NORGES TEKNISK-NATURVITENSKAPELIGE
UNIVERSITET

An approximate forward-backward algorithm applied to
binary Markov random fields

by
Haakon Michael Austad and Hakon Tjelmeland

PREPRINT
STATISTICS NO. 11/2011

NORWEGIAN UNIVERSITY OF SCIENCE AND
TECHNOLOGY
TRONDHEIM, NORWAY

This report has URL http://www.math.ntnu.no/preprint/statistics/2011/511-2011.pdf
Hakon Tjelmeland has homepage: http://www.math.ntnu.no/~haakont
E-mail: haakont@stat.ntnu.no
Address: Department of Mathematical Sciences, Norwegian University of Science and
Technology, N-7491 Trondheim, Norway.

An approximate forward-backward algorithm
applied to binary Markov random fields

Haakon Michael Austad and Hakon Tjelmeland
Department of Mathematical Sciences
Norwegian University of Science and Technology

Abstract

In this report we propose a new approximate version of the well known forward-
backward algorithm and use this to perform approximate inference on Markov random
fields. We construct the approximate forward-backward algorithm by adapting ap-
proximation results for pseudo-Boolean functions. By using an approximation of the
energy function which minimizes the error sum of squares we construct a forward-
backward algorithm which is computationally viable. We also show how our ap-
proach gives us upper and lower bounds as well as an approximate Viterbi algorithm.
Through two simulation examples and a real data example we demonstrate the accu-
racy and flexibility of the algorithm.

Key words: Markov random fields, pseudo-Boolean functions, forward-backward algorithm,
approximate inference

1 Introduction

In statistics in general and perhaps especially in spatial statistics we often find ourselves
with distributions known only up to an unknown normalization constant. Calculating this
normalizing constant typically involves high dimensional summation or integration. This
is the case for the class of discrete distributions known as discrete Markov random fields
(MRF).

A common situation in spatial statistics is that we have some unobserved latent field x
for which we have noisy observations y. We model z as an MRF with unknown parameters
0 around which we want to do inference of some kind. If we are Bayesians we could
imagine adding some prior for our parameters 6 and studying the posterior distribution
p(fly). A frequentist approach could involve finding a maximum likelihood estimator for
our parameters. Independently or in combination with these investigations we might want
to perform simulations and generate samples from p(z|f) for some values of §. Without
the normalizing constant however, all these become non-trivial tasks.

There are a number of techniques that have been proposed to overcome this prob-
lem. The normalizing constant can be estimated by running Markov chain Monte Carlo
(MCMC) which can then be combined with various techniques to produce maximum like-
lihood estimates, see for instance Geyer and Thompson (1992), Gelman and Meng (1998)
and Gu and Zhu (2001). Other approaches take advantage of the fact that exact sampling
can be done, see Mgller et al. (2006). In the present report however, we focus on the
class of deterministic methods, where by deterministic we mean that repeating the esti-
mation process yields the same estimate. In Reeves and Pettitt (2004) the authors devise
a computationally efficient algorithm for handling so called general factorisable models of
which MRFs are a common example. This algorithm, which we refer to from here on as
the forward-backward algorithm, grants a large computational saving in calculating the
normalizing constant by exploiting the factorisable structure of the models. For MRFs
defined on a lattice this allows for calculation of the normalizing constant on lattices with
up to around 20 rows for models with first order neighborhoods. In Friel and Rue (2007)
and Friel et al. (2009) the authors construct approximations for larger lattices by doing
computations for a number of sub-lattices using the algorithm in Reeves and Pettitt (2004).

The energy function of an MRF is an example of a so called pseudo-Boolean function.
In general, a pseudo-Boolean function is a function of the following type, f : {0,1}" — R.
A full representation of a pseudo-Boolean function requires 2" terms. Finding approximate
representations of pseudo-Boolean functions that require fewer coefficients is a well stud-
ied field, see Hammer and Holzman (1992) and Grabisch et al. (2000). In Hammer and
Rudeanu (1968) the authors show how any pseudo-Boolean function can be expressed as
a binary polynomial in n variables. Tjelmeland and Austad (2012) expressed the energy
function of MRFs in this manner and by dropping small terms during the forward part of
the forward-backward algorithm constructed an approximate MRF.

Our approach and the main contribution of this report is to apply and modify methods
from pseudo-Boolean function approximation to design an approximate forward-backward
algorithm. By approximating the binary polynomial representing the distribution before
summing out each variable we get an algorithm less restricted by the correlation structure
of the model, thus capable of handling MRFs defined on large lattices and MRFs with
larger neighborhood structures. For the MRF application this approximation defines an
approximate MRF for which we can calculate the normalizing constant or evaluate the
likelihood as well as generate realizations. With our approach to approximating MRFs we
also show how we can construct upper and lower bounds for the normalizing constant, and
thus the likelihood, as well as construct an approximate Viterbi algorithm, see Kiinsch
(2001).

The report has the following layout. In Section 2 we formally introduce pseudo-Boolean
functions and their polynomial representation and show some results for approximative
representations. Section 3 details the forward-backward algorithm for calculating the nor-
malizing constant and likelihood for an MRF, using the notation established in Section 2.
Then in Section 4 we show how we can modify approximation results for pseudo-Boolean
functions to construct our approximative forward backward algorithm. In Section 5 we
extend this to the Viterbi algorithm. Section 6 includes a number of examples demonstrat-

ing the accuracy of our new approximations. Finally in Section 7 we include some closing
comments and conclusions.

2 Pseudo-Boolean functions

In this section we introduce pseudo-Boolean functions and discuss various aspects of ap-
proximating pseudo-Boolean functions using the results of Hammer and Holzman (1992)
and Grabisch et al. (2000). We end the section by showing how we can calculate the
approximation for a particular design of the approximating function.

2.1 Definitions and notation

Let © = (z1,...,2,) € Q = {0,1}" be a vector of binary variables and let N = {1,...,n}
be the corresponding list of indices. Then for any subset A € N we associate an incidence
vector z of length n whose kth element is 1 if £ € A and 0 otherwise. We refer to an element
of x, z;, as being "on" if it has value 1 and "off" if it is 0. A pseudo-Boolean function f, of
dimension dim(f) = n, is a function that associates a real numbered value to each vector,
x € {0,1}" i.e f:{0,1} — R. The simplest representation of a pseudo Boolean function is
simply a list, using some ordering, of the 2" values we associate with the incidence vectors.
Hammer and Rudeanu (1968) showed that any pseudo-Boolean function can be expressed

uniquely as a binary polynomial,
ASN keA

where 3% are real coefficients which we refer to as interactions. We define the degree of
f, deg(f) as the degree of the polynomial and call x) a nuisance variable if f(zq,...,x; =
0,...,2,) = f(x1,...,2,=1,...,2,) for all z_, where x_ = (z1,...,Tp_1, Ths1,- -, Tn)-
Note that zj being a nuisance variable is equivalent to 8% = 0 for all A where k € A.

In general the representation of a function in this manner requires 2" coefficients. In
some cases one or more 3* might be zero and in this case a reduced representation of the
pseudo-Boolean function can be defined by excluding some or all the terms in the sum in

(1) where 8 = 0. Thus we get,
fle) =8 [(2)
AeS kel
where S is a set of subsets of N at least containing all A € N for which * # 0. We say
that our representation of f is dense if for all A € S all subsets of A are included in S. The
minimal dense representation of f is thereby (2) with,

S={\c N:p"#0 for some A 2 \}. (3)

Throughout this report we restrict the attention to dense representations of pseudo-Boolean
functions. Note however that some of the theorems below are valid also without this
restriction.

Figure 1: DAG representation of the pseudo-Boolean function in (4). Nodes can be thought
of as either representing the set of interactions S or the set of states €).

Before we proceed further we introduce a small example to illustrate some properties
and notation regarding pseudo-Boolean functions. We will refer to this example to illustrate
properties of pseudo-Boolean functions throughout the report. Let n = 3, so N = {1,2,3}
and assume that all interactions are non-zero so S = {F, {1}, {2}, {3}, {1, 2}, {1, 3},{2, 3}, {1
,2,3}} and,

flxy, xg,23) = B9 + Blay + BPxy + B3 + Px1xs + BRPx125 + 0015 + 1221 2015, (4)

We have found that when working with pseudo-Boolean functions, it is useful to visualize
the set S as a directed acyclic graph (DAG). Each node A in the graph represents an
interaction 3* and each node has a vertex connecting it to all nodes where |[A| = [A| — 1
and A <)\, see Figure 1. We refer to these nodes as the children of A and the nodes A o A,
such that |A| = |A| + 1, as the parents of \. Note that the number of children of each node
will be equal to |A| and the number of parents of each node will be equal to n—|\|, assuming
the interaction parameters of all parents to be non-zero. The graph representation of our
example function (4) can be seen in Figure 1. It can also be useful to think of the graph in
Figure 1 as representing the set €2, each node X\ in this case representing the configuration
of x where z = 1 if k € A and z; = 0 otherwise. So for instance node {1, 2} represents
the state z = (1,1,0). We must note an important difference between representing the set
S and the set 2 in this manner. The set S will not necessarily include all A € N, thus
the graph need not be full as in Figure 1. If 523 where zero for instance, then the node
{1,2,3} would not be present. This will never be the case if we let the graph represent .
For this set we, for obvious reasons, always include all configurations of x.

We now introduce some notation we need later in the report. We define the subset
Sy as the set Sy = {A € S : A < A}. Think of this as all interactions that include the
interaction A. Using the graph representation of S, S consists of all nodes starting at node
A and moving up in the graph. So, in our example, Sy 2y = {{1,2}, {1,2,3}}. Equivalently

4

for the set €2, we define the subset Q) as the set Q) = {x € Q : 2, = 1, Yk € A\}. So this
is the set of all x where a given selection of x are on. Using the graph representation, we
again find these nodes by starting at node A and moving up. For our example function we
have for instance Q¢ o3 = {{1,1,0}, {1,1,1}}. We later also need the complements of these
two subsets, S§ = S\Sy and Q5 = Q\Q,. Lastly we define S§ = {A € S: An A = &}
and QO = {z € Q: 2 = 0, Yk € A\}. If we think of the sets Sy and Q, as the sets where
A is on, then SY and QY are the sets where A is off. Again, using our example we have for
instance Sy, 5, = {1, 3} and Q) 5, = {{0,0,0},{0,0,1}}. Note that in general S§ # S} and
equivalently Q5 # Q9.

2.2 Approximating pseudo-Boolean functions

Since for a general pseudo-Boolean function, the number of interactions in our repre-
sentation grows exponentially with the dimension n, it is natural to ask if we can find
an approximate representation of the function that reduces the number of interactions
required for storage. We could choose some set S = S to define our approximation,
thus choosing which interactions to leave, S, and which to remove, S\S’ . For a given S
our interest lies in the best such approximation according to some criteria. We define
As(f(x) = f(x) = 3ueg B [Luen r as the operator which returns the approximation
that, for some given approximation set S, minimizes the error sum of squares (SSE),
- _ 2
SSE(f, /) = 3, (£(@) - f@)) .

ze)

()

We find the best approximation by taking partial derivatives with respect to 5 for all A € S
and setting these expressions equal to zero. This gives us a system of linear equations,

Y f) =] [2 BAﬂxk] =) fl@), VAreS. (6)

ISP e LAeS keA IS OON

Existence and uniqueness of a solution is assured since we have]5’ | linearly independent
equations and |§ | unknown variables. Clearly if S o S, then the best approximation is the
function itself, f(x) = f(x).

It is common practice in statistics and approximation theory in general to approximate
higher order terms by lower order terms. A natural way to design an approximation would
be to let S include all interactions of degree less than or equal to some value k. In Hammer
and Holzman (1992) the authors focus on approximations of this type and proceed to
show how the resulting system of linear equations through clever reorganization can be
transformed into a lower triangular system. They solve this for £ = 1 and k£ = 2 as well
as proving a number of useful properties. Grabisch et al. (2000) proceed to solve this for
a general value of k.

In the present report we consider a similar design of the set S, namely the case where
S is a dense subset of S. So if A € S, then all A © X must also be included in S.

N

Figure 2: Left: DAG representation of the pseudo-Boolean function defined over the set
S — {1, {1}, {2}, {3}, {1,3},{2,3}}. Right: Distribution of the error f(z)— f(x) when S =
{@ {1}, {2}, {3}, {1,2},{1,3},{2,3}} and S = {@,{1},{2},{3},{1,3},{2,3}}. For states
represented by a red node f(x) — f(z) = 212 while for states represented by a blue node,

f@) = f@) = —5

Although this may at first sound restrictive we will see that it is not inhibitive for our
application on MRFs later in the report. Consider our example in (4). We could choose
S = {@,{1},{2},{3},{1,3},{2,3}}, see the DAG representation to the left in Figure 2.
Clearly the approximation using all interactions up to degree k is a special case of our
class of approximations. Our motivation for studying this particular design of S will
become clear as we study the forward-backward algorithm. We now proceed to prove some
useful properties of this approximation. Note that the first two theorems where proved
in Hammer and Holzman (1992) (using different proofs), and the proofs and theorems are
valid for our class of approximations as well. We include these theorems here with proofs
for completeness and insight.

Theorem 1. The above approximation Ag(f(z)) is a linear operator, i.e. for any con-
stants a,b € R and pseudo-Boolean functions g(x) and h(x) defined over S, we have that

Aglag(x) + bh(x)) = aAg(g(x)) + bAg(h(x)).
Proof. Let f(z) = Az(f(z)), §(z) = Ag(g(x)) and h(z) Ag(h(z)). We show the theorem
by inserting f(z) = ag(x) + bh(z) and f(x) = ag(z) + bh(z) in (6),

> f@) Z[g(x) + bh(z] > f@) Z [ag(z) + bh(z)], ¥ A e S.

.Z‘EQA IEQA erA

m ||

This is clearly satisfied if we require,

D) = D> g(x), VAe s,

ZEQ)\ .TEQ)\
D h(x)=)] h(x), VAeS.
e e

Each of these systems of equations contains |S| equations and |S| variables and thus have a
unique solution. Since we know that (6) has a unique solution, this completes the proof. [J

Since each interaction term in a pseudo-Boolean function is a pseudo-Boolean function
in itself, this theorem is important because it means that we can approximate a pseudo-
Boolean function by approximating each of the interaction terms involved in the function
individually. Also, since the best approximation of a pseudo-Boolean function is itself, we
only need to worry about how to approximate the interaction terms we want to remove.

Theorem 2. Assume we have two approximations of f(z), Ag(f(x)) and Ag(f(z)), such

that § € § € . Then Az(Az(f(x))) = Az(f(x)).

Proof. Let f(x) = As(f(®)) = Dres g [Ise 21 and JE(I) = As(f(x)) = ZAE§ Ch [Trea ©n-
Again, we prove the theorem by studying the equations that specify the solutions. For

f(x) = Ag(f(z)) we have,
> As(f(@) = D) flx), Y ae s, (7)

:EGQ)\ ZEQ)\

Correspondingly, for A §(f(x)) we get,

Y} Ag(f@) =) f@), ¥ A€ s ®)

SCEQA QEQA

e

Since f(z) = Ag(f(z)) and

> As(F@) = Y fo) = Y As(f(@) = Y @), Y ae S (9)

:EEQ)\ (EEQ)\ xEQ/\

< S we can combine (7) and (8) to get,

This is the same set of equations as for Az(f(z)), so since the solution exist and is unique,
we get the same approximation. O]

This theorem shows that an iterative scheme for calculating the approximation is pos-
sible. The next two theorems show useful properties regarding the error introduced by the
approximation.

Theorem 3. Assume again that we have two approximations of f(z), Ag(f(z)) and Az(f(z)),
such that § < § < S. Letting f(z) = Ag(f(x)) and f(x) = Az(f(x)), we then have
SSE(f, f) = SSE(f. f) + SSE(f, f)-

-3 (f@ - F@) + Y (f) = f@) + D (@) - F@)(f@) - f@)
= SSE(/, /) + SSE(f. /) + 2 (f(2) = F@)f () = 3 (f(x) = fl@)f (@)

To prove the theorem it is sufficient to show that,

S (f(@) ~ F@) i) - Y (@) - f@) f) =o. (10)
e e
First recall that we from (6) know that,
3 [f(a:) - f(q:)] —0, ¥ e d. (11)
Also, since § c S, B
3 [f(x) - f@)] —0, ¥V \ed. (12)
TEN)

We study the first term, 3 (f(z) — f(x))f(z), expand the expression for f(z) outside
the parenthesis and change the order of summation,

2 @) = faNfz) =) | (fl@) = fa)), B Hm)

zeQ xeQ AeS keA

_ylay (nxk<f<x> —f@»)]

where the last transition follows from (11). Using (12) we can correspondingly show that

Secalf(@) = f(2)) f(x) = 0. O

The next Theorem gives some useful insight into how we can calculate SSE(f, f).

Theorem 4. Given a pseudo-Boolean function f(x) and an approximation f(z) constructed
as described, the error sum of squares can be written as,

Y@ - fw| = % lﬂA 2<f<x>—f<x>>] (13)

e} AeS\S zeQlp

8

Proof. We study the error sum of squares,

Y@ - i@ = X [@ - @y i@)]| - 3 (@) - faniw)

=2 [Z M (@) = f(x)) ka] -2, [Z F(f (@) = Fle) ka]
=35 [2 (flw) - f(x))] - [2 (flw) - f@))] .

The second sum is always zero by (12). Since S = S. The first sum can be further split
into two parts,

ZﬁA[Z (f(x)—f(x))] = ZBA[Z (f(x)—f(l‘))] + >, 6 [Z (f(ﬂf)—f(ﬂ:))],

AeS e AeS TEQA AeS\S ey
(14)

where once again the first sum is zero.]

Note that this theorems tells us that the error can be expressed as a sum over the 5’s
that we remove when constructing our approximation. Also, note the special case where
we assume S = S\)\, i.e we remove only one interaction 3*. Then,

S [- fw)| = [Z (f(2) - f<:c>>] . (15)

e e

With these theorems in hand we can go from S to S by removing all nodes in S\S .
Theorems 1 and 2 allow us to remove these interactions iteratively one at a time. We
start by removing the interaction (or one of, in the case of several) 3* with highest degree
and approximate it by the set containing all A < A. In other words, if the interaction has
degree k = |\| we design the k — 1 order approximation of that interaction term. Grabisch
et al. (2000) gives us the expression for this,

. A (_1\A=1=[A] (LY AI=TAL ox -
BA :{ Y+ (—1) lﬁA (2) B :ﬁct ;’ (16)

We then proceed iteratively until we reach the set of interest S.

Returning to our example in (4), let S = {&, {1}, {2}, {3}, {1,3}, {2, 3}}, so we want to
remove interactions {1,2,3} and {1,2}. We want to approximate f(z) by,

f(zy, 20, 23) = 5@ + lel + 52302 + ,5’3333 + Bl?’xlxg + 523x2x3. (17)
e accomplis is by first removing and getting a temporary approximation,
W lish this by first ing 3% and getti t imati

JE(iUh To,23) = B@ + 51331 + 52552 + 33953 + Blzﬂflxz + 31356’1373 + 523@1’37 (18)

9

and then removing 5'2. Removing 423 and 32 is done by calculating the second and first
order approximations respectively. We get these directly from (16),

1 1 1 1
A§(6123m1$2x3) :gﬁmg . 1512%1 . 1612%2 . 1512%3

1 1 1
+ 55123171562 + 55123301% + 551231'23637

. 1, 1= 1 -
A (51211711'2) = — 1512 + 55121‘1 + 5512I2.

U

Thus our full approximative pseudo-Boolean function becomes,
P o _ 1o 1, L o L 1o
flar wy,ws) = (2 = 18") 4 (B4 5% Jan + (874 581) 2
s L 13, 1 5123 23 L o103
+ (87 = 387w+ (BY + 58" Jmws + (57 + 587) waws.

The next theorem shows us how the approximation error is distributed among the different
x € ().

Theorem 5. Given the approximation Ag(f(z)) = f(x), when S\S = X the error becomes,

F@) - Fl) = ()T (19

Proof. Using (16) we can rewrite the error,

fla) = fla) =D 88 [Tow = 20 8 [

AeS keA AeS keA
[S [w N
ke AeS keA
_ 2\ 1YAI=1A] 1\ A=A A]
ke AeS:Ach keA
= ﬁ* Hmk + ﬁ|_i Z [(_1)>\|—|A|2A| ka])
ke 2 AeS:Ach keA

10

Clearly, x is either in) or z is in 5. Checking the first case first, x € (1,

~ A
F)— Fm) = P4 S S [~
AeS:AcA
_QBM Z [(—1)PI-aIglAT)
AeS:Ac A
A
* Al A=IAlolA
5[
_B
21A17

where we have used that,
3 (”) a"FbF = (a + b)". (20)
k=0 k

If x € QF, then one or more of x;, for k € A are off. Denote A* < A as the interaction with
the highest degree that remains on, and note that this will be unique. We can then write,

f@) - f@) = 25 Y [

AeS:ACA*

g |AZ*| [(|A*|> A-IAlplal|

= — (—1)H=212

X
SIPTRRNIY _
|A¥] .
_ax B | A% A*|—|A]o|A
= (_1)\/\| [A*| 2 (_1)\ I=[AT9lA]
SIPSRANIY _
A
_ (_py-iax B
_ B
= <_1)|>‘| Zke)\xk__
21|
This proves the theorem. [

To illustrate this result, let S = {&F, {1}, {2}, {3}, {1,2},{1,3},{2,3}} and S = {&, {1},
{2},{3},{1,3},{2,3}}, so S\S = {1,2}. The distribution of the error is illustrated on the
right in Figure 2.

As the absolute value of the error is the same for all states, if we sum the squared error
over all states we get,

SSE(f, f) = 2 (5;) . (21)

11

We note that these results are in agreement with Theorem 4 since [Q2y| = 2", For our

example in (17) with S\S = {{1,2},{1,2,3}}, the errors for removing the nodes will be,

123 _ A(p123 _ 1 123 _ @ ’
Z(ﬁ L1223 A(ﬁ xll’ﬂs)) Z 85 8 3)

e e
~ 2

~ M - 12
g one- A 2 (1) -+ (7).

And since 52 = 512 %/3123 the total error becomes,

w;) <f(x) —f(:c))2 —8 (%23)2 +8 <%>2 ~8 (%23)2 +8 (%12 + %)2. (22)

Studying the error gives some insight into what the approximation does. The error from
removing each node is spread as evenly as possible among the other states. We can think
of the approximation as distributing the interactions we want to remove among the inter-
actions we want to keep.

2.3 Second order interaction removal

In this section we discuss pseudo-Boolean function approximation for a specific choice
of S, which is of particular interest for the forward-backward algorithm. We show how
we can construct a new way of solving the resulting system of equations and term this
approximation the second order interaction removal (SOIR) approximation.

Assume we choose S = Sfi, e In other words we want to remove all interactions involv-
ing both 7 and j and approximate these by all lower order interactions. Using Theorem
1 we can redefine f(z) to contain only the interactions * where A € Sy; j;, since we only
need to focus on the interactions we want to remove. Thus,

fl@)y=> Bz~ fl@)=> "] (23)

AeSg 5 keA AeS keA

and as before we know that to minimize the error sum of squares, the approximation must
fulfill (6). We could of course proceed as in the previous section, iteratively removing one
interaction at the time until we reach our desired approximation. We here illustrate a
slightly different approach which takes advantage of the particular structure of S. This
allows us to calculate the approximation even faster than before, and it also, as we will
see, gives us an explicit expression for the error. We will see in Section 2.4 how this in turn
allows us to construct upper and lower bounds for pseudo-Boolean functions.

12

We rewrite the error f(z) — f(z),

fx) = fl@)= >, B [aw— D 8% [

AeS jy keA AeS keA
=) <5Axﬂj (BN Ny BA\{J'}:BZ.)) [T =] (24)
AGS{Z-J} k‘EA\{i,j}

The easiest way to convince ourselves that we can always organize the terms in this manner
is to observe that every A € Sy; ;; contains both 7 and j, thus for each of these interactions
there will be a unique triplet of interactions in S, AW} including ¢ but not j, A
including j but not i and SA\7} that contains neither. Since S is chosen to be the
complement of Sy; ;; and S is dense, our approximation set contains all these triplets.

To ease the notation we define,

AfA(.CL’i, LL’j) = BAZEiSL’j - (BA\{i’j} + BA\{’L}ZEJ + ﬁNA\{j}xi), Y Ae S{%J} (25)

Next we insert our expression for f(x) — f(z) into (6) and switch the order of summation,

@ -f@] =X | X |afea) [«

ey zeQy | AeSy 5y | keA\{7,j}]
- Z Z My, x4) H Ty
AeSy; 4y | e | keA\{7,5} 1

) > AfMai) | =0,¥V AeS. (26)

AeSpi gy | @Eo@tig

We now proceed to show that we can find a solution satisfying the equations in (26) where
each of the sums ZZGQM(A\{M}) AfM(x;,x;) is zero. Obviously for each A the function
Af*(xi, ;) only has four possible values, Af*(z; = 0,z; = 0), Af*z; = 1,z; = 0),
Af*z; = 0,z; = 1) and AfMa; = 1,2; = 1). Thus the sum, erﬂw(,\\{ij}) AfA (g, x5),
simply includes each of these values multiplied by the number of times they occur. We
now study more closely in what combinations they can occur. Note that obviously A\{i, j}
never contains ¢ or j. Consider first the case where A and thereby A U (A\{7, j}) does not
contain ¢ or j, then,

D AfA(xi,xj)_M(AfA(—0,2; = 0) + Af M ay; = 1,2; = 0)

TEQNL(A\(1,5})

+ ANz =025 = 1) + Af (2 = 1,2, = 1)). (27)

13

Next assume A U (A\{7, j}) contains ¢ but not j, then,

Q U %,J
2 AfM i, x;) = ’/\(g—\{]})‘ (A = 1,25 =0) + Afa; = 1,2, = 1)).
TED UMD
(28)
Similarly if A U (A\{4,j}) contains j but not i, then,

Q U 1,7
Z AfA<.’EZ',.I‘j) = w (AfA(ZEZ = O,l’j = 1) + AfA<.’EZ = 1,$j =].)) .

TEQG(A\(3,5})
(29)
The final case is the case where A U (A\{i,j}) contains both i and j. However this last
instance will never occur in our setting, since any interaction containing ¢ and also j is
removed from the graph and thus is not in S. We can now reach the conclusion that if we
require,

AfMw; = 0,2, =0) + Af Nz = 1,2, = 0)+

AfMri =02, =1)+ AfMz; = 1,2; = 1) = 0, (30)
AfMri =12, =0)+ Afz; = 1,2; = 1) = 0, (31)
AfMri =02, =1)+ Afz; = 1,2; = 1) = 0, (32)

for all A € Sy, the sums in (27), (28) and (29) will all be zero for all A € S as well.
Thus, we have fulfilled equation (26) and found our approximation. There exist a solution
that satisfies equations (30), (31) and (32), since, as functions of the parameters 3%, these
are three linearly independent equations and A f*(x;, ;) is a function of three parameters,
pEdE gAY and MUY We once again take a look at our simple example to help illustrate
this result. As before let f(z) be defined as in (4) and let our approximation set of interest
be S = {#,1,2,3,{1,3},{2,3}}, so we are removing the second order interaction 5'2. As
we know we only need to focus on the interactions we want to remove, it is sufficient to
focus on,

f(x) = 2125 + 212005, (33)
We now reorganize our equations >, o (f(x) — f(x)) in the following manner,
> F@) = f()
ey
_ Z [(512x1x2 _ 32 Blay - Bras) + (B Bz — B — BB — 623952)%]

wGQX

= 2 [AF (@ m) + A @y,)]

(EEQ)\
= Z Aff(wy, xa) + Z A2 (21, m,),
ey reQru3

14

which has to be zero for all A € S. For A = {1,2}, (30), (31) and (32) become,
409 + 20" + 28 = 5%,
237 + 251 + = 5
269 + ' + 2% = p*2.
For A = {1,2,3} we get,
AGP 4 233 4 2f% — 5128
923° 4 2513 4+ 3% — 5123
253 + 513 + 2623 _ 5123.
Solving these two systems of equations yields our approximation. The important conclusion
from all of this, is that solving our linear system of equations in (26) is equivalent to solving
equations (30), (31) and (32). This in turn is equivalent to approximating a second order
interaction by its two first order children, and their mutual zero order child. So instead of

solving one big system, we can solve a number of very small systems. Thus we can write
up what the approximation is in general,

g 1
Mgy — _— A
B 5

B = 28", (34)
A\ _ 1 A
B - 2/8)

for all A € Sy; j3. This solution corresponds to the solution we would get using the iterative
scheme of the previous section, but it is much faster to calculate and also has the advantage
of giving us a nice explicit expression for the error. Inserting (34) into (25) we get an
expression for the function Af*(zy, 1),

1 1 1

AfA(Il, .172) = (1’11172 + - — —Ij — —.Yli)ﬁA. (35)
4 2 2
Inserting this in (24) we get
. 1 1 1 A
(@) = f(z) = (ziz; + — s25 — 53) Z p H T | - (36)
4 2 2 -
AES{Z‘J’} kGA\{l,]}

Note that the absolute value of the parenthesis outside the sum is always 411 and thus the

absolute value of f(x) — f(z) does not depend on z; or z;. Using (36) we can also find an
expression for the error sum of squares,

2

SSE(F /) = N (F@) ~fer =1 2 | 2 ot T] =] - @0

e JJEQ{Z'J} AES{L]-} k’EA\{i,j}

15

Another useful observation gained from (36) is that we can easily construct an upper bound
for the maximum error,

max[f(z) - fo) < 7 Y 18] (38)
AeS; 5

which of course also allows us to give a maximum bound for the error sum of squares,

2

SSE(f.fy<2*(> 18] - (39)

AeSi, 5

To help understand the error function in (36) we expand our small example. Assume we
expand n from 3 to 4, however we still want S to be S = S\Sq1,2;. Let the graph in Figure
3 represent the states 2. When we calculate our approximation we then get the following
distribution of the error,

Fla) ~ fla) = 362 Vw el
f(z) - JE(?U) = —1(512 +4%), Vae Q{4}\9{3 4}
Fla) — fla) = £3(82 4 B, ¥ 2 € O\ .

Fla) —) = £3(82 4 8% 4 5%+ 559, ¥ r e Q.

—_

This is illustrated by the colors in the graph in Figure 3. The four sets above are represented
by red, blue, yellow and green respectively. Note also that for each of these sets f(z)— f(x)
summed over the respective set is zero, as it should be.

2.4 Upper and lower bounds for pseudo-Boolean functions

In this section we construct upper and lower bounds for pseudo-Boolean functions. These
upper and lower bounds will be linked to a given approximation Ag(f(x)), in the sense
that we want our upper and lower bound functions, fi;(z) and fr(x) respectively, to be on

the form,
AeS keA
and
= Z By n T (41)
AeS keA

In other words, we want the functions to be defined over a given set S similar to the approx-
imations in the previous section. One way of doing this is to start with our approximation
and modifying it to get upper and lower bounds. We do this for general approximations

16

Figure 3: Graph representation of {2 when the dimension of the pseudo-Boolean function
is n = 4. Colors illustrate the distribution of the absolute value of the error |f(z) — f(z)|,
when S = S\Sq1,2;. States for which the nodes have the same color have the same absolute
value error.

17

of pseudo-Boolean functions as well as the pairwise interaction approximation described in
the previous section.

For a general pseudo-Boolean function we have shown how we can remove interactions
iteratively until we reach our approximation set of interest S. We have also shown how
each time we remove an interaction 8* we introduce an error in all states z € (2,

B A
fa) ~ fla) = £ (12)
Thus, if we define,
B A
fola) = F@) + | (43)
- BA
fula) = Fa)— | O (44)

we clearly ensure that fr(z) < f(z) < fu(x) for all € Q. Note that this change only
influences the zero order interaction. It corresponds to adding or subtracting a term to the
zero order interaction, depending on whether we are constructing upper or lower bounds
respectively. This means we are essentially introducing no new computational cost. With
this we can construct an iterative scheme just like in Section 2.2, adding or subtracting
a term to the zero order interaction for each interaction we remove. In general though,
when removing several interactions we would expect to be able to design tighter bounds by
looking at the total error after removing all the interactions and then constructing upper
and lower bounds rather than iteratively creating upper and lower bounds for each step.
We will study how this can be done for the SOIR approximation.

Assume we have an approximation of f(z), f(z) = Ag(f(z)) with S as defined in

Section 2.3. We would like to define our upper and lower bounds as fy(x) = f(x) + g(z)
and fr(z) = f(z)+h(z), such that f,(z) < f(z) < fu(x), where g(z) and h(z) are defined
over the same set of interactions S as f (). A natural approach would be to attempt the
same technique as we used for the single interaction removal, adding the absolute value of

the error |f(z) — f(z)|. Taking the absolute value of our expression in (36) we get,

£0) = F@) = [(wa + 7= e+ 520 X |80 [] =

42 2 AeSi 5 keA\{i,j}

= i Z ﬁA H T s (45)

AES{Z',J'} kEA\{Z,]}

We could then define, g(z) = |f(z) — f(z)| and h(z) = —|f(z) - f(x)|. These are clearly
valid upper and lower bounds, and also |f(z) — f(x)| is independent of z; and z;, so
we will not be introducing any interactions involving both ¢ and j. However there is

no guarantee that we can represent |f(z) — f(z)| over our original approximation set S.

18

| f(x)— f(z)| is a pseudo-Boolean function and could in general be of full degree. Thus if the
dimension is too high we might not be able to represent it. The dimension of | f(z) — f(z)|
is [{A € Sy : |[A] = 3} In other words dim(|f(z) — f(z)|) is equal to the number of
parents of interaction 3%. We could of course simply expand S to include the necessary
missing interactions. Our primary requirement on S was that it should not include any
interactions involving ¢ and j which is obviously fulfilled. In the appendix we show how

the upper and lower bounds defined by g(z) = |f(z) — f()| and h(z) = —|f(z) — f(z)| are
in fact optimal if our only requirement on S is that it should not include any interactions
involving ¢ and j.

Of course, expanding S could defeat the purpose of our approximative representation
altogether. If the dimension of |f(z) — f(z)| is too large we might run into trouble as
representing | f(z) — f(x)| will require 24/ @)=/ coefficients. It is entirely possible that
|S| > |S|, which deems the approximative representation worthless. We therefore need
to come up with another way of constructing upper and lower bounds. We observe the

following,

NOETCTEE Iy P b Y | S il IETR P BT

AeS 5 keA\{i,j} AeSy 4 keA\{i,5}

So if we define,

o) =7 |18 T wl.

1
h(z) = - PR ICE IR
AeSg; 5 keA\{i,5}

fu(z) and fr(r) are clearly valid upper and lower bounds. Also, g(x) and h(z) are already
represented by binary polynomials over sets contained within S. These are the bounds we
apply in the Section 6.

3 MRFs and the forward-backward algorithm

Here we give a short introduction to binary MRFs. We explain how the forward-backward
algorithm can be applied to this class of models and point out its computational limitation.
For a general introduction to MRFs see Besag (1974) or Cressie (1993) and for more on
the properties of MRFs and pseudo-Boolean functions see Tjelmeland and Austad (2012).
For more on the forward-backward algorithm and applications to MRFs see Reeves and
Pettitt (2004) and Friel and Rue (2007).

19

3.1 Binary Markov random fields

Assume we have a vector of n binary variables x = {z1,...,2,} € Q = {0,1}", N =
{1,...,n}. Let N = {Nq,...,N,} denote the neighborhood system where N, denotes the
set of indices of nodes that are neighbors of node x;. As usual we require a symmetrical
neighborhood system, so if i € N then j € AV;, and by convention a node is not a neighbor
of itself. Then x is a binary MRF with respect to a neighborhood system N if p(z) > 0
for all x € Q and the full conditionals p(zx|z_x) have the Markov property,

p(xrlr_k) = p(zi|zas,) V x € L (47)

where zy, = (x; : i € Ni). We define a clique A to be a set A = N such that for all i and j
in A, i € N;. We say that a clique is a maximal clique if it is not a subset of another clique.
The set of all the maximal cliques we denote by C. The Hammersley-Clifford theorem, see
Besag (1974) and Clifford (1990), tells us that we can express the distribution of x either
through the full conditionals in (47) or through clique potential functions,

p(e) = - exp(U(x)) = = exp (2 UA@:A)) , (15)

AeC

where ¢ is a normalizing constant, Uy (x,) is a potential function for a given clique A and
xp = (x; 1€ A). U(zx) is commonly referred to as the energy function. From the previous
section we know that U(z) is a pseudo-Boolean function and can be expressed as,

U)= > g Tar =D 8] [= (49)

ASN keA AeS ke

where S is defined as in (3). For a given energy function U(x), the interactions 3" can be
calculated recursively by evaluating U(x). We will see later that it is important that we
only represent the pseudo-Boolean function by the non-zero coefficients, as a full represen-
tation would for practical applications require far too many terms. For more details on the
relationship between the neighborhood system and the set S we refer the reader to Tjelme-
land and Austad (2012). Briefly summarized, z; and z; being neighbors is equivalent to
there existing at least one A = N with {i,j} € A and g* # 0.

3.2 The forward-backward algorithm

As always the problem when evaluating the likelihood or generating samples from MRFs is
that c is a function of the model parameters and in general unknown. Calculation involves
a sum over 2" terms,

c= Z exp (U(z)) = Z exp (Z BAH%) : (50)

e} el AeS keA

The forward-backward algorithm, see Reeves and Pettitt (2004) and Friel and Rue (2007),
calculates the sum in (50) by taking advantage of the fact that we can calculate this sum

20

more efficiently by factorizing the un-normalized distribution. We now cover this recursive
procedure.

Clearly we can always split the set S into two parts, Sy, and S{CZ.} where as before
Sty = S\Sgy. Thus we can split the energy function in (49) into a sum of two sums,

U)= > B Jae+ D) B] [(51)

AES{Ci} keA AeSy keA

Note that the first sum contains no interaction terms involving x;. Letting z_; = (x1, ...,

Ti—1,Tiy1,- - -, Tn), we note that this is essentially equivalent to factorizing p(x) = p(x;|z_;)
p(z_;), since

p(xiz_;)ocexp Z 5/\1_[% : (52)

AGS{Z} keA

By summing out x; from p(x) we get the distribution of p(z_;). Taking advantage of the
split in (51) we can write this as,

p(a:_i)zZp(x)zéeXp Z ﬁAnxk Zexp Z ﬁAka . (53)

AES{CZ} keA x4 AES{l} keA

The sum over x; can be expressed as the exponential of a new binary polynomial, i.e.

exp(Z BAka) zZeXp Z ﬁAnxk , (54)

ACSN; keA AGS{i} keA

where the interactions S are iteratively calculated by evaluating the sum over z; in (54),
see Tjelmeland and Austad (2012). Note that this new function is a pseudo-Boolean func-
tion potentially of full degree. The number of non-zero interactions in this representation
could be up to 2¥Wil. Summing out z; leaves us with a new MRF with a new neighborhood
system. This is the first step in an iterative procedure for calculating the normalizing
constant c. In each step we sum over one of the remaining variables by splitting the energy
function as above. Repeating this procedure until we have summed out all the variables
naturally yields the normalizing constant.

The computational bottleneck for this algorithm occurs when representing the sum in
(54). Assume we have summed out variables zy.,_1 = (z1,...,%;_1), have an MRF with
a neighborhood system N = {N;,...,N,} and want to sum out z;. If N is too large
we run into trouble with both memory and computation time when representing the sum
corresponding to (54) since this may require up to 2Ni interaction terms. In models where
N increases as we sum out variables the exponential growth causes us to run into problems
very quickly. As a practical example of this consider the Ising model defined on a lattice.
Assuming we sum out variables in the lexicographical order, the neighborhood will grow
to the number of rows in our lattice. This thus restricts the number of rows in the lattice
to < 20 for practical purposes.

21

4 An approximate forward-backward algorithm

In this section we apply the approximation results of Section 2 to the forward-backward
algorithm described in the previous section to devise an approximate forward-backward
algorithm. We then show how this approach can be extended to acquire upper and lower
bounds for the approximate forward-backward algorithm.

4.1 Constructing the approximate forward-backward algorithm

To create an algorithm that is computationally viable we must seek to control |Nj| = n; as
we sum out variables. If this neighborhood becomes too large, we run into problems both
with memory and computation time. Our idea is to construct an approximate representa-
tion of the MRF before summing out each variable. The approximation is chosen so that
1; < v, where v is an input to our algorithm. Given a design for the approximation we
then want to minimize the error sum of squares of our energy function.

Assume we have an MRF and have (approximately) summed out variables z1.;_1, so we
currently have an MRF with a neighborhood structure N and energy function U (z;,) =
ZAES /BA erA Lk, 80,

c= Z eXp U(Zim)) - (55)
Lin
If 7, is too large we run into problems when summing over z;. Our strategy for overcoming
this problem is to first create an approximation of the energy function U(x.,,),

U(Zin) Z ﬁAl_[xk U(Zin) Z BAka (56)

AeS keA AeS keA

We control the size of 7;, by designing our approximation set S and thus the new approx-
imate neighborhood A in such a way that |./\~f2| = 7; < v. Assuming we can do this, we
could construct an approximate forward-backward algorithm where we check the size of
the neighborhood 7; before summing out each variable. If this is greater than some given
v we approximate the energy function before summation. This leaves two questions; how
do we choose the set S and how do we define the approximation?

The two questions are obviously linked, however we start by looking more closely at
how we may choose the set S. Our tactic is to reduce 7; by one at the time. To do this we
need to design S in such a way that ¢ and some node j are no longer neighbors. Doing this
is equivalent to requiring all interactions 4%, involving ¢ and j to be zero. As before we
denote the subset of all interactions involving ¢ and j as S{i,j} < S. We then construct our
approximation set as in Section 2.3, defining S = S\S{i,j}. Our approximation is defined by
the equations corresponding to (6) and using the results from Section 2.3, the solution is
easily available. We can then imagine a scheme where we reduce 7; one at a time until we
reach our desired size v. This leaves the question of how to choose j. One could calculate
the SSE for all possibilities of j and choose the value of j that has the minimum SSE.
However this may be computationally expensive in some cases. We propose instead to

22

calculate the upper bound for the maximum error given by (38) and choose j based on
the smallest maximum error upper bound. Our experience for all of the models we have
studied is that this yields the same choice of j as the true SSE.

Note that Theorem 2 means that after reducing n; by n; — v our approximation is still
optimal for a given selection of j’s. However there is no guarantee that our selection of j’s
is optimal. It is possible that if we looked at the error from reducing 7; by more than one
at the time we might get a different optimal set of j’s.

Using this approximate forward-backward algorithm we are defining an approximate
MRF through a series of approximate conditional distributions,

ﬁ(:)ﬁ) = ﬁ(xl‘xQ:n) s 'ﬁ(wn—1|xn)ﬁ($N)7 (57)

which is in fact a new MRF in itself. One of the aspects we wish to investigate in the

results section is to what extent this distribution can mimic some of the attributes of the
original MRF.

4.2 Bounds for the approximate forward-backward algorithm

It may be of interest to construct upper and lower bounds for the likelihood of an MRF.
Acquiring bounds for our algorithm is useful for quantifying the approximation error. Using
the results of Section 2.4 we can now easily construct an algorithm for this.

One way of finding an upper bound for the likelihood is to find a lower bound for the
normalizing constant. If we can construct ¢, < ¢, then clearly py(z) = iemp(U () =
2exp(U(x)) = p(z). Our point of origin for finding ¢y, is the approximate forward-backward
algorithm described in the previous section. Each iteration of this algorithm consists of two
steps. In the first step the energy function is replaced by an approximate energy function.
In the second step we sum over the chosen variable. To construct upper and lower bounds
we simply change step one. Instead of replacing the energy function by an approximation
we replace it with the upper and lower bounds found in Section 2.4.

Remark 1. We use the same criteria for determining which second order interaction to
remove in each step in the upper and lower bound algorithm as in the approximate forward-
backward. Although this was shown to be a good tactic for the approximation approach,
there is no reason as to why this should be optimal for constructing upper and lower
bounds, but we have been unable to come up with better schemes.

Remark 2. Tt should be noted that the approximation does not need to remain within the
upper and lower bounds. In Section 6.1 we will see examples of this.
5 An approximate Viterbi algorithm

In this section we show how our approximate forward-backward algorithm can be modified
to construct an approximate Viterbi algorithm. We briefly discuss the Viterbi algorithm
and show how the approximation is constructed as well as find upper and lower bounds.

23

5.1 Constructing the approximate Viterbi algorithm

The Viterbi algorithm seeks to find a state z,,,, and its associated value p(z,,.,), with the
property that p(2,..) = p(x) for all x € Q and p(x,..) = p(x) for at least one value of x.
Note that p(z) need no longer be a distribution. It relies on the model being factorisable
in the same manner as the forward-backward algorithm and proceeds in exactly the same
way, except instead of sequentially summing out variables, it takes the maximum. Assume
that we have taken the maximum over x1.,_1, so we have,

sx[p(2)] = exp(Ul = o5 (z BAnxk> , 59)
- AeS keA

and now want to take the maximum over z; i.e, maxy,|[exp(Unu(Tin))]. As with the
forward-backward algorithm the Viterbi algorithm takes advantage of the splitting of U(x)
in (51) to get,

max[exp (U, (in))] = exp Z BA ka + max Z ph HZL’k : (59)

T4 = =
AeS¢, keA AeSp;y keA

As with the forward-backward algorithm the max term in the exponential can be rep-
resented by a new binary polynomial and the process can be repeated iteratively until
we have taken the maximum over all the variables. This yields the maximum value of
P(Zmax). The argument x,,,, can be found by a backward pass, as in the forward-backward
algorithm.

We construct an approximate Viterbi algorithm in the following manner. Recall that
our approximate forward-backward algorithm consisted of two steps in each iteration, ap-
proximate the energy function and sum over a variable. To get an approximate Viterbi
algorithm we simply replace step number two. Instead of summing over a variable we take
the maximum over a variable.

5.2 Bounds for the approximate Viterbi algorithm

Just as with the forward-backward algorithm we can use our results for upper and lower
bounds for pseudo-Boolean functions to find upper and lower bounds for p(x,.,). Instead
of approximating the energy function before taking the maximum over each variable we
replace it with an upper or lower bound. Finding an upper bound for the maximum value
of a function in this manner can be of interest for instance for the rejection sampling
algorithm as we will see later in Section 6.2

6 Results

In this section we present a number of examples to test our approximation. The value of
our algorithm parameter v obviously influences the time it takes to run the calculations and

24

how well we approximate the distribution of interest. Our goal in this section is primarily
to investigate how this accuracy versus computation time relationship develops, but we also
attempt to demonstrate the flexibility of our approximation in handling different types of
problems and models, as we feel this is one of the greatest strengths of our approach.

We begin with a simple example using the Ising model, where we use our approximation
to evaluate posterior distributions and later calculate upper and lower bounds. We then
proceed to use our upper and lower bounds in combination with the approximate Viterbi
algorithm to construct a rejection sampling algorithm for the Ising model using our ap-
proximation as a proposal distribution. Finally we proceed to a larger example involving
reversible-jump Markov chain Monte Carlo (RJIMCMC), using a data set of census counts
of red deer in the Grampians Region of north-east Scotland.

All examples where run on a machine with an Intel Quad-Core Q9550 2.83GHz cpu.

6.1 Ising model example

In this section we apply our approximation to the Ising model on a square lattice, see
Besag (1986). This is an MRF where the energy function can be expressed as,

Ulx) =0 I(x; =), (60)
i~j

where the sum is over all first order neighborhood pairs and 6 is a model parameter.
I(z; = x;) is the indicator function and takes value 1 if z; = z; and 0 otherwise. The value
of 6 controls how strong the interactions are between nodes in the lattice. With a low
value of 6 we would expect realizations to look noisy, while a high value of 8 will give large
areas of the same value. Representing the Ising model as a binary polynomial is done by
recursively calculating the interactions. This gives us a model with first and second order
interactions, for details on how this is done see Tjelmeland and Austad (2012).

The goal of this first example is simply to evaluate how well our approximation works in
terms of some measure of accuracy versus run time. To do this we use the following scheme,
first we simulate a perfect sample from the Ising model using coupling from the past, see
Propp and Wilson (1996), for a given parameter 6,,,.. Then, treating our realization as
data we approximate the posterior distribution for 6, p(0|z)xcp(x|0)p(6), by replacing the
likelihood with our approximation for a given value of v, p,(z|f) and using an improper
uniform prior. We do this for 6,,,., = 0.4, 0.6 and 0.8, and for two square lattices of
dimensions 15x 15 and 100 x 100, respectively. We let our algorithm parameter v take values
from 2 through to 13. For the 15x 15 lattice we can calculate the exact posterior distribution
and compare with our approximation. Note that performing an exact evaluation of the
posterior for the 15 x 15 lattice is equivalent to v > 15. We calculate the posterior
in a regularly spaced mesh of # values and use interpolating splines to interpolate the
results. This is done for both the exact algorithm and using our approximation. We then
numerically evaluate the integral

0

Dis(v7) =f p(0]) — o (0]))db. (61)

0

25

0=04 0 =10.6 0=0.8 13
e =0.001 | 0.751368101 2.10248497 15.09297
v=2 14.409427206 56.58591888 253.06337 | 0.01124228
v=23 1.108607538 20.62895721 185.87015 | 0.01387182
v=4 0.450648842 10.02418249 159.21355 | 0.02204446
v=2>5 0.390888291 9.03403984 134.23162 | 0.03710029
v==0 0.539101884 3.09247293 103.32444 | 0.07013128
v="7T 0.256395124 2.88674328 70.23284 | 0.14840200
v =2~ 0.173243954 0.59501500 67.70975 | 0.32226900
v=9 0.079860112 0.25796856 44.78233 | 0.71145130
v =10 0.030442210 0.39202281 41.06546 | 1.49160500
v=11 0.026948158 0.14442855 36.72234 | 3.89972400
v=12 0.021497266 0.01606258 19.77851 | 9.31453700
v=13 0.009940589 0.02520535 12.31064 | 21.61825000

Table 1: Values of the integrated error Dy5(e = 0.001, z) for approximation of Tjelmeland
and Austad (2012) and D;5(v, x) for various values of v. Associated run times (in seconds)
for a single evaluation of the likelihood are given in the column on the right. Note that
run time is not given for Dy5(e = 0.001, z) since this varies for different values of 6.

to measure how well our approximation works. For the 100 x 100 lattice an exact evaluation
of the posterior is not available, so to evaluate how well the approximation does, we study
how it changes as we increase v by calculating,

o0]

Dioo(v,z) = f B2 (6l2) — 5, (6])|d6.

0

(62)

If this value is sufficiently small we interpret it as a sign that our approximation is close
to the exact solution. In Tjelmeland and Austad (2012) the authors demonstrated that
their approximation performed well against methods such as pseudo-likelihood and block-
pseudo likelihood and was competitive compared with the RDA approximation in Friel
et al. (2009). We compare our approximation to the one in Tjelmeland and Austad (2012).

Results for the 15x 15 lattice are visualized in Figure 4 and values for Dy5(v, x) presented
in Table 1 along with associated run times. Figure 5 and Table 2 present the results for
the 100 x 100 lattice. We also include the approximation from Tjelmeland and Austad
(2012), seen as the red dotted curve as seen in Figures 4 and 5. As we would expect a
larger value for v tends to give a better approximation, although it is worth noting that
exceptions exist. Also, getting a good approximation is harder for larger values of 6 as
this means the interactions in the model are stronger. We can see that for 6. = 0.4,
we seem to get quite good approximations even for very small values of v. The case of
0. = 0.8 is much harder though, and here only the larger values of v seem to give good
approximations. The run-time plots in the lower right of Figures 4 and 5 nicely illustrate
an important difference between the approximation in Tjelmeland and Austad (2012) and

26

0.4 0.6

0.0 0.5 1.0 15 20 0.0 0.5 1.0 15 2.0

0.8 Time

40 60 80 100

20

0
1
1
h

Figure 4: Exact posterior distributions p(f|x) (thick continuous black curve), approxima-
tions with v = 2 up to v = 13 (dashed curves moving from right to left for increasing
value of v) and the approximation of Tjelmeland and Austad (2012)(dashed red curve).
Results for 6,,,. = 0.4 (upper left), 0,,.. = 0.6 (upper right) and 0,,,. = 0.8 (lower left) on
the 15 x 15 lattice. Bottom right plot shows the run-times in seconds as a function of 4 for
the exact run (thick top line), the approximation of Tjelmeland and Austad (2012)(dashed
red curve) and the various approximations, v = 2 to v = 13, black lines from bottom to
top respectively. Note that for 6,,,. = 0.4 and 0,,,. = 0.6 the dashed red curve is visually
indistinguishable from the other curves.

27

0.4 0.6

10 20 30 40

0

0.30 0.35 0.40 0.45 0.50 0.50 0.55 0.60 0.65 0.70

0.8 Time

1500
|

0 10 20 30 40 50

0 500

0.70 0.75 0.80 0.85 0.90 0.0 0.5 1.0 15 2.0

Figure 5: Approximations with v = 2 up to v = 13 (dashed curves moving from right to left
for increasing value of v) and the approximation of Tjelmeland and Austad (2012)(dashed
red curve). Results for 6,,,. = 0.4 (upper left), 0,.,.. = 0.6 (upper right) and 6,,,. = 0.8
(lower left) on the 100 x 100 lattice. Bottom right plot shows the run-times in seconds
as a function of @ for the approximation of Tjelmeland and Austad (2012)(dashed red
curve) and the various approximations, ¥ = 2 to v = 13, black lines from bottom to top
respectively.

28

=04 0=06 0=08 t
v =2 | 88.6347 191.0028 295.8912 | 1.0001

v = 7.5723 38.5417 143.1385 | 1.0670
v=4 | 42302 21.2625 101.4102 | 1.4402
v = 1.8341 11.7719 88.5960 2.1802

v==6 | 01457 0.3696 44.1358 | 4.1627

v=7 105383 56674 36.5903 8.5760

v=28 | 00604 0.5028 27.2425 | 18.1769
v=9 | 00707 0.2876 6.2459 32.1511
v =10 | 0.03706 0.58005 12.1156 | 83.6642
v =111 0.0031 0.3836 2.8092 | 198.9024
v =12 | 0.0181 0.2239 1.2727 | 490.0662

Table 2: Values of the integrated error Dygo(v,) for various values of v. Associated run
times (in seconds) for a single evaluation of the likelihood are given in the column on the
right.

our approximation. As we can see the run-time of p,(f|x) is constant as a function of
0. This is because we through v define the maximum computational cost of running the
approximation. This does not change dynamically as 6 changes, unlike the approximation
in Tjelmeland and Austad (2012). As we can see from the plot, once 6 becomes large
enough, the run time for the approximation in Tjelmeland and Austad (2012) explodes.
This is due to the interactions becoming so strong that the approximation is unable to
remove any. Although this is a nice property in the sense that it allows the approximation
to adapt dynamically to the model, it does mean that there are models for which the
algorithm will not work. It also means that it can be hard to predict the run-time in
advance. We note that the run-times for the new approximation roughly goes as 2. This
is to be expected since increasing v by one doubles the size of our approximate pseudo-
Boolean energy function. Our approximation also seems to do considerably better than the
approximation in Tjelmeland and Austad (2012) for the case of ,,,. = 0.8 on the 100 x 100
lattice. Here the approximation in Tjelmeland and Austad (2012) breaks down, while our
approximation seems to work satisfactorily.

We can also use our approximation to get estimates of the normalizing constant for the
Ising model. Doing this on a lattice of 6 values and using interpolating splines we can get
a smooth approximation of ¢ as a function of 0, ¢,(0). For the 15 x 15 lattice we can then
compare our approximation to the truth. This can be particularly useful in illustrating

how well the approximation works for increasing values of 8. The log ratio, log <6i((60))>’ as
function of # is plotted in Figure 6 for v = 2 up to v = 13 as well as for the approximation
in Tjelmeland and Austad (2012) é.(#), again represented as a red dotted curve. This gives
a decent indication of where the approximation works well. Note how the approximation in

Tjelmeland and Austad (2012) converges to 0.6931 = log(2) as ¢ increases. This happens

29

log ratio

0.0 0.5 1.0 15 2.0

Figure 6: log(c(#)) — log(¢,(0)) for v = 2 up to v = 13) (black dotted curves moving from
left to right for increasing value of v) as well as log(c(0)) —log(é.(0)) for e = 0.001 (dotted
red curve). Results are shown for values of 6 between 0 and 2 on a 15 x 15 lattice.

because a high 6 means all the probability is focused on the configurations where all nodes
are either 1 or 0, and the approximation puts all probability on the configuration where
all nodes are 0. We also notice that it seems like our approximation usually supplies an
underestimate of c.

Finally we have tested the upper and lower bounds derived in Section 2.4. As with the
approximation we have generated a new realization from the model which we treat as data
using 6,... = 0.4, 0.6 and 0.8. We calculate upper and lower bounds for the normalizing
constant ¢y (0) and cr(0) for a fine mesh of §’s between 0 and 2. Then for each of the
values of 0,,.,. we can calculate the un-normalized likelihood and combine with ¢y (6) and
cr(0) to get upper and lower bounds for the likelihood py(0]z) and pr(6|x). We have done
this for v = 6, 10 and 13 and the results are plotted in Figure 7. The stapled curves
show the upper and lower bounds for log(p(f|x)) while the continuous curve represents
the associated approximative log-likelihood, log(p, (0]z)). As we can see we get reasonably
tight bounds for 6,,,. = 0.4 and 0.6 while for the case of 0,,,. = 0.8 the bounds are wider.
Note that for larger values of # in the 6,,,. = 0.8 case, the approximation does not lie inside
the upper and lower bound. We could imagine using these bounds to get intervals for a
maximum likelihood estimator or the mode of the posterior distribution. Since we know
that meax{p(0|x)} > meax{pL(9|x)} and since p(0|z) < py(0|z) for all x we get an interval

which we know must contain the true maximum. We could imagine a scheme where we
start with a small value of v to get a wide interval for the maximum. We then increase the
value of v and get upper and lower bounds within this interval and use this to shrink the
interval. This is then repeated until the interval is sufficiently tight.

30

0.4 0.6 0.8

-4300
|
\

-4500
|

-5900 -5850 -5800 -5750

-6520 -6515 -6510 -6505
-4700
|

0.30 0.35 0.40 0.45 0.50 03 04 05 06 07 08 09 05 06 07 08 09 10 11

Figure 7: Approximate log-likelihood functions (continuous curves) for v = 6 (blue), v = 10
(purple) and v = 13 (red), for 6,,,. = 0.4 (left), ... = 0.6 (middle) and 6,,,. = 0.8 (right)
for the Ising model on a 100 x 100 lattice. Upper and lower bounds are given by the stapled
curves.

6.2 Rejection sampling example

In Section 5.2 we showed how we can find upper and lower bounds for the mode of a
function by combining our upper and lower bounds for pseudo-Boolean functions with the
Viterbi algorithm. With this in hand we can construct a rejection sampling algorithm to
generate perfect samples from a given distribution. We should point out that there are
several perfect samplers out there, many of which perform better than the algorithm we
are about to present, in particular for models like the Ising model. Still, however, we think
the rejection sampling algorithm is an interesting application of the approximate Viterbi
algorithm. In particular, our perfect sampler may be of interest for settings where a large
number of samples are required. Once the initial precomputations are done, generating
samples is done very quickly using our algorithm. For a detailed description of the rejection
sampling algorithm we refer the reader to Ripley (1987). A short summary goes as follows.
Assume we wish to sample from a distribution p(x) = % exp(U(z)). We generate a proposal
using a proposal distribution ¢(x) and calculate the acceptance probability,

alz) - 1p(z) 1exp(U(x)) 1 exp(U(x))
k q(x) ck q((lj) k* Q(I))

(63)

where k* = ck is chosen such that £* > % for all . We then accept the proposal

with probability «a(x). This is repeated until we reach the desired number of samples. The
difficulty is of course to find a sufficiently tight bound £* to get an acceptable acceptance
rate. Choosing our approximation as our proposal distribution, ¢(x) = p,(z), we need to
find k*, such that k* > r(z) = cep(U(z)) Using our algorithm for upper and lower bounds

Pu(z)
for the Viterbi algorithm in Section 5.2 we can find k* = 7y (Zimaz) = 7(Tmaz)-

31

Acceptance probability

0.4 0.6 0.8 1.0

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0

Figure 8: Estimated acceptance probabilities as a function of 8 for the rejection sampling
algorithm when sampling from an Ising model on a 100 x 100 lattice. Three values for v
were tested, v = 6 (blue), v = 10 (purple) and v = 13 (red).

Two things are important for us to achieve a high acceptance rate. Firstly the function
r(z) must be reasonably "flat", i.e 7(Zme) — 7(2) should be reasonable small for all x,
and second, our upper bound needs to be sufficiently tight. We would expect r(x) to be
reasonably constant as a function of x since, 7(z) = texp(U(z) — U(z)). We have pointed

out how our approximation attempts to spread the error U(z) — U(x) evenly among all
states x, thus we would expect this function to be reasonably uniform. We have tested our
perfect sampler by using it to generate samples from the Ising model on a 100 x 100 lattice
for a fine mesh grid of 8 values between 0 and 1. For each value of # we generated 100
proposals and used this to estimate the acceptance rate. Once again we did this for v = 6,
10 and 13) and plotted the average acceptance rates as a function of 6, as seen in Figure 8.
As expected we can see that the acceptance rate drops as 6 increases. With v = 13 we get
a high acceptance rate almost up to 6 = 0.6. We believe the reason the acceptance rate
drops is primarily because the bounds for r(z) become to weak.

6.3 Red Deer example part 1

In this section we present a Bayesian analysis of a data set of census counts of red deer
in the Grampians Region of north-east Scotland. Our primary purpose for including this
section is to demonstrate the flexibility and applicability of our approximation and as such
this will not be a full analysis of the given data set. A full description of the data set can
be found in Augistin et al. (1996) and Buckland and Elston (1993).

The data are presented in Figure 9 and represent presence or absence of red deer. A
lattice has been laid over the region of interest and the data reduced to presence or absence
in each of our n grid cells. We denote the data y = {y1,...,y,} and let y; = 1 indicate
presence and y; = 0 indicate absence of deer. In each location ¢ we have four covariates
denoted z;;, 7 = 1,..,4. These are altitude and mires, as seen in Figure 9, and Cartesian
coordinates easting and northing respectively. These have all been standardized to have

32

Figure 9: Red deer data set. Left plot shows presence/absence of reed deer, white indicating
presence (y; = 1) and black representing absence (y; = 0). Middle plot shows altitude
covariate, white indicating high altitude and black indicating low altitude. Right plot
shows mires covariate, again with white indicating a high value and black indicating a low
value.

zero mean and unit standard deviation.

Our goal is to do model choice as well as investigate posteriors for this data set. All
four covariates can be either included or excluded from our model giving 2% possible com-
binations. We also consider 2 spatial models as well. The first model, denoted S; is an
MRF with a 2 x 2 clique, giving us the following likelihood function,

pl(y|951790 = —exp (Z Uc yCaesl + ZZ ZZJ)) (64)

CeC i=17=1

where 651 are our spatial parameters, 8¢ = (65,605,605 607) are our covariate parameters
and Ug(yc, 0°1) assigns the associated clique potential to the configuration yc. Assuming
our clique potentials to be translation and rotation invariant we get 6 classes of clique con-
figurations, see Figure 10. We define 67 = 0, this then leaves us with 5 spatial parameters,
051 = (677,051,05,05,657). The second spatial model S, is the Ising model with a trend
term, giving us the following likelihood function,

Sa
pa(y]6%2, 6, 2) = 1exp (9 > Iy, y;) + 652 Zyz + 22 z”90> (65)

i~j i=17=1

Excluding a covariate from the model is obviously equivalent to setting 9]-0 = 0. To explore
the posterior distribution as well as decide which model best fits the data we use a reversible
jump Markov chain Monte Carlo algorithm (RJMCMC), see Green (1995). Following
Tjelmeland and Austad (2012), we adopt wide independent priors for our parameters. For
the components of #°1 and 6¢ and for 052 we use independent normal priors with zero
mean and variance 20. For 0152 we use a gamma prior with mean 2 and variance %. Thus

3
our posterior for S; becomes,

4

5
pr(0%, 6y, 2)ocpy ()05, 6°, 2) [[p(65) | [(69, (66)
=1

=1

33

o e et ey et e

ol 1 "% =« B
T =" "

™ °8
_ull § ul

Figure 10: Classes of clique configurations for a translation and rotation invariant 2 x 2
clique. Each column includes the configurations of the clique represented by the associated
parameter. Each gridcell is either 1 (white) or 0 (black).

where p(6;") and p(A¢) are the normal priors defined above. For S, our posterior becomes,

=~

pa(6%, 0%y, 2) (010, 0%, (070065 [[10 (67)

where pg(leQ) is the gamma prior defined above. To evaluate the likelihood we replace
p1(y]051, 09, 2) and py(y|0°2, 0°, 2) by our approximations p; (y|0°, 8¢, 2) and py(y|0°2, 6, 2
). In each iteration of our sampler we perform one of four proposals. With probability
0.2, we remove one of the currently active covariates j, assuming all covariates are not
off. The second proposal, again with probability 0.2, is to activate one of the currently
inactive covariates j, assuming that all covariates are not on. The third proposal does not
propose to change the model, but only change one of the parameters. With probability
0.5 we propose to change one of the spatial parameters or one of the covariate parameters
(chosen uniform at random) by adding to the current value a value v drawn from a normal
distribution with zero mean and variance 0.12. The last proposal, with probability 0.1, is to
propose to switch spatial model from Sj, to Sjx—1). When we add a new covariate we propose
a new value for the covariate by sampling from the prior. Likewise, when we switch spatial
models we propose new values for the spatial parameters by sampling from the priors.
We ran the algorithm for 200000 iterations, repeating the run for different starting values
of parameters and different starting models. To ensure that our approximation was not
influencing results too much we used different values of v and compared the results. Testing
values of v up to 10, we found that for nu > 6 there was no discernable difference in the
results. The results presented from here on are for v = 6. In our runs we found that the
algorithm would never switch from the MRF model to Ising model, but when started with
the Ising model would switch to the MRF model and not switch back. We thus concluded
that the data clearly prefer spatial model S; and re-ran the algorithm using only spatial

34

Spatial_1-singles (-0.85) Spatial_2-pairs (-0.953) Spatial_3-cross pairs (-0.799)

-1.0 -0.2
[
-1.2 -02
LIl
-1.2 -0.2
LLLLLld

T T T T T T T T T T T T T T T
0 50000 100000 150000 200000 0 50000 100000 150000 200000 0 50000 100000 150000 200000

Spatial_4-triplets (-0.878) Spatial_5-full (-3.58) Cov_1l-altitude (-1.15)

I
M

-14 -04
LIt

-10 -4 0
Ll 1]
-4 0

Ll 11
E

0 50000 100000 150000 200000 0 50000 100000 150000 200000 0 50000 100000 150000 200000
Cov_2-mires (-0.493) Cov_3-easting (-0.817) Cov_4-northing (-0.4)
v - o w -
0 S w |
T T T T ! T T T T T T T T
0 50000 100000 150000 200000 0 50000 100000 150000 200000 0 50000 100000 150000 200000

Figure 11: Trace plot for a RJIMCMC run using spatial model S7, from top to bottom, left
to right, the first five plots show the spatial parameters (85", 65", 05", 65, 05) followed by
covariate parameters (65,0505, 0¢) for altitude, mires easting and northing respectively.
Average value after a burn-in of 50000 iterations is represented by the red line and listed
next to the parameter names.

model S;. Trace plots from one such run can be seen in Figure 11. The acceptance rate
for the run presented in Figure 11 was 0.193. Counting the number of occurrences of each
covariate set we found that four different models made up 0.99 of the occurrences, they
can be seen in Table 3. To see how well our model fits the data it can be interesting to
sample sets of parameters from our RIMCMC run and use these parameters to simulate
from the model in (64). We generated 9 such simulations, presented in Figure 12. As we
can see, the model seems to capture the spatial patterns present in the data. The slight
clumping as seen in the data seems to be present in the simulations as well. We also note,
both from the simulations in Figure 12 and the trace plots in Figure 11 that the spatial
terms of the model seem to catch much of the information in the data. If the covariates
were more important we would expect the simulations to more closely resemble the data
in where the deer occur. We ran the RIMCMC chain several times and these runs indicate
a convergence after approximately 50000 iterations. The results presented in this report
represent the last run that was performed.

35

Altitude Mires Easting Northing | Frequency
X X 0.440
X X X 0.359
X X X 0.099
X X X X 0.091
Sum 0.990

Table 3: Frequency of occurrences for the four most occurring covariance sets.

An x

indicates that the associated parameter is present in the model.

Figure 12: 9 realizations from p,(y|0°2, 0%, 2) for values of #°2 and 0¢ sampled from the

RJMCMC run (discounting a burn-in of 50000 iterations).

36

6.4 Red Deer example part 2

As a further test of our approximation we also considered another approach to the data.
We can view our data y, not as true locations of red deer, but merely observations of some
latent field x representing the true presence or absence of red deer. Pursuing this line
of thought we introduce a probability P of observing deer, given the presence of deer, so
p(y; = l|z; = 1) = P and subsequently p(y; = Olz; = 1) = 1 —P. Note that if deer is
not present there is no chance that any will be observed, so p(y; = 1|z; = 0) = 0 and
p(y; = 0]z; = 0) = 1. We model x as an MRF,

plalp®.6°,2) = Lexp (2 Ueaen8%) + 313" 40))
CeC i=1j=1

while the distribution of ¥ now conditional on x becomes,

p(ylz,P) Hp yilvi, P (69)

Our interest is still in the posterior distribution of the parameters given the data, were P
is now a new parameter to which we assign a uniform prior. We can write the posterior as,

SU0C A TT . p(0SH TTL. p(6€
p(QSl,QC,P]y,z)ocp(mx’P)p(xw 70 72) Hi=1p<ez)Hz=1p(ez)

D(ely. 05,60, P,2) (70)

The distribution p(z]0°*, 0, 2) is the MRF in (68) while p(x|y, 05,0, P, 2) is essentially
an MRF conditional on observations. Since we could not observe deer if no deer were
actually present, if y; = 1, then x; must be 1 as well. This means a number of x;’s are no
longer considered variables, but instead set equal to 1. Clearly,

plaly, 0%, 0°, P, 2)ocp(x|0>, 09, 2)p(yle, P)

= exp <2 UC 1307951 + ZZ 21]6] + Zlog y,|l’“))))

CeC i=1j5=1

where we note that this includes a normalizing term dependent on y. As before we apply
our approximation to get an approximate posterior,

~rnS nC p(y’x77)>ﬁ<'r‘03179072) Hz 1p(631)1_[z 1p<00)
p(e 70 77)|y7’2>0C ﬁ<x’y’0579 77)72) ° (71)

We should note the choice for x when evaluating this. Obviously if we did an exact
evaluation the choice of £ would not matter, however since the error of our approximation
might be different for different values of x, the choice of x could influence the results. In
our algorithm we have simply generated a realization of x from p(x|y, 0,60, 2), using our
approximation, and used this value when evaluating the posterior. Our experience is that

37

Spatial_1-singles (—0.456) Spatial_2-pairs (-0.929) Spatial_3-cross pairs (-2.94)

i
fi
|

0 50000 100000 150000 200000 0 50000 100000 150000 200000 0 50000 100000 150000 200000
Spatial_4-triplets (-0.53) Spatial_5-full (-0.00579) Cov_1l-altitude (-2.92)
o 7 — [Te)]
c o M Fm———th kUMJJ‘L - rL\ AM M‘L‘v—kﬂﬂm .«H
]] ¥ o W T
o o~ T ‘
Y T T T T T ! T T T T T T T T T T
0 50000 100000 150000 200000 0 50000 100000 150000 200000 0 50000 100000 150000 200000
Cov_2-mires (-0.574) Cov_3-easting (-0.653) Cov_4-northing (-0.345)
o n o 4 © - uL””uJ lw‘%
0 7 o R
= n a4
[T T T T T T T T T o T T T T
0 50000 100000 150000 200000 0 50000 100000 150000 200000 0 50000 100000 150000 200000

Figure 13: Trace plot for a RJIMCMC run using spatial model S; and including the ob-
servation probability P, from top to bottom, left to right, the first five plots show the
spatial parameters (651,05, 051, 65", 65") followed by covariate parameters (6,65, 65, 6)
for altitude, mires easting and northing respectively. Average value after a burn-in of 50000
iterations is represented by the red line and listed next to the parameter names.

P (0.331)
o
S
[eo)
@ |
©o
o |
<
s
N
8 |
I I I I I
0 50000 100000 150000 200000

Figure 14: Trace plot for P for RIMCMC run using spatial model S; with probability of
observing deer P.

38

Altitude Mires Easting Northing | Frequency
X X X X 0.230
X X X 0.127
X X 0.121
X X X 0.120
Sum 0.598

Table 4: Frequency of occurrences for the four most occurring covariance sets using the
observational probability P. An x indicates that the associated parameter is present in
the model.

this works quite well. As before we ran the algorithm for 200000 iterations, trace plots for
the spatial and covariate parameters can be seen in Figure 13, while a trace plot for P can
be seen in Figure 14 The acceptance rate for the run presented in Figures 13 and 14 was
0.079. A count of the top four models is presented in Table 4. The top four models made
up a total of 0.598 of the model occurrences. As in the previous section we tested how well
our model fits the data by sampling sets of parameters from our RIMCMC run and using
these parameters to simulate from our model. This was done by first simulating = from
p(z|0°,0°, z) and then simulating y from p(y|z, P). We generated nine such simulations,
presented in Figure 15. As we can see from the trace plots and the lower acceptance rate,
the introduction of P makes it harder for our algorithm to move around in the distribution.
There also seems to be a greater variance in the parameters. This could be attributed to P
settling around such a low value (0.331). A low value for P means more uncertainty around
our observations and allows for a greater variation in the fitted model. This is also reflected
in the model choice part of our algorithm as the four top models only made up about 60%
of the occurrences. The realizations in Figure 15 do not seem entirely unreasonable, so the
model is capturing some of the information in the data. The low value of P might seem a
bit unrealistic, so one should perhaps reconsider the model. Again however, our primary
purpose with this example is not to do a full analysis, but demonstrate applications.

7 Closing remarks

In this report we have shown how we can derive an approximate forward-backward al-
gorithm by studying how to approximate the pseudo-Boolean energy function during the
summation process. This approximation can then be used to work with statistical models
such as MRFs. It allows us to produce approximations of the normalizing constant and
likelihood as well as realizations, from models that would normally be too computationally
heavy to work with directly. We have demonstrated the accuracy of the approximation
through simple experiments with the Ising model, demonstrated some of its flexibility by
applying our approximation to a real life data set as well as constructed a rejection sam-
pling algorithm. We round off now with some possible future extensions as well as some

39

Figure 15: Nine realizations from p(y|z,P) where x is simulated from p(z]0°,6¢, z) for
values of °, #° and P sampled from the RIMCMC run (discarding a burn-in of 50000

iterations).

closing remarks.

The approximation we have defined was inspired by the work in Tjelmeland and Austad
(2012) and there are many parallels between the two. There the authors represented the
energy function as a binary polynomial and dropped small interactions while running the
forward-backward algorithm. This worked quite well, but had the drawback that for models
with too strong interactions the approximation would either include too many terms and
thus explode in run-time, or if the € parameter was set low enough to run the algorithm,
exclude so many of the interactions that the approximation became uninteresting. In a
sense the work in this report has been an effort to deal with this issue. The construction
of the algorithm allows a much more direct control over the run time. Also, by not just
dropping small terms, but approximating the pseudo-Boolean function in such a way that
we minimize the error sum of squares we manage to get better approximations of the
models with stronger interactions. This also means that our approximation is even better
suited for models with larger neighborhoods, although, there is definitely still room for
improvement in these hard cases.

In our setting the sample space of our pseudo-Boolean function has a probability mea-
sure on it, however in our discussion of approximating pseudo-Boolean functions we have
considered each state in the sample space as equally important. Assuming we are inter-
ested in approximating the normalizing constant, this is probably far from optimal and is
reflected in our results. As we can see for the Ising model our approximation works better
the smaller the interaction parameter . Our initial approximation attempts to spread the

40

error of removing interactions as evenly as possible among the states. Ideally, we would
like to have small errors in states with a corresponding high probability, and larger errors
in states with low probability. To get this approximation we could minimize a weighted
error sum of squares function,

WSSE(7,) = 35 [() -) o). (72)

€S

where for the weight function w(z) we use the un-normalized probability distribution
exp(f(z)). Note that our current implementation is equivalent to letting w(z) be a uni-
form distribution. This problem has also been studied in the literature, see for instance
Ding et al. (2008, 2010). However, unlike the unweighted case an explicit solution is not
readily available for a probability density like the MRF. The iterative method of removing
interactions does not work here, nor can we group the equations like we do with the SOIR
approximation. We can proceed as before and take partial derivatives with respect to BA
for all A € S to get the system of equations,

Dl w)fx) =) wx)f(z) ¥V AeS. (73)

Z‘EQ)\ .ZEQ)\

The computational cost of solving this linear system will be considerably higher than before,
however this may be compensated for by a more accurate approximation. In particular in
cases where the uniform assumption is very poor, we believe this trade off will be worth it.
A second tactic available is to use an approximate distribution as weights instead of the
full MRF. Ding et al. (2008) show how solutions exist for simple distributions and these
might still capture where we want to minimize the error to get a good approximation.
Depending on the distribution this might be a tactic worth pursuing as well.

We should note that the approximate forward-backward algorithm, defined in this re-
port, applied to MRFs defines a probability distribution p,(x) and is an MRF in itself.
In fact it is an example of a partially ordered Markov model (POMM), see Cressie and
Davidson (1998). In this respect we can think of the approximation as a dynamic way
of fitting POMMs to a general MRF. This is different from the treatment of POMMs in
Cressie and Davidson (1998) where the partial ordering is specified by the user.

In our examples we have tested values for our algorithm parameter v up to v = 13.
As v defines the size of N; it should be perfectly plausible to run the algorithm for values
up to v = 20, which should give some improved results over v = 13. We have neglected
to demonstrate this here due to time constraints. It should also be mentioned that in
our examples we have neglected to take advantage of a technique that can be used when
summing out variables in a lexicographical order on a lattice. When the parameters 3*
are stationary we very quickly approach a stationary phase after summing out the first
few columns. Thus we only really need to sum out the first few columns and the last,
see Pettitt et al. (2003) for a demonstration of this technique. This could give substantial
gains in run-time, particularly for the 100 x 100 lattice.

41

One of the nice properties of our approximation is its flexibility for handling many types
of models. We could apply it to larger neighborhood structures or more special types of
MRFs such as Bayesian networks.

In Section 2.3 we showed how we could go from removing just one interaction 3* at
the time in Section 2.2 to removing sets of interactions Sy, simultaneously. This gave the
advantage of faster computations, but more importantly a better understanding of how
the error was distributed. That in itself was interesting, but it also allowed us to find
better upper and lower bounds. The next step would be to consider removing all the
interactions needed to reduce || to v at once. This might lead to a better understanding
of the approximation, which again might lead to better upper and lower bounds or ways
of improving the approximation itself.

Acknowledgments

We acknowledge support from The Research Council of Norway, Statoil and ENI. We thank
Nial Friel for providing us the data set used in Sections 6.3 and 6.4.

References

Augistin, N. H., Mugglestone, M. A. and Buckland, S. T. (1996). An autologistic model
for the spatial distribution of wildlife, Journal of Applied Ecology 33: 339-347.

Besag, J. E. (1974). Spatial interaction and the statistical analysis of lattice systems,
Journal of the Royal Statistical Society, Series B 36: 192-236.

Besag, J. E. (1986). On the statistical analysis of dirty pictures (with discussion), Journal
of the Royal Statistical Society, Series B 48: 259-302.

Buckland, S. T. and Elston, D. A. (1993). Empirical models for the spatial distribution of
wildlife, Journal of Applied Ecology 30: 478-495.

Clifford, P. (1990). Markov random fields in statistics, in G. R. Grimmett and D. J. A.
Welsh (eds), Disorder in Physical Systems, Oxford University Press, pp. 19-31.

Cressie, N. A. C. (1993). Statistics for Spatial Data, 2 edn, John Wiley, New York.

Cressie, N. and Davidson, J. (1998). Image analysis with partially ordered Markov models,
Computational Statistics and Data Analysis 29: 1-26.

Ding, G., Lax, R., Chen, J. and Chen, P. P. (2008). Formulas for approximating pseudo-
boolean random variables, Discrete Applied Mathematics 156: 1581-1597.

Ding, G., Lax, R., Chen, J., Chen, P. P. and Marx, B. D. (2010). Transforms of pseudo-
boolean random variables, Discrete Applied Mathematics 158: 13-24.

42

Friel, N., Pettitt, A. N., Reeves, R. and Wit, E. (2009). Bayesian inference in hidden
Markov random fields for binary data defined on large lattices, Journal of Computational
and Graphical Statistic 18: 243-261.

Friel, N. and Rue, H. (2007). Recursive computing and simulation-free inference for general
factorizable models, Biometrika 94: 661-672.

Gelman, A. and Meng, X. L. (1998). Simulating normalizing constants: from importance
sampling to bridge sampling to path sampling, Statistical Science 13: 163—185.

Geyer, C. J. and Thompson, E. A. (1992). Constrained Monte Carlo maximum likelihood
for dependent data (with discussion), Journal of the Royal Statistical Society, Series B
54: 657-699.

Grabisch, M., Marichal, J. L. and Roubens, M. (2000). Equivalent representations of set
functions, Mathematics of Operations Research 25: 157-178.

Green, P. J. (1995). Reversible jump MCMC computation and Bayesian model determi-
nation, Biometrika 82: 711-732.

Gu, M. G. and Zhu, H. T. (2001). Maximum likelihood estimation for spatial models by
Markov chain Monte Carlo stochastic approximation, Journal of the Royal Statistical
Society, Series B 63: 339-355.

Hammer, P. L. and Holzman, R. (1992). Approximations of pseudo-boolean functions;
applications to game theory, Methods and Models of Operations Research 36: 3-21.

Hammer, P. L. and Rudeanu, S. (1968). Boolean methods in operations research and related
areas, Springer, Berlin.

Kiinsch, H. R. (2001). State space and hidden Markov models, in O. E. Barndorff-
Nielsen, D. R. Cox and C. Kliippelberg (eds), Complex Stochastic Systems, Chapman &
Hall/CRC.

Moller, J., Pettitt, A. N., Reeves, R. and Berthelsen, K. (2006). An efficient Markov chain
Monte Carlo method for distributions with intractable normalizing constants, Biometrika
93: 451-458.

Pettitt, A. N., Friel, N. and Reeves, R. (2003). Efficient calculation of the normalizing
constant of the autologistic and related models on the cylinder and lattice, Journal of
the Royal Statistical Society, Series B 65: 235-247.

Propp, J. G. and Wilson, D. (1996). Exact sampling with coupled Markov chains and
applications to statistical mechanics, Random Structures and Algorithms 9: 223-252.

Reeves, R. and Pettitt, A. N. (2004). Efficient recursions for general factorisable models,
Biometrika 91: 751-757.

43

Ripley, B. D. (1987). Stochastic simulation, Wiley, New York.

Tjelmeland, H. and Austad, H. M. (2012). Exact and approximate recursive calculations for
binary Markov random fields defined on graphs, Journal of Computational and Graphical
Statistic . To appear.

A Optimal bounds for pseudo-Boolean functions

This section extends the work presented in Section 2.4. We show how a certain design
of upper and lower bounds for pseudo-Boolean functions is optimal in the sense that it
minimizes the error sum of squares. The term optimal must be used with some care
however, as clearly our bounds are optimal with respect to the chosen representation set
S. For this section we define S by the following, it must be dense and is not allowed to
contain any of the interactions in Sy j;, but otherwise can be chosen freely. So it may
contain interactions not originally in S. As such it could be that |S| > |S|, making the
bounds somewhat meaningless. None the less, we feel there is some insight to be gained
from this discussion. Before we begin we present a theorem which we will need later in the
discussion.

Theorem 6. Let f(z) be a pseudo-Boolean function f(z) = >, B [11cs T with the
property that 8% = 0 for all A € Siijy- In other words there are no interactions involving
both 7 and j. Then for any configuration of z_y; ;,

f(.??l = O,I’j = O,l’,{i’j}) + f(l’l = 1,1’2 = 1,33,{1"]‘})
=flr1 =12 =0,0_g5) + f(z1 = 0,20 = 1, 2_g5 33).

Proof. Since 3 =0 for all A € Siijy we can always rewrite f(x) as follows,

flx) = Z (BT} 4 gAY, 4 gAML) H x| (74)
AES“J} kEA\{i,j}
Thus,
f(l'z = O,ij = O,ZE_{i,j}) + f(xl = 17172 = 171'—{1',]'}) =
_ Z (5/\\{2‘,1‘}) H T |+ Z (5/\\{2}1'} + BA\{j} + 5/\\{1}) H Th
AES{L]-} kEA\{’L,j} AES“J} k’EA\{Z,]}
- 2 (5/\\{@3‘} + (5/\\{%]’} + 5A\{J’} + 5/\\{1'}> H T
AeSyi) keA\{i,5}
= Z (5/\\{2‘,3'} + 51\\{@'}) H x| + Z (51\\{@%1’} + BA\{j}) H T
AeSi5 keA\{i.j} AeSig) keM\{ig} |

= f(9€1 =129 = ny—{i,j}> + f(l’l =0,29 = 1ax—{i,j})-

44

This proves the theorem.]

_ Assume we have an approximation of f(x), Az(f(z)) = f(x) with the requirement that
S should not contain any interactions involving both ¢ and j. The goal is to construct
optimal upper and lower bounds, i.e.

fu(z) = argmin(SSE(f, fr)), such that fy(z) = f(z) V x € Q, (75)

and
fr(z) = argmin(SSE(f, f.)), such that fr(z) < f(z) V x € Q. (76)

We define our upper and lower bounds as ffi(z) = f(z) + g(x) and f}(x) = f(x) + h(x),

where g(z) = [f(z) — f(z)| and h(z) = —[f(z) — f(x)]. To prove that these bounds are
optimal, we will show that for any pseudo-Boolean function f(z) = Y, 5 8" [I4es 2 such
that f(z) = f(x) — fi:(z), SSE(f, fi) < SSE(f, fi; + f), except when f(z) = 0, where the

two are equal. Since SSE(f, fi + f) = X, (f(2) = f5(2))* + X, (f(2))* + 2 X, f(2)(f5 (z) -
f(x)), it is sufficient to show that > f(x)(fj(z) — f(z)) = 0. We start by studying
fi(x) — f(z), inserting our expression for the error from (36) we get,

fo@) = f@) = |f(2) = f@)] = (f(z) = f(2))
:i A; {5/\ H l"k:] _(.Iixj_{‘i_%xj“—%aji) Z {5/\ H xk] :
€S(i g keA\{i,j} AeSy; 4y keA\{i,j}

To study this expression more closely we first consider an x_g; j; where
A
ZAES{,L-J} [5 erA\{i,j} 9€1<;] > (. Then,

% . 0 xizo,szovxizl,a:jzl,
Jotw) = f(x) = { 2/f(x) = f(z)] xi=1l2;,=0va;=0z=1 (77)
Equivalently, for an x_y; ;;, for which ZAGS{U} [5/\ er/\\{ivj} xk] < 0 we get,
% - 0 xizl,sz()vxiz(),xj:l,
Jotw) = J(z) = { 2/f(x) = f(z)] =02, =0va=1uz=1} (78)

Note that this means that for half of the configurations of = € Q, f{i(x) — f(x) is zero. We
define,

Il

Qo = {z: fi(x) - f(z) = 0} (79)
U = {e: @) - flz) = 2|f(2) - f(2)]}. (80)
Note that Qp u Q; = Q and || = |2;]. Using (79) and (80) we get,

2 @) (fix) = f2) =2), fl@)lf(x) = f(a)], (81)

e e

45

since f#(x) — f(z) = 0 for all # € Q. The function f(z)|f(z) — ~()| clearly has no
interactions involving both ¢ and j since f (x) is defined over the set S, which is d651gned
not to include any interactions involving both i and j, and |f(z) — f(z)|, see (24), is
independent of z; and z; and includes no interactions with either ¢ or j. Thereby Theorem

6 applies to f(z)|f(z)— f(x)|. All terms in the sum D ety f(@)|f(z)— f(x)| can be grouped
into groups of two terms that are either

flai = 0,25 = 0,2 ()| f (2 = 0,25 = 0,2_iy) — flai = 0,25 = 0,243
+f(e; =1 =La_giy)flei=1a;=lo_5) — flos =12, =1L a_gu;)), (82
or,
Flai=1,2; = 0,2_g)| fla = Loy = 0,2_45) — flo = Loy = 0,2_(3)]
+f(@i = 0,25 = 1o)| f(2i = 0,25 = La_gy) — flai = 0,25 = La_g)l, (83)

depending on x_y; j;. Theorem 6 means that the sum in (82) is equal to the sum in (83).
Thus since € = 2,

D F@f@) = f@)l =)] fla — f(x)]. (84)

e ze

Combining (81) and (84) we have that,

D @) = fl@) =2 Y, f@)lf@@) = flo)) =2), f(z ~ fl@) =0,

€S e €

since f(x) = 0 for all 2 € Q. Therefore f(z) = fy(z), and through a similar argument
Jilx) = fo(z).

46

