 0.07) 0.05 (0.03, 0.08) 0.06 (0.03, 0.10) 0.07 (0.04, 0.11) 0.04 (0.03, 0.07) 0.05 (0.04, 0.08) 0.06 (0.04, 0.10)

σ2 5 4.40 (2.93, 7.90) 5.04 (3.27, 7.55) 4.90 (3.17, 7.90) 4.65 (3.01, 8.29) 4.20 (2.78 6.96) 4.74 (3.16, 6.78) 4.60 (3.07, 6.82) 4.42 (2.91, 6.97)

MSPE 3.11 4.73 3.79 3.70 3.40 4.60 4.05 3.73

Operations (in billions) 3125 50 125 820 25 0.4 1.0 6.6
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Table 3: Lakes data set: Summary of candidate models’ parameter estimates, 50 (2.5 97.5) percentiles.

MCMC INLA

Pred. proc. knots Pred. proc. knots

Full 54 89 126 Full 54 89 126

β0 1.72 (-1.13, 4.46) 1.58 (-1.34, 4.61) 1.73 (-1.32, 4.98) 1.76 (-1.00, 4.84) 1.59 (-1.25, 4.39) 1.50 (-1.67, 5.30) 1.64 (-1.37, 4.90) 1.62 (-1.28, 5.15)

β1 -5.99 (-8.25, -4.39) -6.25 (-8.95, -4.53) -6.23 (-9.08, -4.53) -6.20 (-8.88, -4.53) -5.75 (-7.43, -4.26) -5.79 (-7.36,-4.21) -5.77 (-7.46, -4.21) -5.77 (-7.33, -4.12)

β2 -2.75 (-7.74, 1.57) -2.56 (-7.75, 2.00) -2.82 (-8.30, 1.99)-2.80 (-8.15, 1.98) -2.65 (-8.35, 2.14) -2.44 (-7.77, 3.10)-2.57 (-8.48, 2.38) -2.57 (-7.48, 1.90)

φ 0.07 (0.03, 0.20) 0.07 (0.03, 0.18) 0.07 (0.03, 0.20) 0.08 (0.03, 0.22) 0.06 (0.03 , 0.20) 0.06 (0.03 , 0.18) 0.06 (0.03 , 0.23) 0.06 (0.03, 0.24)

σ2 2.73 (0.91, 9.02) 3.12 (0.98, 11.34) 3.20 (1.04, 12.14) 3.17(1.03, 11.69) 2.34 (0.76, 8.15) 2.52 (0.70, 8.31) 2.49 (0.76, 8.45) 2.54 (0.72, 8.77)
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Table 4: Lakes data set: Predictions and observed data for holdout sets.

Non-spatial Spatial Pred. proc. model, 54 knots

Y (s0,q) = 0 Y (s0,q) = 1 Y (s0,q) = 0 Y (s0,q) = 1

Ŷ (s0,q) = 0 110 32 Ŷ (s0,q) = 0 122 16

Ŷ (s0,q) = 1 33 195 Ŷ (s0,q) = 1 21 211
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Table 5: Forest landuse data set: Summary of candidate models’ parameter estimates, 50 (2.5 97.5) percentiles.

INLA

Pred. proc. knots

Non-spatial 50 100 200

β0 4.04 (3.82, 4.28) 4.19 (2.83, 5.60) 3.86 (2.44, 5.33) 3.95 (2.23, 5.55)

β1 -0.0044 (-0.0046, -0.0042) -0.0049 (-0.0051, -0.0046) -0.0049 (-0.0052, -0.0046) -0.0049 (-0.0052, -0.0046)

β2 0.0051 (0.0048, 0.0054) 0.0059 (0.0055, 0.0061) 0.0059 (0.0055, 0.0062) 0.0059 (0.0056, 0.0062)

β3 -0.0027 (-0.0030, -0.0024) -0.0033 (-0.0037, -0.0029) -0.0034 (-0.0037, -0.003) -0.0034 (-0.0037, -0.003)

φ – 0.036 (0.033, 0.042) 0.039 (0.036, 0.045) 0.041 (0.031, 0.079)

σ2 – 1.52 (1.40, 1.65) 1.68 (1.49, 1.89) 2.32 (1.28, 3.98)
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Table 6: Forest landuse data set: Mean scoring rules based onprediction of hold-out set.

INLA

Pred. proc. knots

Non-spatial 50 100 200

Zero-one 0.80 0.88 0.88 0.88

Quadratic -0.29 -0.18 -0.18 -0.18

Spherical 0.84 0.90 0.90 0.90

Logarithmic -0.45 -0.31 0.30 -0.30
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Figure 1: Illustration of posterior inference for logisticrange and log precision, where nugget parameter is
marginalized out. Left) The dots are evaluation points for the numerical Laplace approach. The contours
are computed based on an these points. Right) The line segments show the first 200 realizations of a MCMC
run.

35



−2.4 −2.2 −2 −1.8 −1.6 −1.4 −1.2 −1 −0.8 −0.6 −0.4
0

0.5

1

1.5

2

Log precision
P

o
s
te

r
io

r

−7 −6.5 −6 −5.5 −5 −4.5 −4 −3.5
0

0.5

1

Logistic range 

P
o

s
te

r
io

r

−0.5 0 0.5 1 1.5
0

1

2

3

Log nugget precision

P
o

s
te

r
io

r
−3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

Regression effect for intercept

P
o

s
te

r
io

r

0.2 0.3 0.4 0.5 0.6 0.7
0

2

4

6

8

Regression effect for covariate 1

P
o

s
te

r
io

r

0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2
0

2

4

6

8

Regression effect for covariate 2

P
o

s
te

r
io

r

Figure 2: Synthetic Gaussian dataset: Left: LA approach forthe posterior marginal of log precision (top), logistic
range (center), and log nugget precition (bottom). Right: LA approach for the posterior marginals of regression
parameters. The dashed curves represent three different knot sizes (64, 100, 256), while the solid curve is for
the full data set (n=500).
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Figure 3: Lakes data set: Prediction (top) and 95% prediction range (bottom) of the latent intensity surface. Top
left: MCMC median, full data set. Top right: LA median, 54 knot predictive process. Bottom left: MCMC
range, full data set. Bottom right: LA range, 54 knot predictive process.
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Figure 4: Forest landuse data set: Inventory data and probability of forest occupancy surfaces. Top left: forest
inventory plot locations. Top right: observed forest occupancy. Bottom left: median fitted probability of forest
occupancy for the 50 knot model. Bottom right: median fitted probability of forest occupancy for the 200 knot
model. Map units are in kilometers.
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