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Abstract

In this paper we introduce a new method for performing computational inference on log-
Gaussian Cox processes (LGCP). Contrary to current practice, we do not approximate by a
counting process on a partition of the domain, but rather attack the point process likelihood
directly. In order to do this, we use the continuously specified Markovian random fields introduced
by Lindgren et al. (2011). The inference is performed using the R-INLA package of Rue et al.
(2009), which allows us to perform fast approximate inference on quite complicated models. The
new method is tested on a real point pattern data set as well as two interesting extensions to
the classical LGCP framework. The first extension considers the very real problem of variable
sampling effort throughout the observation window and implements the method of Chakraborty
et al. (Submitted). The second extension moves beyond what is possible with current techniques
and constructs a log-Gaussian Cox process on the world’s oceans.

1 Introduction

Datasets consisting, at least in part, of sets of locations at which some objects are present are ubiqui-
tous in biology, ecology, economics, and a whole slew of other disciplines. In a number of situations,
the most appropriate statistical models for this type of data are spatial point process models and such
models have been extensively studied by statisticians and probabilists (Illian et al., 2008; Mgller and
Waagepetersen, 2003). They have not, however, been widely embraced by the scientists producing
the data sets. The main reason for this is that point process models are complicated and hard to fit.
As a result scientists often resort to using inappropriate methods. There is an interesting discussion
of this issue in the context of “presence only” data sets in Chakraborty et al. (Submitted), which
outlines a number of ad hoc approaches taken by the ecological community.

This difficulty is compounded by the fact that many real data sets typically do not have the
simple structure of the classical point pattern data set considered in the statistical literature, i.e.
that of a simple point pattern that has been observed everywhere within a simple, often rectangular
plot. For instance, in real data sets the observation process is often not straight forward due to
practical limitations or the observation window is highly complex. This includes data sets mapping
the locations of bird species, for which very little data have been collected in the Himalayas due
to obvious access issues. Therefore, on top of sampling issues that are relatively common such as
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incompletely observed point patterns, positional errors, etc., this data set has a large hole in it where
it is believed that these birds reside, but it is not practical to look for them. Very different, but
similarly complex data deal with freak waves in the oceans. Even if we ignore the temporal aspect of
the problem, along with the uncertainty in the observed locations, this data set remains complicated
to deal with using standard methods. Here, the observation window is a region covering most of a
sphere (the earth!) with a very complicated boundary. Motivated by data sets of this nature this
paper aims to propose an easy to use, computationally efficient method for performing inference on
spatial point process models that is sufficiently flexible to handle these and other data structures. In
fact, these two examples inspired the case studies in Sections 8.2 and 8.3.

In this paper we will focus on log-Gaussian Cox processes (LGCPs), which are a class of flexible
models that are particularly useful in the context of modelling aggregation relative to some underlying
unobserved environmental field (Illian et al., 2011; Mgller et al., 1998). However, standard methods
for fitting Cox processes are computationally expensive and the MCMC methods that are commonly
used are famously difficult to tune for this problem. Recently, Illian et al. (2011) developed a fast,
flexible framework for fitting complicated LGCPs using integrated nested Laplace approximation
(INLA), originally developed by Rue et al. (2009). This approach follows the current trend in
the literature of constructing a Poisson approximation to the true LGCP likelihood and using this
approximation to perform the inference. This approximation proceeds by placing a regular lattice
over the observation window and counting the number of points in each cell. It can be shown that,
if the regular lattice is fine enough and the latent Gaussian field is appropriately discretised, this
approximation is quite good (Waagepetersen, 2004). It can, however, be very wasteful, especially
when the intensity of the process is high or the observation window is large or oddly shaped (see
Section 8.3 for an example of a point process on a very odd domain).

In this paper we essentially have two aims. The first aim is to re-examine the standard methodol-
ogy for performing Bayesian inference on log-Gaussian Cox processes and propose an approach that
is much more computationally efficient based on the stochastic partial differential equation models
introduced by Lindgren et al. (2011). The key difference between this approach and those that exist
in the literature is that the specification of the Gaussian random field is completely separated from
the approximation of the LGCP likelihood. This leads to far greater flexibility, which allows us to
tackle a number of exciting practical problems. The second aim is to demonstrate that this approach
can be handled within the general INLA framework of Rue et al. (2009). This provides a unified
modelling structure and an associated R-library and makes the methods that we develop accessible
to and useful for scientists. In essence, we are aiming to make point process modelling a blacker box.

The paper proceeds as follows. In Section 2, we review the basic properties of log-Gaussian Cox
processes and in Section 3 we review the standard approximation and discuss its limitations. The
main thrust of our approach is outlined in general in Section 4, where we discuss spatially continuous
approximations to Gaussian random fields. Section 5 is devoted to spatially Markovian random fields
and their specification through stochastic partial differential equations. With these ingredients in
place, we describe our approximate likelihood in Section 6 and its implementation in the R-INLA
package in Section 7. Finally in Section 8, we present three examples: a standard example using tree
data, a simulation study with an unsampled area, and a point process on the oceans.

2 Log-Gaussian Cox processes

Consider a bounded region @ C R2. A simple and frequently used point process model is the
inhomogeneous Poisson process, in which the number of points within a region D C 2 is Poisson
distributed with mean A(D) = [, A(s) ds, where A(s) is the intensity surface of the point process.
Given the intensity surface and a point pattern Y, the likelihood of an inhomogeneous Poisson process



is given by

T(Y|\) = exp <Q| —/ A(s) ds) T A6 (1)
Q $; €Y
This likelihood is analytically intractable as it requires the integral of the intensity function, which
typically cannot be calculated explicitly. This integral can, however, be computed numerically using
fairly traditional methods.

Treating the intensity surface as a realisation of a random field \(s) yields a particularly flexible
class of point processes known as Cox processes or doubly stochastic Poisson processes (Mgller and
Waagepetersen, 2003). These are typically used to model aggregation in point patterns resulting
from observed or unobserved environmental variation. In this paper we are particularly interested in
the case of log-Gaussian Cox processes, where the intensity surface is modelled as

log(A(s)) = Z(s),

and Z(s) is a Gaussian random field. Conditional on a realisation of Z(s), a log-Gaussian Cox
process is an inhomogeneous Poisson process. It follows that the likelihood for a LGCP is of the
form (1), where the integral is further complicated by the stochastic nature of \(s) and methods for
approximating this likelihood will be the focus of the next two sections. We note that the log-Gaussian
Cox process fits naturally within the Bayesian hierarchical modelling framework. Furthermore, it is
a latent Gaussian model, which allows us to embed it within the INLA framework. This embedding
paves the way for extending the LGCP to include covariates, marks and non-standard observation
processes while still allowing for computationally efficient inference (Illian et al., 2011). Therefore,
approximating the likelihood in (1) is an essential ‘baseline level’ calculation for many practical
problems. We will investigate this further in Section 8.

3 Computation on fine lattices is wasteful

A common method for performing inference with LGCPs is to take the observation window 2 and
construct a fine regular lattice over it (Illian and Rue, 2010; Illian et al., 2011; Mgller et al., 1998)
and to then consider the number of points N;; observed in each cell s;; of the lattice. It is a simple
consequence of the definition of a LGCP that N;; may be considered as independent Poisson random
variables, that is

Nij ~ Po(Aij),

where A;; = fSij A(s) ds is the total intensity in each cell. Generally speaking, it is impossible to

compute the total intensity for each cell and we therefore use the approximation A;; = [s;;| exp(zi;),
where z;; is a ‘representative value’ of Z(s) within the cell s;; and |s;;| is the area of cell s;;. With
this, the LGCP model has been transformed into the rather more benign GLM framework and can
be treated appropriately. This method has been used to great success in a number of applications
and it has been shown to converge to the true solution as the size of the cells decreases to zero
(Waagepetersen, 2004).

Of course, the elephant in this particular room is the latent multivariate Gaussian vector z that
contains the z;;s—if Z(s) is a general Gaussian random field, z will have a dense covariance matrix.
This limits the above method to quite small lattices. We therefore consider more computationally
efficient spatial models than standard Gaussian random fields. A common approach is to model z as a
conditional autoregressive (CAR) model on the fine lattice and use this to perform fast computations
(Rue and Held, 2005). The CAR approach has been used extensively in applications and has been
implemented successfully within the INLA framework by Illian and Rue (2010); Illian et al. (2011).
It should be noted that both of these methods rely heavily on the regularity of the lattice—somewhat
surprisingly, it is quite difficult to construct a CAR model on an irregular lattice that is resolution
consistent (Rue and Held, 2005), although there has been a recent breakthrough in this direction



by Lindgren et al. (2011). A third method, which is more in line with the general thrust of this
paper, uses predictive process modelling to construct a low-rank continuous Gaussian field over (2
(Chakraborty et al., Submitted).

One of the primary contentions of this paper is that the methods listed above, although successful,
are unsatisfactory. The problem is that the computational lattice has two fundamentally different
roles. The first, and most natural, role is to approximate the latent Gaussian random field Z(s). The
second, and—in our opinion—unnatural, role of the computational lattice is to also approximate the
position of the points. This is unfortunate as a lot of effort goes into collecting position data with
a high degree of precision. Clearly, the finer the lattice is, the less the binning procedure moves the
data. Therefore the quality of the likelihood approximation primarily depends on the size of the grid.
As a result, we are required to compute on a much finer grid than is necessary for the approximation
of the latent Gaussian field. Clearly, lattice based approaches are hence inherently computationally
wasteful in the context of log-Gaussian Cox processes.

The inflexibility inherent in lattice-based methods has another interesting implication—we are
unable to locally refine our approximation to the latent random field. In a lot of situations, this is not
a problem, however, in the problem considered in Section 8.2 there is a large region that contains no
data and will not, therefore, greatly impact the posterior inference. This begs the question: why are
we wasting computational resources generating a high resolution approximation to the latent field
over this area? Clearly a better and less computationally intensive solution would be to reduce the
resolution in these areas without effecting the resolution in the areas that have been sampled. This is
completely impossible with lattice-based methods. While this flexibility will not be needed in every
problem, it is clearly convenient to have the option of changing the resolution of the approximation
locally.

4  Continuous specification of the latent random field

The arguments in the previous section suggest that there are some strong disadvantages in using the
common lattice-based framework to perform inference on log-Gaussian Cox processes. The barrier to
efficient inference is the double duty that the lattice is engaged in. Therefore, we propose to use the
computational mesh (note the change from lattice) only for representing the latent Gaussian random
field. In order to do this we need a continuous specification of our random field model, which we will
take to be a finite-dimensional basis function expansion

n

Z(s) = Z%@(S)v (2)

i=1

where z = (21, 29,...,2,) is a multivariate Gaussian random vector and the {¢;(s)}", are deter-

ministic basis functions. There are three common approximations to Gaussian random fields that
can be written in this form—process convolution models (Higdon, 1998; Xia and Gelfand, 2005),
predictive process, or fixed-rank Kriging, models (Banerjee et al., 2008; Cressie and Johannesson,
2008), and the stochastic partial differential equation models of Lindgren et al. (2011).

The advantage of a finite dimensional, continuously specified Gaussian random field (2) is that
it automatically allows us to compute the term in the likelihood (1) that depends on the data using
the ezact positions of the data points for any underlying grid using an (at most) O(n) operation.
We note that if the basis functions have compact support, which is the case in the SPDE models,
the field can be evaluated in O(1) operations!

The only thing that we then have left to do is to approximate the integral

/QGXP (Z Zi¢z’(5)> ds, (3)

=1



Figure 1: An example of a piecewise linear approximation to a surface. The grey pyramid is a
representative basis function.

which can be attacked using standard numerical integration schemes. This may be done by admitting
a tessellation on the observation window {2 and applying a Gaussian quadrature rule in each triangle.
If the basis functions are chosen to be independent of the model parameters, we can compute and
store the values of ¢;(s) at each integration point. Of course, this can require a lot of storage if the
basis functions are not chosen to have compact support. The reason to prefer basis functions with
compact support is that a numerical integration scheme requires the evaluation of the integrand in
(3) at a large number of points in the observation window 2. For each evaluation of the integrand,
the number of terms in the sum is equal to the number of non-zero basis functions at the point at
which it is being evaluated. Therefore, if the basis functions are non-zero everywhere, the evaluation
of this integral will be very time consuming. We note that the basis functions used in kernel methods
and predictive process-type models typically have global support, whereas the basis functions used
in the SPDE models of Lindgren et al. (2011) always have very small supports.

5 Stochastic PDEs and Markov random fields

While process convolution and fixed-rank Kriging models can be written in the form (2), the cor-
responding basis functions do not typically have compact support and, therefore, evaluation of the
likelihood will still be expensive. We will, therefore, use the SPDE models of Lindgren et al. (2011) to
construct Z(s). This choice also has the pleasing property of being strongly related to the modelling
strategy of Illian et al. (2011), which is based on conditional autoregressive models.

The basic idea of Lindgren et al. (2011) is that, given a surface, an appropriate lower resolution
approximation to the surface can be constructed by sampling the surface in a set of well designed
points and constructing a piecewise linear interpolant (Figure 1). We will, therefore, take the basis
functions in (2) to be a set of piecewise linear functions defined over a triangular mesh, which gives
us more geometric flexibility than a traditional grid-based method. An important question is ‘Which
classical random fields will yield computationally efficient piecewise linear representations?’ It turns
out that the answer is a subset of the Matérn random fields, which are zero-mean Gaussian stationary,
isotropic random fields with covariance function

2
o
c(h) = =—————(kh)"K,(kh), h >0,
where K, (-) is the modified Bessel function of the second kind, v > 0 is the smoothing parameter,
k > 0 is the range parameter, and o? is the variance. The subset of Matérn random fields with
efficient piecewise linear representations occur when v + d/2 is an integer, where d is the dimension
of the space.



When v + d/2 is an integer, a computationally efficient piecewise linear representation can be
constructed by using a different representation of the Matérn field x(s), namely as the stationary
solution to the stochastic partial differential equation (SPDE)

(5% = A) 22 (s) = W(s), (4)

where a = v — d/2 is an integer, A = Zgzl 88—522 is the Laplacian operator and W (s) is spatial white
noise. This representation had first been constructed by Whittle (1954, 1963) while proving (among
other things) that the classical second order conditional autoregression (CAR(2)) model limits to a
Matérn field with v = 1.

Piecewise linear approximations to deterministic partial differential equations are commonly con-
structed in physics, engineering and applied mathematics using the finite element method and it is
of no surprise that this method was also successfully used by Lindgren et al. (2011) to construct
efficient representation of the appropriate Matérn fields. When a = 2, the final outcome of their
procedure replaces the slightly frightening SPDE (4) with the very pleasant equation for the weights
in the basis expansion (2)

(k’C + G —B)z ~ N(0,C), (5)

where B, C and G are sparse matrices with easily calculable entries (it’s an exercise in primary
school-level geometry!)

Cy = /Qqﬁl(s) ds,
Gij = /K;V(m(s) . V¢](S) dS,
B — /(9 ()00, s

09 is the boundary of Q, 0,¢;(s) is the normal derivative of ¢;(s). A detailed presentation of these
models can be found in (Lindgren et al., 2011), where it is also shown that these models lead exactly
to the classical CAR models when computed over a regular lattice.

The presence of the matrix B in (5) is particularly interesting. This matrix encodes information
about the process on the boundary of the observation window 2. The effect of physical boundaries in
spatial models has received very little attention in the literature (a notable example in the context of
Bayesian smoothing is Wood et al. (2008)). For the remainder of this paper, we will set B = 0, which
corresponds to no-flux boundary conditions. We will discuss the interpretation of this condition in
Section 8.3.

All of the discussion in this section is predicated on the idea that we can find good piecewise
linear representations of a class of random fields. It is therefore imperative to construct a mesh over
the observation window in a way that will not introduce excessive approximation bias. A major
difference between point process models and other standard spatial models is that in a point process
model there is data everywhere. As such, we are obliged to make our triangulation cover the space
in a fairly regular way. On the other hand, we are unlikely to be able to infer the fine scale latent
structure in areas where we don’t have points or there has been little sampling effort. This suggests
that a sensible meshing strategy would be to construct a regular triangulation of the observation
window and refine it in areas where there are a large number of points.

6 Approximating the likelihood

With the continuous SPDE model in place, we are now in a position to attack the intractable
likelihood (1). In this section, we will outline a procedure for approximating the likelihood that



extends the standard approximation to the non-lattice, unbinned data case. The log-likelihood

N
log(m(y[2)) = 19| —/QeXP(Z(S))dSJr;Z(Si)

consists of two terms: the stochastic integral, and the evaluation of the field at the data points.
While the continuously specified SPDE models allow us to compute the sum term exactly, we will
need to approximate the integral by a sum. Consider a deterministic integration rule of the general

form ,
/ f(s)ds =) aif(5),
Q i=1

for fixed, deterministic nodes {8;}’_; and weights {&;}}_,. Using this integration rule, we can con-
struct the approximation

p n N n
log(m(y|z)) =~ C — Z & exp Z zip;(5:) | + Z Z 2j0i(84)
i=1 Jj=1

i=1 j=1
=C —alexp(A1z) + 1T Ayz, (6)

where C' is a constant that doesn’t depend on anything important, [A1];; = ¢;(5;) is the matrix that
extracts the value the latent Gaussian model (2) at the integration nodes {5;}, and [As];; = ¢;(s;)
is the matrix that evaluates the latent Gaussian field at the observed points {s;}.

The advantage of approximating the log-likelihood by (6) is that it is of the standard Poisson
form. In particular, given z and 6@, the approximate likelihood consists of IV 4 p independent Poisson
random variables. To see this, we write n = (27 AT, 2T A" and « = (&%,0%,,)". Then, if we
construct some fake ‘observations’ y = (07, 1%X1)T, the approximate likelihood factors as

px1s
N+p
m(ylz) = C H (cin){* e, (7)
i=1

which is just a product of conditionally independent Poisson random variables with mean a;n; and
observed value y;.

Numerical integration schemes that lead to likelihood approximations of the form of the form (7)
were also considered by Baddeley and Turner (2000), under the unusually esoteric name of “Berman-
Turner devices”, for approximating pseudolikelihoods of Gibbs-type point processes. However, to
the best of our knowledge, these ideas have not been extended to LGCPs, most probably due to the
paucity of computationally efficient continuously specified Gaussian random field models. We also
note that, in contrast to Baddeley and Turner (2000), we have strong opinions on the underlying nu-
merical integration scheme. Rather than placing “one [...] point, either systematically or randomly”,
we strongly advise the reader to avail themselves of the last few decades (or arguably centuries) of
numerical analysis and place the integration points at good (or even optimal) points! The simplest
option is to attach to each node in the mesh a region V; for which the value of the basis function
¢i(s) is greater than the value of any other basis function. This construction, shown in Figure 2,
corresponds to the important notion of the dual mesh. The corresponding integration rule sets 3; to
be the node location and &; = |V;| to be the volume of the dual cell. It is easy to show that this
approximation (known as the midpoint rule) is second order accurate. Of course, we can use the
structure of the computational mesh in other ways when constructing the integrator. In particular,
we could construct an integration scheme as the sum of (optimal) Gaussian integration rules on the
individual triangles in the mesh. The weights and integration points for general triangles are well
known and can be found in most books on numerical analysis or finite element methods (Ern and
Guermond, 2004).



Figure 2: The dual mesh (black) is constructed by joining the centroids of the primal triangular
mesh (grey). The volumes of these dual cells define the weights of an integration scheme based at
the nodes of the primal mesh.

7 Implementation in R-INLA

The log-Gaussian Cox process model discussed above can be implemented efficiently within the
R-INLA package, which is a user-friendly interface for the methods introduced by Rue et al. (2009)
and Lindgren et al. (2011). This package allows us to quickly and accurately perform full Bayesian
inference on LGCPs in seconds rather than the hours that an MCMC routine would require. Illian
et al. (2011) argue that the R-INLA package significantly reduces the barrier faced by applied scientists
when attempting to fit spatial point process models. To this end, we note that in spite of the varying
complexity in the models considered, the code for solving them is essentially identical.

The first task is to construct the spatially continuous SPDE model. In order to do this, it
is necessary to construct a mesh over the observation window. This proceeds by constructing a
boundary object and using it to construct a mesh. This mesh can then be used to construct an
SPDE model object, which contains the relevant information about the continuous model. The
following snippet of code constructs a Matérn model with o = 2 on the unit square.

> loc.bnd <- matrix(c(0,0, 1,0, 1,1, 0,1), 4, 2, byrow=TRUE)

> segm.bnd <- inla.mesh.segment(loc.bnd)

> mesh <- inla.mesh.create(boundary=segm.bnd, refine=1list(max.edge=0.1))
> spde <- inla.spde.create(mesh, model="matern")

The refine parameter in the inla.mesh.create function tells the meshing software that the largest
triangle edge in the mesh should be no larger than 0.1.

With the continuous Gaussian random field model in hand, we now turn to the problem of
evaluating it at the appropriate points. It follows from (6) that we need two matrices: one to
evaluate the field at the integration points and one to evaluate it at the observed points. As we
are using a simple vertex-based integration scheme, the first evaluation matrix (A;) is the identity
matrix. The second matrix can be constructed through a call to inla.mesh.project, which is a
general piece of code for constructing evaluation matrices.

> LocationMatrix = inla.mesh.project(mesh, loc)$A
> IntegrationMatrix = sparseMatrix(i=1:nV,j=1:nV,x=rep(1,nV)) #nV is the size of the mesh

10



> QObservationMatrix=rBind(IntegrationMatrix,LocationMatrix)

Finally, we need to construct the likelihood for the data. Following (7), the approximate likelihood
is Poisson and the “data” for the model is

> fake_data = c(rep(0,nV),rep(1,nData)) #nData is the no. of data points

In R-INLA, the Poisson likelihood takes the form

)\n
Ply=n) =" exp(~A).
where A(z) = Eexp(z). From (7), the integration weights are just the volumes of the control

volumes surrounding each vertex (see Figure 2). Rather than re-compute these weights, we can use
the convenient fact that they are simply the diagonal elements of the matrix C' in (5).

> IntegrationWeights = diag(spde$internal$c0)
> E_point_process =c(IntegrationWeights,rep(0,nData))

With all of the ingredients for the model in place, we can now fit the model. The INLA call is as
follows.

> formula = y ~ 1 + f(idx, model=spde)
> result = inla(formula,

data=1list(y = fake_data, idx = c(1:nV)),
family="poisson",

control.predictor=1ist (A=0ObservationMatrix),
E=E_point_process)

The only “non-standard” part of the INLA call is the control.predictor statement, which is required
when there is a matrix (ObservationMatrix) linking the data to the latent field (Simpson et al., 2011a).

A working piece of code containing the snippets in this section can be found in simulated.R in the
supplementary material, which simulates a LGCP on the unit square and performs the appropriate
inference in INLA. The supplementary material also contains the code for the simulated examples
below (Sections 8.2 and 8.3). In order to run these examples it is necessary to update R-INLA to the
latest version with the command

> inla.upgrade (testing=TRUE)

8 Examples

In this section we will consider the application of log-Gaussian Cox processes in three increasingly
complicated situations and demonstrate the applicability of our methods. The first case study is a
rather pedestrian example of a LGCP with covariates fitted to a real data set observed everywhere
in a rectangular area. This is exactly the situation considered in Rue et al. (2009) and Illian and Rue
(2010), who use the standard LGCP approximation on a lattice. The second example is a simulation
study in the vein of Chakraborty et al. (Submitted), where the point pattern is incompletely observed
due to varying sampling effort across the region of interest. The third case study is where, in our
opinion, the power of our method is best showcased. Inspired by the problem of mapping the risk
associated with freak waves on oceans, we have constructed a point process defined only on the
world’s oceans. This is a point process over a very irregular, multiply connected bounded region on
a sphere and, to the best of our knowledge, there is no other method that can solve this problem.
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Figure 3: (Left) The location of Protium tenuifolium. (Right) The posterior for the effect of Phos-
phorus. The dashed line shows the posterior covariate weight for the lattice method, while the solid
line corresponds to the approach described above.

8.1 A vanilla example: Rainforest data

In this case study we deal with a standard application of spatial point process models: species
association with soil properties in tropical rainforests. The complete data set consists of the location
of all trees with diameter at breast height of lcm or greater of a total of 319 species within a 50
ha plot in a rainforest plot on Barro Colorado Island in Panama that has never been logged. We
model the large spatial pattern formed by 4294 trees of species Protium tenuifolium, shown in Figure
3(a), relative to the covariate phosphorus (Condit, 1998; Hubbell et al., 1999, 2005). The plot on
Barro Colorado Island is only one plot within a network of a large network of 50 ha plots that have
been established as part of an international effort to understand species survival and coexistence in
biodiverse ecosystems (Burslem et al., 2001).

Data sets with a similar structure have recently been analysed in the literature both with descrip-
tive (Law et al., 2009) and model-based approaches (Waagepetersen and Guan, 2009; Waagepetersen,
2007; Wiegand et al., 2007). Rue et al. (2009) as well as Illian and Rue (2010) use INLA to fit a
log-Gaussian Cox process to similar data, while Illian et al. (2011) fit a joint model to both the
pattern and covariates. In this paper we fit a simple model, where the latent field is given by

Z(s) = p+ BP(s) + x(s),

where p is a constant mean, P(s) is a spatially varying covariate describing the level of phosphorus
in the soil and z(s) is an SPDE model with = 2. For the purpose of comparison, we fit a lattice
model with linear predictor

z=ul+ P+ x,

where 1 is a vector of ones, P is a phosphorous covariate, « is a CAR(2) model. Both of the models
required around 12 seconds to run in R-INLA. The posterior means for the spatial random effects
are shown in Figure 4 and they are approximately the same. The posteriors for the effect of soil
phosphorous on the location of trees are shown in Figure 3(b).
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Figure 4: This figure shows the two spatial effects obtained when using different point process models
to model the point pattern formed by trees. The figure on the left was obtained using the standard
lattice method, while the figure on the right was constructed from the method introduced above.

8.2 A more complex example: Incorporating variable sampling effort

One of the major challenges when applying spatial point process models to real data sets is that the
point pattern is very rarely captured exactly (Chakraborty and Gelfand, 2010; Chakraborty et al.,
Submitted). As such, it is important that sampling effort is included in the observation process. In
this example, we will consider the case where there is a hole in the data set: an area in which there
have been no measurements, but we expect that presences are possible. This type of situation occurs,
for instance, when considering the spatial distribution of an animal species over an area that contains
an area that is impossible to survey for topographical or political reasons (Elith et al., 2006). In
a related situation, data sampling effort varies spatially and is higher in areas where the scientists
expect a good chance of presence (c.f. the preferential sampling model of Diggle et al., 2010).

Following Chakraborty et al. (Submitted), we include known sampling effort in our model by
writing the intensity as

A(s) = S(s) exp(Z(s)),

where S(s) is a known function describing the sampling effort at location s. In this example, we
will assume that the point pattern has been observed perfectly except in a rectangle (see Figure
5(a)), where the pattern is not observed. We therefore define S(s) to be zero inside this rectangle
and one everywhere else. It is straightforward to see from (1) that, with this choice of S(s), the
unsampled area does not contribute to the integral in the likelihood. We can therefore choose the
mesh to be quite coarse in this area, as long as it does not adversely affect the SPDE approximation
to the random field. Figure 5(b) shows a mesh that has been coarsened in a rectangular region
corresponding to a hole in the sampling effort.

Practically speaking, the changes necessary to add sampling effort to basic point process code
used in the previous section are minimal. The only change is in the E parameter in the INLA code,
the line now reads

E_point_process =c(IntegrationWeights*sampled,rep(l,nData))

where sample is a 0/1 variable that indicates if the mesh node is in the sampled area. This method can
be extended in a straightforward manner to cover more complicated designs, although Chakraborty
et al. (Submitted) suggest it is necessary to assume that the design is known.

In order to test our method on this type of problem, we have simulated a log-Gaussian Cox
process on [—1,1] x [—1,1] and removed the points from the rectangle [—0.5,0.4] x [-0.1,0.4] to
simulate the variable sampling mentioned above. The simulated data set is shown in Figure 5 and
the difference in the posterior mean generated from the full data and the censored data is shown in
Figure 6. There is very little difference between the two posterior means outside of the censored area,
whereas there are, unsurprisingly, missing features from within the censored area. From our point of
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view, the most interesting figure in this example is Figure 7. We ran the analysis using two different
meshes with the same maximum edge length. The first mesh (dotted lines) was a regular lattice that
covered the entire domain and contained 4225 points. The second mesh (dashed lines) is an irregular
mesh consisting of 3850 points that was de-refined in the censored area shown in Figure 5(b). Figure
7 compares the posterior marginals for the parameters for these two meshes and it can be seen that
they are, for all intents and purposes, identical. It is, however, important to have some points inside
the censored area to ensure that the random field behaves properly—it would be incorrect to simply
remove the censored area from the mesh.

Computing on the mesh that was correctly adapted to the problem unsurprisingly resulted in
a significant decrease in computational time. With the regular grid, the full inference took 114.55
seconds on a 2009 Macbook Pro, whereas the computation on the irregular mesh required only 81.02
seconds—a saving of 29%! This justifies our statement that automatically using regular lattices is
computationally wasteful.

Constrained refined Delaunay triangulation
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(a) Simulated data (b) An mesh that takes into account the sampling effort

Figure 5: (Left) Simulated data with a hole in the sampling effort. The red rectangle borders the
area in which there was no sampling, and the red circles show the points that were missed due to
incomplete sampling. (Right) A mesh that takes into account the lack of sampling effort in the
rectangular region.

8.3 An even more complex example: A point process over the ocean

The previous two case studies have been observed over quite simple observation windows: namely
rectangles. However, point processes often occur over complicated domains and the topology, to-
pography and geometry of the domain will typically be significant when modelling the covariance
structure (c.f. the discussion of Wood et al. (2008) in the context of spatial smoothers). For this case
study, we have simulated a LGCP on the oceans. Point processes over the oceans would be useful, in
particular, when modelling the risk of freak waves. To the best of our knowledge, no existing meth-
ods for point processes can be used directly to attack this problem. In contrast, the methodology
developed in this paper can be applied with essentially no change! In fact, the most difficult task was
finding a suitable map for the boundaries of the continents. As we are only working with simulated
data, we built very basic continent outlines that were sufficient to show that it is possible to perform
inference on a log-Gaussian Cox process over the oceans.
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Figure 6: This figure shows the posterior mean of the spatial effect when using the full simulated
point pattern (left) and the partially observed point pattern (right). We note that the large scale
features of both fields are very similar in areas at which the point pattern was sampled.

The oceans form a non-convex, multiply connected bounded region on the sphere and it is, there-
fore, necessary to construct a Gaussian random field model over this region. The main complication,
beyond those considered by Lindgren et al. (2011) is that we need a model for the covariance at the
boundary. This is a difficult issue that has essentially been ignored in the statistics literature. As we
are working with simulated data, we have the luxury to choose a relatively simple, yet still realistic
boundary model. In particular, as we would expect that wave heights vary more near the coast than
in the deep ocean and, as the designation of a “freak wave” is relative to the expected wave height,
we will require that the random field has more uncertainty near the boundary. This can be achieved
very naturally using Neumann boundary conditions. The easiest way to see this is to consider the
one dimensional case where, using Theorem 1 in Appendix A.4 of Lindgren et al. (2011), we can see
that the variance of the one dimensional SPDE model with o = 3/2 (which corresponds to an o = 2
model in 2D) and Neumann boundary conditions on [0, 1] is

o0

cov(x(s),z(s)) = 22, Tm(2k) + Z Tm(2]s — kl),

k=0 k=—00

where 7,,(s) is the isotropic covariance function corresponding to the model on R and the dash on
the first sum indicates that the £ = 0 term is halved. From this expression, it is clear that, for
sufficiently large k, the variance is approximately constant (and equal to the first sum) in the centre
of [0,1] and it doubles at the endpoints. A similar result holds over rectangular regions in 2D,

The simulated point process is shown in Figure 8, which was constructed by simulating a Gaussian
random field associated with the mesh in Figure 8(b). The resulting point pattern has 1142 points.
With essentially no changes to the code, the inference was performed on this model and the posterior
mean is shown in Figure 9(b). The posterior mean shows the same large-scale features as the sample
that was used to generate the LGCP (Figure 9(a)), with the expected loss of information due to the
uninformative nature of point pattern data.

Some interesting effects induced by the boundary conditions can be seen in Figure 10. The
pointwise standard deviation of the posterior latent Gaussian field is shown in Figure 10(a). The
standard deviation is reasonably constant away from the coasts, whereas it is much higher near the
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Figure 7: This figure shows the effect of coarsening the mesh on the posterior estimates of the
parameters. The dashed line corresponds to the anisotropic mesh in Figure 5(b), while the dotted
line corresponds to using a regular grid with the same maximum edge length as the fine portion of
the anisotropic mesh. For comparison purposes, we have plotted the posterior generated from the
correctly observed point pattern (solid line).

boundaries. There are also some interesting effects in the Gulf of Carpentaria (Australia) and the
North Sea (between the UK and Scandinavia). This is an effect of the prior model, which increases
the variance near the boundaries and in areas with high curvature.

In the context of freak wave modelling, Figure 10(b), which shows probability that the log-risk will
be greater than 5.5, is probably the most important result. This type of map can easily be computed
using the function inla.pmarginal. Once again we see pronounced effects near the coastlines.
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(a) Simulated data (b) A mesh over the oceans

Figure 8: (Left) A simulated log-Gaussian Cox processes over the oceans. (Right) A mesh that covers
the oceans.
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Figure 9: This shows the true sample from the latent Gaussian random field used to generate the
sample in Figure 8 (Left) and the posterior mean of the latent spatial effect (Right). We note that
the large scale behaviour is the same for both figures.

9 Discussion and future work

In this paper we have developed a new, computationally efficient approximation to log-Gaussian
Cox processes that bypasses the requirement that they have to be defined over a regular lattice.
Furthermore, by exploiting the computational and modelling advantages of the stochastic partial
differential equation models of Lindgren et al. (2011), we are able to attack a variety of interesting
new problems. We note that the approximation introduced above is also valid when using kernel
methods (Higdon, 1998), predictive processes (Banerjee et al., 2008) or fixed-rank Kriging (Cressie
and Johannesson, 2008). The problem with using these methods in this context is that their basis
functions are typically non-local and, therefore, the point evaluation matrices A; in (7) are dense (see
Simpson et al., 2011b, for a further discussion of the choice of basis functions in spatial statistics).

In Section 8.3, we considered a point process over a bounded region of the sphere. To the best
of our knowledge, there are no other applicable inference methods for this problem. As such, there
is also no work on modelling boundary effects for point process models, and precious little work
done even in the general spatial statistics literature on this problem. Therefore, an interesting and
challenging problem is the construction of good boundary models. We have argued heuristically that
Neumann, or no-flux, boundary conditions increase the variance at the boundaries. Similarly, it can
be easily seen that Dirichlet boundary conditions, which corresponding to fixing the value of the
field on the boundaries, decrease the variance. It would be interesting to study the effect of other
boundary conditions in the statistical context.

There is work to be done on the theoretical properties of the approximation presented in this
paper. We would expect convergence results similar to those of Waagepetersen (2004) for the lattice
case. However, we would also hope for sharper asymptotic results, as the approximation properties
of the finite element basis provide us with good bounds on the convergence of the underlying random
field model (Simpson et al., 2011b). Similarly, the interplay between the random field approximation,
the numerical integration scheme and the posterior accuracy should be investigated. The ultimate
aim of this theory would be to construct spatially adaptive methods for inferring log-Gaussian Cox
processes. The computational savings from the simple a priori adaptation in Section 8.2 suggests
that this would be a worthwhile idea to pursue.

Finally, it is worth noting that the approximation in Section 6 applies even when the latent
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Figure 10: The pointwise posterior standard deviation for the log risk surface (Left). The risk map
P(log(A(s)) > 5.5) computed from the posterior marginals (Right).

random field Z(s) is not Gaussian. The only requirement is that it has the basis function expansion
(2) and that the statistical properties of z is known. In particular, this approximation applies to
SPDE models with non-Gaussian noise. This has been investigated for type-G Lévy processes, and
especially for Laplace random fields, by Bolin (2011). Similarly, replacing Gaussian white noise with
Poisson noise would result in shot-noise Cox process models of the Matérn type. It would be very
interesting to investigate these models!
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