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Dynamic Decision Making for Graphical Models Applied to
Oil Exploration

Gabriele Martinelli, Jo Eidsvik and Ragnar Hauge
Department of Mathematical Sciences, NTNU, Norway and Norwegian Computing Center, NR, Norway

We present a framework for sequential decision making in problems described by graphical models. The
setting is given by dependent discrete random variables with associated costs or revenues. In our examples,
the dependent variables are the potential outcomes (oil, gas or dry) when drilling a petroleum well. The goal
is to develop an optimal selection strategy that incorporates a chosen utility function within an approximated
dynamic programming scheme. We propose and compare different approximations, from simple heuristics to
more complex iterative schemes, and we discuss their computational properties. We apply our strategies to oil
exploration over multiple prospects modeled by a directed acyclic graph, and to a reservoir drilling decision
problem modeled by a Markov random field. The results show that the suggested strategies clearly improve the
simpler intuitive constructions, and this is useful when selecting exploration policies.
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1 Introduction

This paper considers the problem of sequential decision making, where the outcome of one decision will influence
the others, and the decisions are based on the expected utility. Our motivation and main applications are from
oil and gas exploration, where a petroleum company has a set of potential drilling sites, called prospects. For
each prospect, we may either drill or not. There is a cost of drilling, but revenues if the well discovers oil or gas.
The prospects are statistically dependent, and drilling at one prospect gives information that is used to update
the probability of success at other prospects. The goal is to find an optimal drilling sequence, including when to
stop drilling and abandon the remaining prospects. Thus, we are interested in designing a strategy or a policy
for selecting the sequence of prospects, or at least the first few best prospects in such a sequence.

The optimization of the expected utility function is a trade-off between two factors: the direct gain from
the exploitation, and the indirect gain of learning, or exploration, that helps us make informed future decisions.
The balance between these is controlled by a discounting factor. With no discounting, the problem becomes a
maximization of the value of information (VOI), whereas a high discounting factor leads to a greedy approach
where only immediate gain counts.

We have no theoretical restrictions on the underlying statistical model for dependence between outcomes. In
practice, there is a requirement that conditional distributions can be computed and updated fast, since many of
these will be computed when designing a strategy. For comparing strategies, it is also advantageous if we can
easily simulate from the models. In our examples, we use Bayesian networks (BN) and Markov random fields
(MRF), which both have these properties.

This sequence selection challenge is a discrete optimization problem and the optimal strategy can be found by
Dynamic Programming (DP), see Bellman [1957] and Nemhauser [1966]. However, DP becomes computationally
infeasible when the number of possible actions increases. A remedy for this is to apply a heuristic approach.
These strategies have been studied in many contexts due to the curse of dimensionality, which affects most DP
methods [Powell, 2008]. The simplest heuristic is to run an independent strategy, disregarding the information
gain caused by dependent variables. A more sophisticated alternative is to use a myopic strategy. This strategy
conditions on past outcomes, but does not account for future scenarios in a proper way.

A possible solution to large DP problems is also offered by approximate DP methods, see Bertsekas and
Tsitsiklis [1996] and Powell [2008]. The main idea of approximate DP is to replace the optimization function
with a statistical model that captures the impact of decisions now on the future. Approximate DP techniques
for solving a multivariate knap-sack problem [Bertsimas and Demir, 2001] resembles the situation of drilling
wells, but in our graphical representation of dependent prospects it is not obvious how to find a statistical model
that approximates the future value function. Further, our main goal is to find an optimal sequence, and most
approximate methods do not give this as a byproduct when approximating the utility function.

When considering a set of independent prospects, the optimal sequential decisions are offered by the Gittins
indeces [Gittins, 1979], introduced for solving bandit-problems [Weber, 1992]. These methods were used for a
petroleum example by Benkherouf and Bather [1988]. Here, the discovery probabilities in different prospects
are apriori independent, and later dependent just through the total number of discoveries. In our context the
correlation is much more complex, and the actions influence the model probabilities in a complicated manner.

Branch and bound methods are non-heuristic in the sense that they produce lower and upper bounds of the
values [Goel et al., 1979]. In practice the gap between bounds can be wide. Moreover, it is not obvious how
to generalize these methods for graphical models with dependence between prospects. In our context we will
typically lack monotonicity when computing the best (discounted) sequence. Branch-and-bound methods seem
more suited for the actual maximum value of the utility function, instead of an approximate sequential decision
strategy.

The challenge of constructing drilling strategies is of course well known in the oil and gas industry, but no
one seems to have looked at it from a modern statistical modeling viewpoint applying graphs to couple many
dependent prospects. Kokolis et al. [1999] describe a similar problem with a focus towards decision making
under uncertainty and the technical risks connected to a project. They do not consider how to design an optimal
sequential drilling strategy, but discuss the combinatorial increase of the number of scenarios that has to be
considered. Smith and Thompson [2008] analyze the consequences of dependent versus independent prospects,
and give drilling guidelines that are optimal in special situations. In Bickel and Smith [2006] and Bickel et al.
[2008], DP is used to compute the optimal sequences and profits from six dependent prospects, but they do not
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indicate solutions for the large scale challenge.
Our approach is a classical DP procedure with the use of heuristics for approximating the continuation

value (CV). The CV is defined as the value of the prospects that have not yet been revealed in the sequential
exploration. This value of course depends on the outcome of the current sequence. The simplest form of this is the
naive strategy sketched above, where the CV is computed under independence. We use this for benchmarking.
In addition, we apply pruning of the decision tree, where we ignore unlikely branches to reduce the combinatorial
problem.

We use profit as utility function, which is quite reasonable for a large oil company. Alternatives would
be profit given that loss at no time exceeds a given value, or, in the case of entering new exploration areas,
minimum loss before concluding that there is no oil present. The profit criterion we use is not dissimilar to the
VOI. For instance, Eidsvik et al. [2008], Bhattacharjya et al. [2010] and Martinelli et al. [2011] study the effects
of more data acquisition, the ability to make improved decisions, and the associated VOI for spatially dependent
variables. However, they do not compute the VOI in a sequential manner [Miller, 1975], neither are they focusing
on the best sequential exploration program.

A statistician can of course imagine other non-monetary utility functions within a similar framework. For
instance minimum integrated variance, minimum entropy, or other design of experiment criteria, where the goal
could be to stabilize the probabilities at nodes in the graph, with the least possible observables. Our approach
is in some ways similar to constructing sequential spatial designs.

The paper develops as follows: In Section 2 we introduce the notation, statistical framework, and the as-
sumptions required for applying our methods. In Section 3 we present the DP algorithm for our problem. In
Sections 4 and 5 we propose the various heuristic strategies, and the algorithms used to evaluate the properties
of the sequential exploration strategies. Finally, in Section 6 we provide results for a small BN model and a BN
case study of 25 prospects in the North Sea, and a MRF for a oil reservoir represented on a 5× 20 lattice.

2 Assumptions and notation

We consider a set of N prospects with a discrete set of possible outcomes. These N prospect nodes are a
subset of the total M nodes in a graph. The remaining M −N auxiliary nodes impose the specified dependency
structure in the model, but are not observable. For every node i = 1, . . . ,M we have a discrete random variable
xi ∈ {1, . . . , ki}. In the examples below we use ki = k, and k = 3. The random vector of all variables is
x = (x1, ..., xM ), where the N first components correspond to the prospect variables.

The directed acyclic graph (DAG) in one of our case studies is built from the causal large scale processes
required to make sufficient amounts of oil and gas, see VanWees et al. [2008] and Martinelli et al. [2011]. A
DAG defines the joint probability model p(x) from the product of conditional distributions p(xi|x

pa
i ), for all

nodes i = 1, . . . ,M , where x
pa
i denotes the set of outcomes at parent nodes of i. In the MRF example for

a lattice of cells in a specific reservoir unit, the model is defined over neighborhoods on the lattice, where
p(xi|x−i) = p(xi|xj ; j ∈ Ni), and x−i is the vector of all variables except xi, while Ni is the neighborhood
of node i. The particular type of model is not critical, but for our purposes fast updating of the conditional
probabilties is important. This updating is required when we get sequential evidence. BNs are fast to update
using for instance the junction tree algorithm, see e.g. Lauritzen and Spiegelhalter [1988] and Cowell et al. [2007].
Moderate size MRFs can be computed recursively by forward-backward algorithms [Reeves and Pettitt, 2004].
Moreover, we will use Monte Carlo samples to generate realistic future scenarios. It is easy to draw samples
x = (x1, . . . , xM ) ∼ p(x) from the BNs and MRFs we consider.

Given a probabilistic model with a certain dependence structure, we want to develop a drilling strategy,
i.e. a dynamic road map that leads us through the exploration phase of the prospects. Since the prospects are
dependent, the outcome of one changes the probability of success in the others. The strategy of continued drilling
thus entails a sequential updating of the probability model.

We let ωi be the observable in node i = 1, . . . , N . If node i is not yet observed, we set ωi = −. If we
choose to observe node i, ωi is the actual outcome of the random variable xi at this node. For instance, ωi = 1
can mean that well i has been drilled and found dry, ωi = 2 if found gas, and ωi = 3 if oil. Initially, before
acquiring any observables, we have ω = (−, . . . ,−). If we start to explore nodes, we put the outcomes at the
corresponding indices of the vector ω. Say, if node 2 is selected first, and observed in state ω2 = x2 = 2, we
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set ω = (−, 2,−, . . . ,−). For the likelihood of this scenario we need the marginal p(x2 = 2). This is computed
by summing out all scenarios that share the second component equal to 2. In order to compute the conditional
probabilities of a node i, given evidence, we need p(xi = j|ω), j = 1, . . . , k, where the empty elements (−) of ω
are unobserved and marginalized out.

The CV associated with the state vector ω is denoted v(ω). This is the expected value of all currently
unobserved states given the observed states, the objective function, and the chosen strategy. One objective is
to find the initial value before any sites have been explored, i.e. v(ω0) where ω0 = {−,−, . . . ,−}. This initial
value is in theory given by DP. As an integral part of the DP algorithm one must evaluate the values v(·) of all
possible combinations of evidence. This becomes impossible when we have many nodes in the graph.

The DP algorithm also gives the optimal sequential decisions, but since this is not feasible for large N , we
instead construct forward selection strategies, approximating v(·) to different accuracies. When building such
strategies we make assumptions about the way decisions are made. First, we assume that the decision maker
selects one node at a time. Without this assumption, the problem would grow to allow all orders of two-tuples,
three-tuples, etc. Second, we assume that there are fixed revenues and costs associated with each node. If we
choose to explore a node, we have to pay a cost. For certain outcomes of the node variable, we receive a revenue.
For instance, if the outcome is oil, we get the fixed revenues associated with this outcome. The revenues and
costs change from node to node, but introducing random distributions on the costs and revenues for each type of
outcome would make our optimization problem harder. Finally, we assume the utility function contains separate
parts for every node, without any coupling of the nodes. This utility function expresses the decision makers
inclination to collect the revenues or cost at any site. In principle, there could be shared costs or revenues
for nodes, say if certain HC prospects have common infrastructure [Martinelli et al., 2011]. We could include
this into our framework, but it gives extra computation time, and obscures the presentation of the sequential
strategies, that is the focus of our work.

Given these assumptions, we will next show how DP presents a recipe for computing the optimal strategy.
We will discuss why this is not possible for a model with many nodes, and we will instead propose strategies to
overcome the problem.

3 Dynamic programming

In our context DP recursively explores backwards all the possible sequences that may occur, and it uses these
evaluations to select the best dynamic decisions. See e.g. Bickel and Smith [2006] for a similar application of
DP.

By the word sequence we mean each of the possible situations that may arise. Sequences are indexed by
adding one element ωi ∈ {1, . . . , k} at a time to the evidence vector ω = (ω1, . . . , ωN ). With N = 4 prospects,
the state ω = {−, 1,−, 2} means that the node 1 has not yet been explored, node 2 has been observed to be
in state 1, node 3 has not yet been explored, and node 4 has been observed to be in state 2. Two different
scenarios may correspond to this sequence, one when node 2 is explored before node 4, and another when node 4
is explored before 2. This order is of course relevant when we have only explored node 2, and consider observing
node 4, or vice versa, but once both node 2 and 4 have been explored, we no longer distinguish between these two
scenarios (except for discounting purposes). Thus, we tend to use the terms sequence and scenario as synonyms.

The decision tree (Figure 1) visualizes the chosen strategy. It works in the following way:

1. First, decide which site, if any, to observe first.

2. Then, depending on the outcome xi ∈ {1, . . . , k}, which node to observe next, if any, and so on.

DP solves the tree by working backwards:

1. First, decide whether to drill the last prospect, conditional on the first N − 1 observables.

2. Then, decide which prospect to drill if there are two nodes left, and so on, to the initial empty set.

In order to pursue this strategy, we have to maximize a certain utility function. We use maximum profit,
and v(ω) then represents the expected revenues of future cash flows given that we are in state ω. Initially, the
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Figure 1: Illustration of a decision tree. At the first branch we can select any of the 6 nodes, or quit (Q). Node 6
is explored first here. If node 6 is dry, we select node 3 at the next branch. The outcome of node 3 can influence
which branch to enter next, and so on.

vector of observables is empty: ω0 = {−,−, . . . ,−}. The maximization is among all possible free states:

v(ω) = max
i∈N


k∑

j=1

p(xi = j)

[
rji + δ max

s∈N−1

{
k∑

l=1

p(xs = l|xi = j)(rls + . . .), 0

}]
, 0

 , (1)

where the second and the subsequent maximizations are over all nodes not yet considered. Here, δ is a discounting
factor that depends on the specific case and on the inclination of the decision maker. The rji are revenues or
costs of node i with outcome j. When all the sites have been drilled, the CV is v(·, ·, . . . , ·) = 0, and we can
proceed backwards, one step at a time, to extract the DP solution.

Equation (1) can be rewritten [Bickel and Smith, 2006], and it can be seen as a maximization over all free
nodes and 0 (not exploring any further). This means that v(ω) = maxi{0, vi(ω)}, where:

vi(ω) =
k∑

j=1

{
p(xi = j|ω)(rji + δ · v(ωj

i ))
}
, (2)

where ωj
i = {ω-i, ωi = j} and v(ωj

i ) is the CV of the state ωj
i , i.e. v(ωj

i ) = maxl 6=i{0, vl(ωj
i )}.

The main problem with this optimal DP solution is the exponential growth of the number of scenarios that
have to be considered. Bickel and Smith [2006] derives the computational cost for a non-recombining tree, i.e. a
tree ignoring the order of the observed nodes. Then,

Number of possible scenarios in a non-recombining tree: :

N∑
i=0

(
N
i

)
ki(N − i+ 1).
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This entails an order of 104 scenarios for six nodes [Bickel and Smith, 2006], and 1015 when N = 25 nodes. The
computational cost (proportional to the number of scenarios) is therefore in the order of

(
N
2

)
!kN/2. Bickel and

Smith [2006] suggest to save the local results of the computations in order to reduce the number on configurations
to consider. Say, for the purposes of the CV, it does not matter whether we first drilled first one well or another,
given that we observe their outcomes. Nonetheless, the exact procedure remains unfeasible when the N increases.
Furthermore, we need to mention that the introduction of the discounting factor δ makes impossible the use of
classical non-recombining algorithms, and gives us few chances other than following the described approach.

4 Heuristic strategies

Because of the rapid growth in scenarios, one must look for approximate solutions. The problem shares some
features with that of a chess game. The player has to choose among all the possible moves she can carry out,
and at the same time he has to consider all the possible replies of his opponent, and the consequential replies
of herself, and so on. What is done in practical chess algorithms is to limit the search to a reasonable amount
of moves forward, and to evaluate the best move in that ”restricted match”, see Shannon [1950] and Feldmann
et al. [1994].

Similarly, we push the search through a certain number of steps, figuring out some rules to approximate the
remaining value of the scenarios. The idea is to introduce different and simpler rules, in order to approximate
the CV in equation (2) without going all the way down through the branches of the decision tree. We will call
these rules heuristics, following the literature described in Pearl [1984].

4.1 Naive strategy

The naive strategy ignores the dependence among nodes. Therefore, the decision is just based on a priori
knowledge. There is no learning. The CV is then estimated as a simple sum of a priori intrinsic values:

vN (ω) =

N∑
i=1

max


k∑

j=1

rji p(xi = j), 0

 . (3)

The best sequence is therefore computed just once, at the beginning of the algorithm, and the nodes are chosen
according to:

i(1) = arg max
i


k∑

j=1

rki p(xi = j), 0

 , i(2) = arg max
i\i(1)


k∑

j=1

rji p(xi = j), 0

 . . . . (4)

As we can see, the outcome of the first best prospect is irrelevant when choosing the second best site. This
approach, though being very simple (the computational cost is linear in N), still captures a large part of the
value if the correlation between nodes is small. The main problem is the individuation of the correct best
sequence, since disregarding any correlation effect can lead to focused attention on nodes that might not be
appealing given the evidence of the previous steps.

4.2 Myopic approach

A second natural approach is represented by the myopic strategy Bollapragada and Morton [1999]. According
to this strategy, the best sequence is computed step-by-step in a forward selection scheme. The conditional
probabilities in the different nodes are now updated, given the previous outcomes. This represents an intuitive
sequential strategy, but it only exploits the dependence in the graph through the past, and does not consider
what the future might bring.

The strategy for finding the first best prospect coincides with the naive approach:

i(1) = arg max
i


k∑

j=1

rji p(xi = j), 0

 . (5)
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Given an outcome x(1) at this first selected node i(1), the second myopic best site is then chosen as a function of
the observable in the first node:

i(2j1)|xi(1)=j1 = arg max
i\i(1)


k∑

j=1

rji p(xi = j|xi(1) = j1), 0

 (6)

i(2j2)|xi(1)=j2 = arg max
i\i(1)


k∑

j=1

rji p(xi = j|xi(1) = j2), 0

 , . . .

Now, the second best choice, therefore, involves k different maximizations, depending on the outcome of xi(1) .

Thus, using a myopic strategy leads to a decision tree with
∑N

i=0 k
i scenarios.

The myopic approach approximates the CV in equation (2) by

v1 = max


k∑

j=1

rji p(xi(1) = j), 0


v2 =

k∑
j=1

(
max

{
k∑

l=1

rlxi(2j)
p(xi(2j) = l|xi(1) = j), 0

})
p(xi(1) = j)

vM (ω) =
N∑
i=1

δi−1vi.

The complexity of designing an entire strategy with this myopic approach is of order kN . This remains consid-
erably high, keeping in mind that we are just using a small part of the information.

One way of evaluating the myopic strategy is by Monte Carlo sampling x1, . . . , xB ∼ p(x). For each of the
B samples the decision is given by the past outcomes, say xbi(1) = j, xbi(2j) = l, . . ., and different samples would

follow different branches of the decision tree. One could also imagine truncating the myopic evaluation and using
the (conditional) naive approach from a certain branch on. We will discuss such approaches in more depth in
the next section, when we study more refined forward selection strategies applying the heuristics for the CV at
every stage.

5 Look-Ahead and Rolling Horizon strategies

The methods considered in the previous section have the common goal of providing an approximation to the CV.
It is therefore natural to use them at different stages of the forward selection procedure. We next propose look-
ahead strategies that apply a depth n forward search combining DP with approximations of the CV. The depth
n can be chosen by the user. It will depend on the desired accuracy and on the available time and computation
power.

In our oil and gas prospect application, there is typically no need to push the forward-backward selection
procedure until the very last node. The oil and gas company is most interested in deciding the first few prospects
to drill. On the other hand, the approximations we consider apply heuristics for the CV, and in the presence of
a large and non-homogeneous number of sites, the associated sequences are not necessarily optimal.

5.1 Look-ahead strategies

Assume that n decisions have been made and that the CV of the field is estimated by a naive or myopic strategy.
We propose to assign a large contribution to the first n < N decisions, and a smaller contribution to the remaining
N − n. We approximate all CVs, and use them to run a restricted n-steps DP. The complexity of the algorithm
depends on the size n chosen in the approximation, and it is order of (n2 )!kn/2(N − n), when approximating the
CV with the naive approach. The strategy is the following:

• Starting point: no nodes have been observed yet: ω = {−,−, . . . −}.
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• n steps are evaluated with DP, i.e. v(ω) = max{v1(ω), v2(ω), . . .}. At each step vi(ω) is computed
according to equation (2).

• After n steps the decision vector has n observed components and N − n still empty (not observed). We
define the decision vector at this stage ω∗. For instance, if N = 6 and n = 2, with observations x2 = 2 and
x6 = 1, then ω∗ = {−, 2,−,−,−, 1}.

• The CV v(ω∗) is always approximated according to one of the methods introduced in Section 4:

– Naive:

vN (ω∗) =
N−n∑
i=1

max


k∑

j=1

rji p(xi = j|ω∗), 0

 ,

We can also fix an order for the N − n prospects, based of their intrinsic values, in order to discount
the values in a particular way.

– Myopic:

Similar to what was has been done in Section 4, we now approximate the CVs with a stepwise
procedure, computed in the following way:

v1 = max

{
3∑

k=1

rki p(xi(1) = k|ω∗), 0

}

v2 =

3∑
j=1

(
max

{
3∑

k=1

rkxi(2j)
p(xi(2j) = k|xi(1) = j,ω∗), 0

})
p(xi(1) = j|ω∗), . . .

vM (ω∗) =
N−n∑
i=1

δi−1vi,

5.2 Rolling horizon look-ahead strategies

We next combine different look-ahead searches and forward selection strategies. We suggest the idea depicted
in Figure 2, where one first runs a look-ahead search of depth n. Next, the best node is selected. Given the
outcome of this node, a second search of depth n is performed, and so on.

We call these strategies Depth n (in the following Dpt n) rolling horizon look-ahead (RHLA) strategies (see
Le and Day [1982] and Alden and Smith [1992]). It is interesting to note that a Dpt 0 strategy coincides with a
full naive or myopic approach (depending on the approximation chosen for the CV), while a Dpt N − 1 strategy
coincides with a full evaluation of the decision tree, and therefore with the DP presented in equation (1).

This RHLA strategy is a forward selection, but it partially accounts for future scenarios in its look-ahead
length-n DP procedure. In the RHLA strategy we explore the tree up to a certain fixed depth n, but we draw
conclusions just about the first best site. Since at every step we rerun the strategy, we can incorporate at this
step the outcome of the sample, instead of exploring all the possible combinations of evidence.

The resulting algorithm has the same computational complexity as the myopic strategy, with an additional
factor due to the complexity of the look-ahead strategy in itself. In total we have a complexity of (n2 )!kn/2(N −
n) · kN . Note that this strategy can always be computed in a forward selection manner. It is however much
harder to evaluate the strategy, for instance to compute the associated value, or the variability in the computed
sequences over different outcomes.

For a small number of nodes N , one can compute the values probabilistically for different depths n RHLA
strategies. For larger dimensions we suggest to use Monte Carlo sampling to evaluate the different strategies.

We then draw samples from the graphical model with joint distribution p(x). We run the RHLA depth n
procedure to select nodes, and for each step in the forward selection we plug in the outcomes according to the
relevant sample at that node. This approach mimics what would happen in hypothetical scenarios, and we can
say that we are playing the game.

Given one realization from the graphical model, the pseudo algorithm is presented in Algorithm 1. The
algorithm presents two parts: a first one, that constitutes the core of the algorithm from where we call the
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sites 1:n i(1)1

n
2

Sites RHLA “Dpt n” strategy} }
n+1

sites 2:(n+1) i(2)
sites 3:(n+2) i(3)

...

3

n+2

Figure 2: Rolling horizon look-ahead strategy, Dpt n; at every step we run a DP strategy using n sites for finding
the best node, and then we update the strategy with the outcome of that node.

recursion, and a second one that presents the recursive function itself. In the core we find a while loop that is
necessary to terminate the algorithm when all the nodes have been explored and an if condition that breaks
the process if none of the nodes presents a positive CV. In the recursive function we have an if condition that
ensures that the correct depth is achieved, and a for loop that goes through all the not-yet-explored nodes.
When running a RHLA strategy on small examples (cfr. Section 6.1) there is the possibility to run a RHLA for
every possible evidence, spanning the whole sample space. By averaging the revenues and costs collected through
the strategy, we get a value that coincides (exact and myopic case) or approximates (RHLA case) the estimated
final value. In large examples (cfr. Section 6.2) this is not possible and we estimate the final values through a
Monte Carlo sampling procedure.

5.3 Pruning strategies

The look-ahead strategies share the idea of choosing a priori the depth n of the search tree. This choice must be
done before running an approximation. In practice, we choose n based on the available computation time.

The problem is that we often explore branches of the decision tree that are useless for designing an optimal
strategy, and we do not privilege enough branches that can give a stronger contribution to the value. We next
design adaptive strategies based on tree-pruning, accounting for the value of the different branches. These idea
is inspired by similar ideas applied in contiguous fields, like the chess computer-based algorithms.

We prune the branches of the tree that are very unlikely. In this way we do not have to explore all the
combinations, and we reduce the complexity of the algorithm. We define threshold parameter ε such that

if P (ωj
i ) < ε then v(ωj

i ) ≈ v(ω∗i ),

and we use one of the methods described in Section 4 in order to approximate the CV.
A more refined approach is to decide which branches to explore based on the value of the nodes. This reduces

the number of nodes to explore. The method can either be based on the intrinsic value of the individual node
under consideration or a look-ahead evaluation of depth 1.

The pseudo-algorithm is the following:

• ω0 = {−,−, . . . ,−}
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Algorithm 1 Evaluating a Rolling Horizon Look-Ahead strategy of Depth n

ω = [−,−, . . . ,−] # Dynamic programming outcome vector
y = 0 # Rolling horizon counter
val = 0 # Value counter
seq = [ ] # Best sequence vector
Sample s ∼ p(x) # Current sample
while #[ωi = {−}] > 0 do

[v, j] = f(ω, 1)
if v > 0 then # CV positivity condition
ωj = sj # Set sampled outcome sj at selected node j

val + = δy · rsjj # Discounting of revenues
seqy+1 = j # Selected node is j

else
break

end if
y + +

end while
return val
return seq

function [v, j] = f(ω, d) # Input: Current state, current depth
if #[ωi = {−}] == 0 then # Last iteration condition, stop

j=0
v=0

else if d ≤ n then # ”Depth n” condition, continue DP
for i : ωi = {−} do
for l = 1 : k do

[v, j] = f(ωl
i, d+ 1) # DP iteration at next depth level

vli = rli + δ · v
end for
vi =

∑k
l=1{p(xi = l|ω) · vli}

end for
v = maxi{vi, 0}
j = arg max{vi}

else # Reached depth n, compute naive CV
j = 0

v(ω) =
∑

i:ωi={−}max
{∑k

l=1 r
l
i · p(xi = l|ω), 0

}
end if
end function

• for i=1:N we order the segments on the basis on an approximate CV, that can be either of the following:

– Intrinsic value: v(ωi) =
∑k

j=1 r
k
i p(xi = j)

– Look-ahead Dpt 1 value:

v(ωi) =
∑k

j=1 p(xi = j)
[
rji +

∑N
s=2 max

{∑k
l=1 δ

srl(s)p(x(s) = l|xi = j), 0
}]

• Keep only the N −Nprun maximum nodes with the highest values and move to the second level of depth
in a RHLA framework. For the Nprun nodes with minimum values, use the approximated values already
computed (Intrinsic or Look-ahead Dpt 1).

In practice, Nprun cannot be too small (too many paths to explore), nor too large (we risk to abandon paths
that may result being interesting). We will use the pruning strategies to speed up the computations on large
graphs.
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Figure 3: BN used in the 1st case study. We indicate with the letter K the nodes denominated kitchens, i.e.
zones where HC have been generated, with letter P auxiliary nodes that are functional to establish the desired
correlation structure, and with numbers the six nodes where we can drill.

6 Results

We first study a small BN model, where the exact DP solution is available. This allows us to compare the
suggested strategies with the exact solution. This synthetic study also anticipates the behavior of the approxi-
mations on the BN case study from the North Sea, with 25 prospects. Finally, we analyze a MRF model for an
oil reservoir. We construct sequential exploration schemes and interpret the results of different strategies.

6.1 A small Bayesian Network example

We are first interested in exploring the accuracy and the results of our methods on a small BN example (Figure
3). We use a small DAG with M = 12 nodes. The nodes denoted K1, K2, P1, P2, P3 and P4 are auxiliary nodes
that cannot be drilled. They are motivated by geological mechanisms that are needed to introduce a realistic
correlation structure in the network. The two K-nodes represent kitchens, i.e. areas where the hydrocarbon
(HC) generation has been or still is in place, and where the migration of HC started. The P-nodes represent
geological macro-regions able to store HC. Finally, the bottom numbered nodes, 1, . . . , 6 = N in Figure 3, are
prospect nodes where the oil and gas company considers drilling wells. The cost and revenues and marginal
probabilities are summarized in Table 1. We designed the DAG to have large variabilities both in the likelihood
of finding HC and in the related volumes (revenues). The intrinsic values, i.e. the marginal a priori values of
the prospect, are all very close to 0: this makes the case harder to solve. The conditional probabilities defined
by the edges are based on geological reasoning and explained in details in [Martinelli et al., 2011]. They impose
some learning in the model, once we collect evidence.

In this small case we can compare the result of approximate strategies with the exact DP solution. The
discounting parameter δ is fixed, here and in the next simulations, to a realistic value of 0.99, as suggested in
[Bickel and Smith, 2006]. The first comparison is presented in Table 2. Here, the result of the strategies up to
the third best choice are presented, for the naive and myopic strategies, for exact DP and for Dpt n strategies,
up to n = 4. According to the exact strategy, if oil or gas is found in the first segment chosen (in this case,
number 6), the suggestion is to keep drilling in the same area (under P4 node) with segment number 5. If the well
reports a negative result, it makes sense to immediately explore another part of the field. The naive approach
does not take this dichotomy into account because the sequence is fixed a priori. The myopic approach uses a
different strategy for the oil/gas and the dry case, but since the depth of the search is in this case short-sighted,
the conclusion is to stop drilling immediately after a dry well.

In addition to comparing strategies, we study the computational time and the final value, v(ω0). We notice
that, despite slightly different strategies, the final values are quite close to the exact for Dpt 2 or even Dpt 1,
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Table 1: Parameters rki for the 1st case study, and relative Intrinsic Values (marginal probability of success/failure
times revenues/costs)

k \ i 1 2 3 4 5 6

rk1 (dry) -20 -25 - 1 -15 - 22 - 8
rk2 (gas) 6 3 9 0 4 5
rk3 (oil) 3 1 6 7 2 1

p(xk = 1) 0.20 0.10 0.80 0.30 0.15 0.34
p(xk = 2) 0.52 0.72 0.01 0.02 0.68 0.53
p(xk = 3) 0.28 0.18 0.19 0.68 0.17 0.13

Intrinsic Value -0.04 -0.16 0.43 0.15 -0.25 0.05

Table 2: Results of the sequential exploration program for the 1st case study, for naive, myopic, exact and Dpt1
to Dpt 4 strategies. i(1), i(2) and i(3) are respectively the first, the second and the third best site selected. Q
means quit (the strategy). Final value is v(ω0).

Naive Myopic Exact Dpt1 Dpt2 Dpt3 Dpt4

i(1) 3 3 6 6 6 6 6

i(2)|xi(1) = dry 4 Q 3 3 3 3 3

i(2)|xi(1) = gas 4 2 5 2 5 5 5

i(2)|xi(1) = oil 4 2 5 2 4 4 5

i(3)|xi(1) = dry, xi(2) = dry 6 Q Q Q Q Q Q

i(3)|xi(1) = dry, xi(2) = gas 6 Q 2 2 2 2 2

i(3)|xi(1) = dry, xi(2) = oil 6 Q 2 2 2 2 2

i(3)|xi(1) = gas, xi(2) = dry 6 4 4 5 4 4 4

i(3)|xi(1) = gas, xi(2) = gas 6 4 4 5 4 4 4

i(3)|xi(1) = gas, xi(2) = oil 6 4 4 5 4 4 4

i(3)|xi(1) = oil, xi(2) = dry 6 4 4 5 3 5 4

i(3)|xi(1) = oil, xi(2) = gas 6 4 4 4 2 2 4

i(3)|xi(1) = oil, xi(2) = oil 6 4 4 4 2 2 4

Final Value 0.63 1.67 4.960 3.85 4.84 4.93 4.957
Time 0.24 sec 0.24 sec 85.6 sec 0.43 sec 3.52 sec 16.11 sec 48.22 sec

with a much smaller computational time. The final value reported in the table is only the approximate value
found when optimizing the strategy for the Dpt 1-4 algorithms. In practice, their value will be higher, since the
approximation is based on using a naive strategy at the end, whereas the algorithm always looks ahead running
new Dpt n searches. We therefore believe that the best comparison is not much about comparing values, but
more about comparing the proposed strategies on real scenarios.

Since the dimension of the problem is relatively small, we can directly span the whole sample space and
compute all RHLA strategies exactly, as anticipated in Section 5.2. This is the approach adopted in Table
3. Here we compare the evaluation of the different strategies (naive, myopic and different depths of look ahead
strategies) on the whole sample space generated by the BN of reference. We therefore test 36 = 729 combinations
of evidence on the nodes of interest, and we compute the likelihood of these scenarios by summing out the outcome
at the top nodes. In this way, we can compute the average performance of the strategies, and the related variance.

The result tells us that, when applied in practice on this simple test case, the two simple strategies perform
extremely poorly, while the look ahead strategies perform significantly better. In particular, Dpt 2 and Dpt 3
perform almost as good as Dpt 4 (which in this case corresponds exactly to the Exact Strategy), with a significant
reduction in the computational time. An interesting argument in favor of the look-ahead strategies can also be
made considering the variance. If we consider the second row of Table 3, we observe an increasing variance
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Table 3: Sequential exploration program, methods’ comparison following a complete RHLA procedure (Section
5.2)

Revenues Distribution Naive Myopic Dpt1 Dpt2 Dpt3 Dpt4

Average value 0.63 1.68 4.89 4.95 4.959 4.960
Standard deviation 12.664 8.815 15.268 14.878 14.877 14.869

between the simpler strategies and the look-ahead strategies. We first notice that the variance of the revenues
distribution under the naive strategy just reflects the variance of the marginal a priori distribution for prospects
3, 4 and 6:

σ2N = 12.6642 =
3∑

i=1

3∑
j=1

3∑
k=1

{
(r3i + δr4j + δ2r6j − r̄)2 · p(x3 = i, x4 = j, x6 = k)

}
Furthermore, we can relate the low variance of the myopic strategy to a spike on the value ’−1’, that corresponds
(see Table 1) to the loss for a likely (p = 0.8) dry observation in segment 3. Since a dry outcome at the first site
in the myopic strategy would imply quitting the search, we are ultimately left with a high number of scenarios
whose revenues’ outcome is simply −1. If we remove these scenarios, the variance shrinks from myopic to Dpt
1 to Dpt 4, providing another argument in favor of these strategies. A lower variance in this case coincides
with a more stable estimate and a lower risk when starting an exploration campaign, and this can be almost as
important as a high final value.

6.2 A Case Study from the North Sea

We next study a BN model developed for 25 HC prospects in the North Sea. The network (Figure 4) is taken
from Martinelli et al. [2011], and represents a model of HC fields in the Norwegian part of the North Sea. The
network includes the same characteristics as the small test study, but there are now 25 possible drilling locations
(numbered 1 through 25 in Figure 4). We use the same probability model as in Martinelli et al. [2011]. This
gives the marginal probabilities in Table 4. The joint model is constructed from the DAG. Many geological
assumptions are used when building the model. In particular, gas will tend to replace oil in the HC migration.
Thus, with a single edge between two nodes in the graph we have p(xk = 1|xpak = 2) = 0, p(xk = 2|xpak = 1) > 0,
where 1 is gas and 2 is oil. Dry outcomes result from migration failures. Similar to the previous model, the
DAG has a three-level structure representing the geological mechanisms. For decision making we are interested
in the bottom nodes of the network, that represent identified prospects whose volumes and costs are assumed
known. The corresponding revenues and costs (in Million USD) are listed in Table 4. Here, we avoid shared
prospect costs that would make the computational task harder, and the interpretation more difficult. In this
real case, there are still some nodes where the probability of success (and consequently the intrinsic value) may
change substantially given the outcome in other nodes. However, some nodes would be drilled or not drilled in
any event, no matter the strategy.

Given the BN model we are interested in identifying a drilling sequence that gives maximum profit under
some criterion. Table 5 shows the results of comparing the naive, myopic and three depth (Dpt) level heuristic
strategies. Note that final values are now quite close to each other for all the approximations considered. The
dynamic decisions depend less on the strategy than in the synthetic case in the previous section. Still, there is
a clear increase of about 3000 Million USD when using the Dpt 3 strategy rather than the naive one. We have
again run the different strategies on a number of simulated scenarios (Table 6). Since the computational time
required by the RHLA strategy is order of hours per step, we have considered a sample size of 200 and followed
the algorithm described in Section 5.2. For the same reason we will focus from now on in a comparison between
simple strategies, such as naive or myopic, and two RHLA strategies, namely Dpt 1 and Dpt 2.

The difference is not very large, but the Dpt 1 and Dpt 2 strategies perform better than the myopic one.
In particular, Dpt 2 strategies give on average around 400 Million USD more than the myopic strategy. It is
particularly important to investigate the reason of this improvement. A first hint is given by the last three
lines of Table 6. Here we can notice that more complex strategies suggest in general to drill more than simpler
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Figure 4: Network used in the 2nd case study. In this case we have 25 drilling prospects, identified with the
nodes from 1 to 25, where we can possibly drill. The BN was first presented in [Martinelli et al., 2011].

strategies. The typical case is that whenever an area is found dry, the intrinsic values for all the segments around
drop, and just long-sight strategies can look for the potential remaining values. Nonetheless, a higher number of
drilled sites translates into an effective improvement of the result just if the newly drilled sites have a positive
outcome. This is the case that we are considering, since among the 1.49 sites more drilled with Dpt 2 strategy,
just 0.13 are on average dry, while an outstanding 1.36 are found gas or oil.

Figure 5 shows what happens to all the 25 prospects when treated with different strategies. In many cases
(segments 2, 6, 7, 8, 9, . . .) the marginal probability of a positive discovery is higher for the Dpt 1 approach wrt
to the myopic approach. It is interesting to note that, considering for example prospect 8, both the marginal
probability of a positive discovery is increased and of a negative one is decreased. This is explained by Table 7,
that tells us that we are drilling prospect 8 a smaller number of times with the Dpt 1 strategy, but with higher
efficiency. Conversely, in the cases of prospect 14, we have the same marginal accuracy for myopic and Dpt 1
strategy, but we still have a benefit in economical terms, since we are drilling the site a higher number of times:
technically, in this case, with Dpt 1 strategy we drill prospect 14 only and all the times that this segment is
valuable. Finally, for prospect 20, we increase both the accuracy and (substantially!) the percentage of drilled
times, resulting in a strong economical return. The results are difficult to interpret in some extreme cases, like
prospect 2. Here we note how the accuracy of Dpt 1 strategy is 100%, while the accuracy of myopic strategy is
not known (both the bars are 0). This is due to the fact that with myopic strategy we never drill prospect 2,
thus we can not say anything about the accuracy of such strategy here; on the other side, with Dpt 1 we drill it
just 2% of the times, but in these cases we always find oil or gas, therefore the accuracy boosts at 100%. This is
the reason for listing P (drilled) in Table 7 as an important diagnostic factor.

We finally consider (Table 8) what happens in single scenarios, i.e. what are the results when ”playing the
game” on a few samples with different strategies (myopic, Dpt 1 and Dpt 2). We immediately see that the
myopic approach performs either brilliantly (sample 2) or extremely poorly (samples 1 and 3), while the revenues
guaranteed by the other two approaches are, in a way, more stable: this is consistent with the type of approach,
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Table 4: Costs, revenues, marginal probabilities and intrinsic values for the 25 sites taken into account in the
2nd case study.

Prospect k rk1 rk2 rk3 p(xk = 1) p(xk = 2) p(xk = 3) Int. Value

1 -3000 3032 2783 0.20 0.52 0.28 1756
2 -900 125 236 0.40 0.21 0.39 -242
3 -2400 1094 1085 0.60 0.26 0.14 -1004
4 -1800 188 377 0.28 0.57 0.15 -337
5 -600 594 1321 0.20 0.29 0.51 729
6 -1500 156 1132 0.21 0.04 0.75 534
7 -3600 406 3255 0.34 0.03 0.63 844
8 -2100 750 6934 0.52 0.02 0.46 2107
9 -2700 2751 1415 0.10 0.72 0.18 1965
10 -1200 2751 1415 0.20 0.64 0.16 1747
11 -2400 500 4576 0.80 0.01 0.19 -1040
12 -2700 125 802 0.19 0.04 0.77 123
13 -4500 0 0 0.36 0.32 0.32 -1620
14 -1800 188 94 0.10 0.45 0.45 -53
15 -2100 563 613 0.10 0.45 0.45 319
16 -3600 31 613 0.10 0.03 0.87 172
17 -3300 250 3161 0.61 0.22 0.17 -1410
18 -1200 688 8963 0.30 0.02 0.68 5697
19 -2100 250 3349 0.37 0.02 0.61 1285
20 -5400 969 660 0.18 0.41 0.41 -312
21 -1800 1375 3444 0.49 0.26 0.25 336
22 -2400 3220 2264 0.41 0.47 0.12 783
23 -3000 156 1274 0.10 0.04 0.86 806
24 -2400 2782 1604 0.10 0.72 0.18 2052
25 -2700 2251 1274 0.30 0.56 0.14 629

Table 5: Results of the sequential exploration program for the 2nd case study, for naive, myopic, and Dpt1-3
strategies. i(1) and i(2) are respectively the first and second best sites selected. Final value is v(ω0).

Naive Myopic Dpt1 Dpt2 Dpt3

i(1) 18 18 15 22 18

i(2)|xi(1) = dry 8 8 21 18 24

i(2)|xi(1) = gas 8 19 22 18 22

i(2)|xi(1) = oil 8 19 22 18 22

Final Value 20213 21321 21841 22535 23197
Time < 1 sec < 1sec 4.72 sec 175 sec 4h

since we understand that being more long-sighted correspond to being more cautious in our decision. The
difference in the revenue variances recorded in the two samples confirms this statement, with a strong decrease
recorded when comparing myopic strategy with RHLA strategies.

If we look closer, we discover other signs that agree with this statement. The first 5 sites picked by a myopic
approach are all on the left part of the network. In simple words, we start our search from the left side (prospect
18), and keep exploring the same side for a long period as long as the results are positive. The Dpt 1 approach
suggests to jump 3 times between the left and the right side of the network just in the first five picks (15 and 22,
then 18, then 12, then 24), even if the results are very good: this means that while we consolidate the strength
of a part of the network, we also explore if other parts of the networks are likewise strong. This way of exploring
has the further benefit, in this particular case, to allow a longer series of straight good results (7 versus 5).
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Table 6: Sequential exploration program, methods’ comparison following RHLA procedure (Section 5.2) with a
sample of 200 scenarios.

Myopic Dpt1 Dpt2

Average value 24256 24500 24668
Standard deviation 13632 12474 12586

Average # sites drilled 16.62 18.01 18.11
Average # sites found dry 2.89 3.02 3.02

Average # sites found gas or oil 13.73 14.99 15.09
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Figure 5: Probabilities of positive and negative discoveries for the 25 sites analyzed in the 2nd case study. We
compare the marginal probabilities a priori with the frequency of successes following a myopic or Dpt 1 strategy.

Table 7: Marginal probabilities of positive and negative discoveries and probability of drill for three prospects,
namely prospect 8, 14 and 20. P (drilled) reports the frequency of exploration provided by myopic (Myo) or
depth 1 RHLA (Dpt 1) strategy.

Prospect 8 14 20

P(oil/gas) 0.55 0.93 0.88
P(dry) 0.45 0.07 0.12

P(oil/gas | Myo) 0.55 1 0.98
P(dry | Myo) 0.45 0 0.02

P(oil/gas | Dpt1) 0.59 1 0.99
P(dry | Dpt1) 0.41 0 0.01

P(drilled, Myo) 1 0.8 0.5
P(drilled, Dpt1) 0.93 0.93 0.86

The myopic strategy looks to perform better in very lucrative scenarios: this is consistent with the theoretical
definition of myopic strategy, that goes for the best first. In an hypothetical scenario of all prospects containing
oil, the myopic strategy would be difficult to beat, and this situation is very similar to the one drawn in the
second sample. In such situation an even simpler naive strategy could beat both myopic and RHLA strategies,
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provided that there is not enough correlation to confirm the nodes characterized by low probabilities and high
volumes.

Table 8: Ordered list of sites chosen with myopic, Dpt 1 and Dpt 2 strategy for 3 different samples taken from
the RHLA evaluation.

1-Myo 1-Dpt1 1-Dpt2 2-Myo 2-Dpt1 2-Dpt2 3-Myo 3-Dpt1 3-Dpt2
18 3 15 2 22 3 18 3 15 3 22 3 18 1 15 2 22 1
19 3 22 3 18 3 19 3 22 3 18 3 8 1 22 1 18 1
9 2 18 3 15 2 9 2 18 3 15 3 24 3 18 1 24 3
24 1 12 3 24 1 24 2 12 3 24 2 1 1 24 3 10 3
10 3 24 1 21 1 10 2 24 2 21 3 23 3 10 3 15 2
8 1 21 1 19 3 8 1 21 3 19 3 22 1 12 3 8 1
1 2 19 3 8 1 1 2 19 3 8 1 5 1 8 1 1 1
22 3 8 1 9 2 23 3 8 1 9 2 25 3 1 1 9 3
21 1 9 2 10 3 25 2 9 2 10 2 10 3 5 1 5 1
5 1 10 3 1 2 22 3 10 2 1 2 9 3 9 3 7 3
12 3 1 2 7 2 21 3 1 2 5 3 0 0 7 3 23 3
20 3 7 2 5 1 5 3 5 3 7 3 0 0 23 3 6 3
0 0 5 1 6 3 7 3 7 3 23 3 0 0 6 3 16 3
0 0 6 3 16 3 6 3 23 3 12 3 0 0 20 1 25 3
0 0 20 3 12 3 15 3 25 2 25 2 0 0 16 3 12 3
0 0 16 3 20 3 16 3 6 3 6 3 0 0 25 3 20 1
0 0 14 3 14 3 12 3 20 3 20 3 0 0 14 2 14 2
0 0 0 0 0 0 20 3 16 3 16 3 0 0 0 0 0 0
0 0 0 0 0 0 14 2 14 2 14 2 0 0 0 0 0 0
0 0 0 0 0 0 4 2 4 2 4 2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16081 18126 18196 37293 36859 37087 0 -2455 -1208 -1146

In summary we learnt that there are clear differences in the suggested drilling strategies for the naive, myopic
and Dpt n computations. A myopic strategy gives a large improvement over the naive strategy in our network, and
this will always be the case as long as the prospects are dependent and not obviously profitable or unprofitable.
The extra gain from running Dpt n strategies is in this 25 prospect case seen as a larger payoff in money for
the computing time spent. The Dpt n strategies also suggest other drilling locations. In a practical setting, our
recommendation is to run a Dpt n search with as large n as computationally feasible. Note that this can be done
stepwise. In many situations we only need to identify the first prospect, and can wait for the result there before
computing the next. This is the practical exploration scenario a petroleum company faces.

6.3 MRF case study

In the third application we apply our sequential exploration technique on a larger dataset, where the current
knowledge consists of geological knowledge combined with seismic data. The data and the case study are
explained in Bhattacharjya et al. [2010]. The MRF model has 3-colors, where the three distinctions of interest
represent respectively oil saturated sand (xi = 1), brine saturated sand (xi = 2) and shale (xi = 3). We use a
lattice representation of the field, with 20× 5 cells, i.e. M = N = 100.

The prior model is a categorical first-order MRF [Besag, 1974]:

p(x) ∝ exp

β ·∑
i∼j

I(xi = xj) +

N∑
i=1

αi(xi)

 ,

where i ∼ j denotes the sum over all neighboring lattice nodes (north, east, south, and west). The parameter β
imposes spatial interaction. The αi terms are set from a priori geological knowledge [Bhattacharjya et al., 2010].
We work with a highly correlated MRF (β=0.8).

The seismic data y are incorporated in the MRF model x through a Gaussian likelihood model [Eidsvik et al.,
2004]. At each cell bivariate seismic data, shown in Figure 6 are modeled by:

p(yj |xj) ∼ N
{(

µ1(xj)
µ2(xj)

)(
0.062 −0.007
0.007 0.172

)}
,

where: µ1 = (0.03, 0.08, 0.02) and µ2 = (−0.21,−0.15, 0).
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The posterior model is defined by:

p(x|y) ∝ p(x)
100∏
j=1

p(yj |xj).

This posterior is a MRF with new αi terms which now also depend on the data values.
As was done in Bhattacharjya et al. [2010], we assign a fixed cost of 2 Million USD for drilling a dry well

(state 2 or 3), while we have a potential revenue of 5 million USD when finding an oil saturated sand (state 1).
Before drilling we have the situation represented in Figure 6. In the top row we see the bivariate seismic data,
in the bottom row we see the the prior geological knowledge and the posterior oil saturated sand probability.

Figure 6: Initial conditions of the MRF described in Section 6.3. Top left: reflectivity seismic data. Top right:
amplitude seismic data. Bottom left: prior geological knowledge. Bottom right: Probability of oil saturated sand
with interaction parameter β = 0.8.

The combinatorial complexity prevents us from running a full search, therefore we try different levels of
approximations, from the myopic strategy to more complex depth searches. We present in Figure 7 the results
of myopic, Dpt 1 and Dpt 2 strategies. While the first myopic strategy reproduces the same pattern that we
observe in the posterior probability of oil (bottom right, Figure 6), the second Dpt 1 strategy shows a different
pattern. The sites on the eastern part of the basin, those that get the higher expected revenues (due to a strong
prior probability of oil sand), are not anymore selected in the first step, because they are surrounded by sites
with low profitability. On the other hand, the central sites, whose profitability was not that high, but overall
good over a large area, are privileged by a Dpt 1 strategy. The same behaviors appear in the bottom part of
Figure 7, that report the best first and second choice for Dpt 2 strategy. We can further note that the expected
final values increase with more complex strategies.

For a petroleum company that wants to explore a reservoir zone, we expect the drilling strategy to depend
heavily on the amount of data available (seismic data and well data in the neighborhood of the reservoir), and the
cost of establishing new infrastructure. In this example we built the first element into the MRF model and the
second as part of the case-specific utility function. In our situation, the Dpt n strategies clearly select different
drilling locations than the myopic approach. This kind of information is useful in an appraisal stage of a reservoir
unit
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Figure 7: Best 1st and 2nd sites using myopic (top), Dpt1 (center) and Dpt2 (bottom) strategies. The colors
correspond to vi(ω) under the three strategies, where vi(ω) (cfr. equation 2) represents the CV of the chosen
strategy, given that we start drilling at prospect i.

7 Closing remarks

The paper proposes a new approximate solution to sequential decision making. The approximations apply
heuristic procedures to estimate the optimization function at different stages of the algorithm. Pruning strategies
are also proposed in order to speed up the computation by cutting the less valuable branches of the decision tree.

The methodology is applied to case studies from the petroleum industry. First, a BN model for 25 prospects
in the North Sea [Martinelli et al., 2011] is solved. Second, a MRF with 100 lattice cells for a local reservoir is
studied. In both cases, we construct approximate drilling sequences. We show how sequential decision making,
coupled with a statistical model for the dependence of the field, can yield strategies very different from those
based on independent or myopic searches.

We recommend running a strategy of depth n, where n is as large as computationally feasible. In practice a
petroleum company would often wait for the outcome of the first well(s) to continue its exploration strategy. It
is also possible to run different depth searches and see if results are very dissimilar. In practice the petroleum
company can test the depth n strategies over different utility functions, various kinds of risk behavior, and a range
of cost and revenue inputs. This means only minor edits to inputs parameters in our implemented algorithms,
and provides helpful guidelines when selecting the final exploration policy.

The applications do not limit the scope and the merit of the developed algorithms. One can use the method-
ology to other selection problems on graphical models. Nodes could for example correspond to clinical tests, in
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a problem where the practitioners make sequential decisions. Also, generic variable selection problems or design
of experiments for graphs could be envisioned utilizing the same instruments.

We believe that there is large potential for interplay between operational research and recent development
for computing multivariate statistical models. The current paper is just one example. Here, the search is built
on heuristic strategies, and we have made no attempts to justify the approximation as the optimal solution. It
would be interesting to study these problems from a more theoretical perspective, merging knowledge from both
operations research, decision theory and statistics.
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