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In this article we investigate two-level split-plot designs where the sub-plots consist of 

only two mirror image trials. Assuming third and higher order interactions negligible, we 

show that these designs divide the estimated effects into two orthogonal sub-spaces, 

separating sub-plot main effects and sub-plot by whole-plot interactions from the rest. 

Further we show how to construct split-plot designs of projectivity P 3 . We also 

introduce a new class of split-plot designs with mirror image pairs constructed from non-

geometric Plackett-Burman designs.  The design properties of such designs are very 

appealing with effects of major interest free from full aliasing assuming that 3rd and 

higher order interactions are negligible.  

 

KEY WORDS: Alias structure; Plackett-Burman designs; Projective properties; 

Restriction on randomization; Screening designs; Two-level designs.  

John Tyssedal is an Associate Professor in the Department of Mathematical Sciences. His e-mail address is 

tyssedal@stat.ntnu.no 

Murat Kulahci is an Associate Professor in the Department of Informatics and Mathematical Modeling.  

His e-mail address is mk@imm.dtu.dk. 

Soren Bisgaard is a Professor in the Isenberg School of Management. His e-mail address is 

bisgaard@som.umass.edu  



 2 

                                                 1. INTRODUCTION 

Split-plot experiments are common in industry and typically are used when some 

factors are harder to change, such that a complete randomization of the experimental runs 

is difficult or impossible to perform. Split-plotting may also occur when two or more 

process steps are involved, in robust product design experimentation and when it is of 

interest to estimate some factors with higher precision than others where the latter are 

then handled as sub-plot factors.  

Split-plot experiments conceptually consist of two experimental designs where 

the “sub-plot” design is embedded within another called the whole-plot design. In the 

original agricultural application, split-plotting refers to a situation where larger 

experimental units, called whole-plots – typically larger pieces of land, are split into 

smaller subunits called sub-plots. Whole-plot factor combinations from a whole-plot 

design are then randomly applied to the larger pieces of land and for each whole-plot, 

sub-plot factor combinations from the sub-plot design are randomly applied to the sub-

plots.  

When there are many factors, using two-level experimental plans helps keeping 

the number of experimental runs at an acceptable size. This is especially important for 

factor screening experiments in the early stages of an exploratory experimentation. 

Further reductions can be achieved by using fractional designs. Examples of such 

experimental plans for split-plot experiments can be found in Addelman (1964), Huang et 

al. (1998), Bingham and Sitter (1999, 2001, 2003), Bingham et al. (2004, 2005) and 

Bisgaard (2000). Another avenue for savings was pursued by Kulahci and Bisgaard 

(2005) using two-level Plackett-Burman (PB) designs (Plackett and Burman, 1946) and 
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in some cases their half-fractions. Kulahci (2001) further suggested using two mirror 

image pairs at the sub-plot level for each level combination of the whole-plot factors 

(henceforth abbreviated as SPMIP designs).  An advantage with these designs, besides 

their economical run sizes, is that their analysis can be done easily using ordinary least 

squares (OLS) in two subsequent and independent steps (Tyssedal and Kulahci, 2005). 

This simplifies the analysis of these designs and is particularly helpful when performing 

early stage factor screening where the goal is to identify the active factor space and not 

necessarily to estimate a given parametric model. The active factor space is typically 

expected to be of much lower dimension than the number of factors in the screening 

experiment. The identification then typically consists of a search procedure evaluating the 

ability of a number of subsets of factors to explain the variation in the response. The use 

of OLS will ease the interpretation and save time. Being able to perform the search in two 

independent steps instead of one large search, enables us to handle more factors and to 

identify active factor spaces of higher dimension. Moreover fitting specific parametric 

split plot models seems dubious at this early stage when it is not clear if the response may 

need a transformation; see Box and Cox (1964). For more explanation see Tyssedal and 

Kulahci, (2005). 

 Lists of two-level split-plot designs generated from regular two-level factorial 

designs have been provided by several authors. Huang et al. (1998) list minimum 

aberration designs for 16N ,32  and 64 , and Bingham and Sitter (1999) provide lists for 

8N  and 16. Designs with two subplots for each whole-plot level combination are also 

SPMIP designs. However, there are many design alternatives that are not provided by 

these lists. Bingham et al. (2004, 2005) also provide lists of minimum aberration SPMIP 
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designs for 16N  and32 , but only for a small number of whole-plot factors. All the 

designs on these lists are computer generated.  In this paper we focus on the construction 

of SPMIP designs with desirable projective properties. Our designs are generated from 

both regular and non-regular orthogonal arrays. For reasons to be explained below we do 

not focus on minimum aberration designs. Instead we provide practitioners with 

information about which projectivity 3P  , see Section 4, SPMIP designs that are 

possible to construct and show a flexible way to construct them. We expect these designs 

to be particularly useful in screening situations when a complete randomization is 

difficult or impossible. However, they may also prove useful for robust design 

experimentation when a small subset of the factors investigated is of importance.  

This article is organized as follows. In Section 2, we introduce the industrial 

experiment that originally inspired this research. We then proceed to develop the alias 

structure for SPMIP designs in Section 3. Thereafter, in Section 4, we explain projectivity 

of two-level designs as a useful and relevant criterion both for geometric (regular) and for 

non-geometric (non-regular) screening designs. In Section 5 we show how to construct 

SPMIP designs of projectivity 3P   from geometric designs. A discussion example is 

included to illustrate how various experimental situations affect the choice of design. 

Section 6 deals with the construction of two-level designs from non-geometric designs. 

The article concludes with a general discussion in Section 7.  

 

2. AN INDUSTRIAL EXAMPLE 
 

The motivation for this research stems from consulting with a specialty paper 

company that needed to develop a new laminated paper product. The product was made 

in two-stages, the first involving making the paper and the second consisting of 
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laminating the paper with another material. For a schematic illustration of the process, 

see Figure 1. For an early screening experiment the product development team wanted to 

experiment with 6 factors A, B, C, D, E and F for the first stage of the process and 5 

factors P, Q, R, S and T for the second laminating stage. Each experimental trial in the 

first stage necessitated, as a minimum, the production of a whole roll of material; a 

changeover between factor settings was relatively expensive. The team felt that to 

produce reliable results the first stage experiment should as a minimum include 16 runs. 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 1. A two-stage manufacturing process for a laminated paper product. 
 

 

For the second lamination stage, changeovers were somewhat easier and less 

expensive.  Moreover, the two process steps were not connected. After products were 

made and laminated, samples were tested in a rather lengthy and expensive process that 

produced the final response. Because the final tests were expensive it was important to 

keep the total number of final tests small.  For evaluating all these factors economically, 

it was suggested that rolls from the first stage should be cut in twin halves and fed 

through the lamination process doubling the number of units going through the second 

process stage. That implied a split-plot structure since two halves from the same roll 

would be more alike than two halves from different rolls.   
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To construct this experiment a standard 16 run 2
6-2

 design with generators E = 

ABC and F = BCD was used for the first stage. Each first stage unit was then divided in 

two and randomly assigned to second stage treatment combinations.  

To design the second stage experiment, we exploited the property that any two-

level factorial experiment blocked in blocks of two produces runs that are mirror images; 

see e.g. Box, Hunter and Hunter (1978, p. 340). Thus a regular 3225   run full factorial 

was blocked in 16 blocks of two trials each. It is clear that this design matrix can be 

written as  

                                               











SW

SW
X .                                                                          (1)              

where W  is the 6 22   design and 
 
 
 

S

S
 contains the 16 blocks.  

Due to unfortunate circumstances, the sample identification numbers were messed 

up and so results from the experiment are not useful. However, the example nevertheless 

shows that split-plot experiments in this form represent a desirable way of planning 

experiments for an important class of practical situations. The blocking described in the 

second stage can be done in several ways leading to designs with different properties. 

Before discussing this issue we discuss the alias structure of SPMIP designs.  

 

3. ALIAS STRUCTURE OF SPMIP DESIGNS 

 

           Let us consider split plot designs with pairs of sub plots constructed by fold-over. 

We can write the first order model matrix as 
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











SWi

SWi
X1    (2) 

where i  is a column of plus 1’s.  The matrix of two-factor interaction columns is  

 















SSSWWW

SSSWWW
X2   (3) 

 

where WW  is the block matrix of the two-factor interaction columns between whole-

plot factors, SW  is the block matrix of the two-factor interaction columns between a 

whole-plot and a sub-plot factor and SS  is the block matrix of the two-factor 

interaction columns between sub-plot factors. We will assume that interactions of order 

higher than 2 are negligible.    

The alias structure of any design can according to Box and Wilson (1951) be 

found as follows. Suppose we fit the regression model 11)E( βXY  , but in fact the true 

expectation is given by 2211)E( βXβXY  . The expected value of the least squares 

estimator   YXXXβ 1

1

111
ˆ 


 is then     221

1

1111
ˆ βXXXXββ 


E . The matrix 

  21

1

11 XXXXA 


 is the alias matrix showing to what extent assumed model 

parameters will potentially be biased by additional active effects represented in 2X .  

If the error term  is correlated and its variance-covariance matrix is  then the 

generalized alias matrix  
-1

-1 -1

1 1 1 2

GLS
A X Σ X X Σ X   is more appropriate (Kulahci and 

Bisgaard (2006)). We will in this article only consider two-level designs with orthogonal 

first order model matrices and where the normal assumptions about the split-plot error 

covariance structure applies.  Kulahci and Bisgaard (2006), then showed that for  split-
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plot designs with a design matrix as given in (2), the alias matrix is still given 

by   21

1

11 XXXXA 


.  

For 1X  an orthogonal matrix we have   IXX N
11  and       

 

            





















0S)(WS0

S)(SW0W)(WW

000

XX

2

22)( 21                     (4) 

 

Thus 

2

N

 
  
 

  

0 0 0

A W (W×W) 0 W (S×S)

0 S (W×S) 0

    (5) 

 

In the following we denote whole-plot main effects by w and sub-plot main effects 

main effects by s. Similarly two-factor interactions will be denoted by ww, ws and ss 

depending on whether they are between whole-plot factors, a whole-plot and a sub-plot 

factor or between sub-plot factors respectively.   

The alias matrix (5) shows that w main effects are aliased with ww and ss 

interactions while s main effects are aliased with ws interactions only. From (3) we see 

that ww and ss interactions are orthogonal to ws interactions. We note that these 

properties are a consequence of the fold-over structure for the sub-plot columns and do 

not require the main effect columns to be orthogonal.  Further, notice that the aliasing 

will be the same as that of the design  SW  and that the results obtained in this section 

are valid whether or not the design is run in split-plot mode.  Restrictions on 

randomization, however, do influence the variance of the estimated effects. In the 
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following we take a closer look at properties of split-plot designs with the above 

structure.  

4. THE CONCEPT OF PROJECTIVITY FOR TWO-LEVEL DESIGNS. 

 
For screening experimentation where only a few factors out of many are assumed 

to be active, the projective properties of the designs are important. The projection 

rationale makes the identification of the active factors less dependent on model 

assumptions and on effect hierarchy and effect heredity principles that are not necessarily 

valid in all situations, see Box and Tyssedal (2001). Indeed projectivity is a more relevant 

design criterion for constructing screening designs than any of the traditional alphabetic 

criteria used in optimal design theory.   

Projectivity for two-level designs was introduced by Box and Tyssedal (1996). 

According to their definition, a kN   design with N  runs and k  factors each at two 

levels is said to be of projectivity P  and called a ),,( PkN  screen if every subset of P  

factors out of possible k contains a complete P2  factorial design, possibly with some runs 

replicated.  

Orthogonal two-level designs are of two types.  Fractional factorial designs that 

are a regular 1 2 p fraction of a 2k  factorial are called geometric designs. The second type 

is called non-geometric designs or sometimes non-regular designs. The best known class 

of non-geometric is the Plackett-Burman designs. For geometric designs 1 RP  where 

R is the resolution. However, for some non-geometric PB designs 3P  while the 

resolution R=3 (Box and Bisgaard 1993, Box and Tyssedal 1996, Samset and Tyssedal 

1999). Therefore design properties of non-geometric designs are not well described in 

terms of their resolution. However, the concept of projectivity is more universally useful 
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for both types of designs. Designs with 3P  have the important property that main-

effects are not fully aliased with two-factor interactions. For geometric designs they are 

in fact free of aliasing assuming that 3
rd

 and higher order interactions are negligible. This 

is also an important property for split plot experiments used for both factor screening and 

robust design experimentation, where specific ws interactions may be of practical 

interest; see Bisgaard (2000).   

While the projective properties of completely randomized designs have been 

exhaustively studied in the literature, surprisingly little attention has been paid to these 

properties in split-plot designs.  In the following we provide a detailed discussion of the 

projective properties of SPMIP designs constructed from both geometric and non-

geometric designs. The focus will be on constructing designs of projectivity 3P  .  In 

what follows we show how 3P  SPMIP designs can be constructed from geometric 

designs.   

 

5. CONSTRUCTION OF SPMIP DESIGNS FROM GEOMETRIC DESIGNS 

Let k 1D   be a design matrix fully expanded with all two factor interaction 

columns and a column of 1 ’s for a 12 k  design. Then the design matrix for the k2  

design with the same properties can always be written as  

k 1 k 1

k

k 1 k 1

D D
D

D D

 

 

 
  

 
      (6) 
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For instance let 





















1

1

1

1

i , 

-1

1

-1

1

 
 
 
 
 
 

1 ,  

-1

-1

1

1

 
 
 
 
 
 

2 , 
























1

1

1

1

12  and     2D i 1 2 12 be the 

expanded design matrix for a 22  design. Then the expanded design matrix for the 32  

design is given by:  

              
2 2

3

2 2

D D i 1 2 12 i 1 2 12
D

D D i 1 2 12 -i -1 -2 -12

   
       

                        (7) 

It is clear that the columns in any geometric design can be rearranged such that the 

design matrix has the structure of a SPMIP design. The corresponding design in 12 k  

factors will be a 3R  and 2P  design. When used for screening it is natural to denote 

such designs as )( Pns,nw,,N  screens where nw  and ns  give us the maximum number of 

whole-plot and sub-plot factors that can be screened in N  runs in order to have 

projectivity P.  

For N = 8, an 8 run 3P  SPMIP design in four factors is given by 

                                               








 i1221

i1221
                                                     (8) 

This design has two whole-plot factors and two sub-plot factors. In the Appendix it is 

shown that the maximum number of whole-plot factors as well as sub-plot factors for a 

3P  SPMIP design is 4N . One way to obtain a  3,4,4, NNN  screen is to start with 

a 12 k  geometric design in 2N  runs fully expanded with main effects and interaction 

columns and do the following:  
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(a) Assign the whole-plot factors to the main-effects columns and odd 

 d th3  order, 5 order, …r  interaction effects columns of the k-12  design. There are at 

most 4N  such columns. This constitutes the W  part of the design in (1).  

(b) Assign the sub-plot factors to the even  nd th2  order, 4 order, … interaction effects 

columns of the k-12  design and a column of plus 1’s. There are at most 4N  such 

columns. This constitutes the S  part of the design in (1).  

  If the number of either whole-plot or sub-plot factors is less than 4N , other ways 

of constructing SPMIP designs may give us 3P  designs that better fit the experimental 

situation. If for instance only -1wn k  whole-plot columns are needed in W  there are 

1 wk n   main effects columns that can be moved toS .  

In the following let 1, 2, , k be the main effects columns in a 2k  design written 

in standard form. Interaction columns will then naturally be denoted with two or more of 

these numbers. For instance 12 will be the two-factor interaction column between factor 1 

and factor 2.                            

   A discussion example: Consider a split-plot design with three whole-plot factors 

and six sub-plot factors in 64 ( 62 ) runs. Since we have a 64 ( 62 ) run design, we will 

use 51k  main effect columns, namely  and 1, 2, 3, 4 5  together with the column of 

plus 1’s  of the 162   design for the construction of the design. Furthermore since there are 

only three whole-plot factors, there are two main-effects columns that can be moved to S  

( 23161  Wnk ). Let    W = 1,2,3  with corresponding whole-plot factors A, B 

and C. S  will then consist of   and i 4 5, . We will denote the respective sub-plot factors 

as P, Q and R. Design columns for three more sub-plot factors S, T and U need to be 
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constructed from the main effects columns  and 1, 2, 3, 4 5 . With 9 factors, it is only 

possible to obtain a 3P  SPMIP design, see Table 4.  In Table 1 three alternatives for 

the subplot design are given. Below we provide an argument for how to pick the “best” 

design alternative.  

Minimum aberration (Fries and Hunter, 1984) is a popular criterion for 

discriminating between completely randomized designs of the same resolution. The idea 

behind minimum aberration is that among all designs of maximum resolution for given 

number of runs and factors, one should pick the one with the least amount of aliasing 

among low-order effects.  However as pointed out in Kulahci et al. (2006), in split-plot 

experimentation it is often the case that not all two-factor interactions are of equal 

importance. Also some subset of factors may be of less interest than others. The 

minimum aberration criterion is not designed to distinguish among effects or subset of 

factors of unequal importance.  

 

Table 1.  Three alternatives for constructing the three additional sub-plot factor columns 

in a SPMIP design with 3 whole-plot factors and 6 sub-plot factors in 64 runs. 

               Subplot Design Generators and defining relations 

1.    S = i,4,5,123,1234,1235  andS = ABCP, T = ABCQ  U = ABCR

I = ABCPS = ABCQT = ABCRU = PQST

= PSRU = QRTU = ABCPQRSTU

  

2.    S = i,4,5,12,145,2345  andS = ABP,T = APQR  U = BCPQR

I = ABPS = APQRT = BCPQRU = BSQRT

= ACQRSU = ABCTU = CPSTU

  

3.    S = i,4,5,123,2345,145  andS = ABCP, T = ABCQ  U = ABCR

I = ABCPS = ABCQT = ABCRU = PQST

= PSRU = QRTU = ABCPQRSTU

  
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For the three design alternatives given in Table 1, the first one has three words of 

length four in its defining relation and based on the minimum aberration criterion may 

seem inferior to design alternatives two and three that have only one. These designs are 

minimum aberration designs for which we have the fewest 4-letter words in the defining 

relation. But there are other important differences. In robust design experimentation ws 

interactions are normally of particular interest and if design factors are assigned to the 

whole-plot factors, ss interactions are of minor importance. We notice that the first and 

the third design allow us to estimate ws interactions free of aliasing with all other two-

factor interactions. Also if a screening is performed and only four factors are active, the 

only projections onto four factors that are not complete 42  designs are the projections 

onto subplot factors for design alternatives 1 and 3. Split-plot experimentation where 

only sub-plot factors come out active is quite unexpected. The second design does not 

have these properties. In fact if ss interactions are of no interest and the possibility that 

only sub-plot factors are active can be ignored, design alternative 1 may be the best 

choice. For more discussion about the use of the minimum aberration criterion in split 

plot experimentation as well as other criteria we refer to Kulahci et al. (2006).  

 In Tables 2, 3 and 4, lists of geometric 3P   designs for the number of runs 

16,32 and 64N     are given.  In these tables the design columns are columns in a 12 k   

design where 2k N . If 1wn k- , the columns in W  are always assumed to be , , w1 n . 

Table 2 contains SPMIP designs for 16 and 32N  . To construct these designs, in S  we 

put i , main effects columns not used in W  and interaction effects columns of the first 

1k-  factors of highest possible order under the restriction that two-factor interaction  

columns between one column allocated to W  and one allocated to S  are avoided. As an 
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example consider the (32, 3, sn 4 , 3) screen in Table 2. A total of 32 runs means that 

columns  and 1,2,3 4  together with i are the ones that can be used for the construction.  

Columns 1, 2 and 3 will be used to allocate the three whole plot factors. Therefore 

columns i and 4 are free to be used for the subplot factors. With 4 allocated to S , 14, 24 

and 34 must be avoided.  If the interaction column of highest possible order, 1234, is put 

inS , then the 234, 134, and 124 columns cannot be used either. Similarly if 123 is chosen 

to be inS , 12, 13 and 23 can no longer be used.  

The fourth column of Table 2 gives a way of constructing possible 3P   SPMIP 

designs from geometric designs.  Consider for example the first design in Table 1 with 3 

whole-plot (A, B, C) and 6 sub-plot factors (P, Q, R, S, T, U). Recall that for that design, 

we used ABCPS  , ABCQT   and ABCRU   to construct S, T and U. Since in 

constructing these columns we use all three main effects (A, B, C) and only one of the 

remaining subplot factors (P, Q, R), we denote this construction scheme with 
3 3

3 1

  
  
  

. In 

general let , ,  and 1 k -1 i  be denoted as main effects columns and let mw of the columns 

, ,1 k -1  be  allocated to W  and m ms = k- w  of the rest be allocated toS . Further let the 

notation  

                                                            
m mw s

p q

  
  
  

                                                       (9) 

represent all possible ways of entry-wise multiplying p  main-effects columns in W  out 

of a total of 1mw k   with q  main-effects columns in S  out of a total of m ms = k- w . 

We should note that it is necessary that q is odd, otherwise the fold-over property of the 

sub-plot columns is lost, and also in order to avoid two-factor interactions, p and q cannot 
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TABLE 2. A list of geometric projectivity 3P    SPMIP designs for the numbers of runs 32N  . 

N Screens Columns in W  and S  Construction of sub-

plot columns from 

main effects columns 

16 (16, wn 4, sn 4 , 3)    W 1,2,3,123

   S = i,12,13,23  

3 1

2 1

  
  
  

 

32 (32, 1, sn 8 , 3)    S = i,2,3,4,123,124,134,1234  1 4

1 3

  
  
  

 

 (32, 2, sn 8 , 3)    S = i,3,4,134,234,124,123,12  2 3 2 3

1 3 2 1

     
     

     
 

 (32, 3, sn 4 , 3)    S = i,4,123,1234  3 2

3 1

  
  
  

 

 (32, 3, sn 8 , 3)    S = i,4,12,134,234,13,124,23  3 2

2 1

  
  
  

 

 (32, 4, 
s

n 5 , 3)    S = i,123,124,134,234  4 1

3 1

  
  
  

 

 (32, 4, sn 8 , 3)    S = i,1234,12,34,13,24,14,23  4 1 4 1

4 1 2 1

     
     

     
 

 (32, 5, 
s

n 5 , 3)    W = 1,2,3,4,1234 ,  

   S = i,123,124,134,234   

4 1

3 1

  
  
  

 

 (32, 5, sn 7 , 3)    W = 1,2,3,4,1234 ,   

   S = i,12,34,13,24,14,23  

4 1

2 1

  
  
  

 

 (32, 5, sn 8 , 3)    W = 1,2,3,4,123 ,  

   S = i,1234,12,34,13,24,14,23  

4 1 4 1

4 1 2 1

     
     

     
 

 (32, 6, sn 4 , 3)    W = 1,2,3,4,123,124 ,  

   ,S = i,134,234 12  

 

 (32, 6, sn 8 , 3)    W = 1,2,3,4,123,124 , 

   S = i,1234,12,34,13,24,14,23  

4 1 4 1

4 1 2 1

     
     

     
 

 (32, w sn 8,n 8  , 3)    W = 1,2,3,4,123,124,134,234 , 

   S = i,1234,12,34,13,24,14,23  

4 1 4 1

4 1 2 1

     
     

     
 

 

both be one. Also if in the construction of the additional sub-plot factor columns two 

terms of type (9) with the same p (or q) occur, the corresponding q’s (or p’s) must differ 



 17 

with at least 2 for the same reason. Hence we could augment the first design in Table 1 

with the 
3 3

3 3

  
  
  

 sub-plot column and still preserve the property that full aliasing among two-

factor interactions only happens for the ss interactions. It is possible to extend this design 

with the three  
3 3

1 3

  
  
  

 columns, but then this property will be lost.  We observe that the (32, 

6, sn 4 , 3) screen in Table 2 cannot be represented in this way. Here 6wn   and two of 

the four 
4 1

3 1

  
  
  

 possible sub-plot factor columns will become interaction columns 

between a whole-plot factor and a sub-plot factor column. Leaving these columns out 

allows us to add exactly one particular 
4 1

2 1

  
  
  

 column. In general, whenever 1wn k  , 

two-factor interaction columns between one column allocated to W  and one allocated to 

S  must be avoided when using this method. 

 In Table 3 we list 3P   SPMIP design for 64N= . For these designs, nw and ns 

can both be 16 and a complete listing in a table will be rather large.  Therefore only  

designs represented  by means of the  
m mw s

p q

  
  
  

   notation are given.  

 SPMIP designs of projectivity 4P   need to be fractional factorial designs of 

resolution 5 or higher and they can therefore estimate main effects and two-factor 

interactions free of aliasing given that third and higher order interactions are inert, Box, 

Hunter and Hunter (1978).  The total number of factors allowed in order to have 

resolution greater than four for N = 16, 32 and 64 is 5, 6 and 8 respectively (Box et al. 

2005). For N = 16 and 32, except when N = 16 and wn = 2, using one interaction column 
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of as high an order as possible together with the main effect columns of the 

corresponding 12 k  design will always give us a 4P   SPMIP designs, see Table 4.  

 
TABLE  3. A list of  3P   SPMIP designs for 64N= .  

Screens Columns in S used 

for construction of 

sub-plot columns  

Construction of additional 

sub-plot columns  

(64, 1, sn 16 , 3)  i, 2, 3, 4, 5 1 5 1 5

1 5 1 3

     
     

     
 

(64, 2, sn 8 , 3) i, 3, 4, 5 2 4

2 3

  
  
  

 

(64, 2, sn 16 , 3) i, 3, 4, 5 2 4 2 4

1 3 2 1

     
     

     
 

(64, 3, sn 7 , 3)  i, 4, 5 3 3

3 1

  
  
  

+ 
3 3

3 3

  
  
  

, see also 

example 

(64, 3, sn 16 , 3) i, 4, 5 3 3 3 3 3 3

1 3 2 1 3 3

        
         

        
 

(64, 4, sn 10 , 3) i ,5 4 2

3 1

  
  
  

 

(64, 4, sn 16 ,3) i ,5 4 2 4 2

2 1 4 1

     
     

     
 

(64, 5, sn 6 ,3) i 5 1

4 1

  
  
  

 

(64, 5, sn 16 ,3) 

 

i 5 1 5 1

4 1 2 1

     
     

     
 

(64, 6, sn 6 , 3) 

   , , , , ,W 1 2 3 4 5 12345  

i 5 1

4 1

  
  
  

 

(64, 10, sn 6 , 3) 

   , , , , , , , ,W 1 2 3 4 5 1234 1235 2345  

i 5 1 5 1

5 1 3 1

     
     

     
 

(64, wn 16 , sn 16 , 3) i 5 1 5 1

4 1 2 1

     
     

     
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For N = 64 there is room for constructing two columns in  SW  that are not main-

effects columns. If these two columns are in S , both of them as well as their interaction 

column need to be at least a three-factor interaction column in order to have 

projectivity 4P  . If one is in W and one in S , their interaction column can be a two-  

TABLE 4.  A list of geometric projectivity 4P   SPMIP designs for the numbers of runs 64N . 

 

Number of runs N  Screens Way of construction 

16 (16, 1, 4, 4)    , ,S = i,2 3 123  

(16, 2, 2, 4)    S = i,3  

(16, 3, 2, 4)    S = i,123  

32 (32, 1, 5, 4)    ,S = i,2 3,4,1234  

(32, 2, 4, 5)    S = i,3,4,1234  

(32, 3, 3, 4)    S = i,4,1234  

(32, 4, 2, 5)    S = i,1234  

(32, 5, 1, 4)    341,2,3,4,12W   

   S = i  

64 (64, 1, 6, 6)    ,S = i,2 3,4,5,12345  

(64, 1, 7, 4)    ,S = i,2 3,4,5,123,1345  

(64, 2, 5, 5)    S = i,3,4,5,1234  

(64, 2, 6, 4)    S = i,3,4,5,134,2345  

(64, 3, 4, 6)    S = i,4,5,12345  

(64, 3, 5, 4)    S = i,4,5,145,2345  

(64, 4, 3, 5)    S = i,5,1234  

(64, 4, 4, 4)    S i,5,123,2345  

(64, 5, 2, 6)    S = i,12345  

(64, 5, 3, 4)    S = i,123,345  

(64, 6, 1, 5)    W = 1,2,3,4,5,12345 , 

   S = i  

(64, 6, 2, 4)    W = 1,2,3,4,5,12345 , 

   S = i,123  
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factor interaction column, but the column in W must at least be a four-factor interaction 

column since W is not folded over.  It is interesting to note that the design projectivity 

depends on the number of whole-plot factors and sub-plot factors as well as the total 

number of factors.    

The lists provided do not cover all possibilities. We believe, however, that the 

designs given will be useful in many experimental situations and the guidelines given in 

order to obtain them will be useful in cases where the experimenter finds it more 

satisfactory to construct his/her designs.  

The 3P  SPMIP designs are of practical importance whenever the experimental 

plan follows a split-plot structure, especially when a screening is performed and some 

factors are harder to change compared to others.  However, all the  , ,3w sN n ,n  screens 

based on geometric designs suffer from the same problem as geometric 3P  designs. 

For three factors to be uniquely identified, the three-factor interaction has to be assumed 

negligible and the fact that two-factor interactions are fully aliased with other two-factor 

interactions  complicates the allocation of active contrasts to the individual effects.  If the 

projectivity is to be increased, the number of runs will get large. Another drawback might 

be the restriction on the number of whole-plot and sub-plot factors that can be included in 

the design. The non-geometric designs will therefore be valuable alternatives to use as 

building blocks for designs with the above structure.    

 

6. CONSTRUCTION OF SPMIP DESIGNS FROM NON-GEOMETRIC DESIGNS 

We will here only handle non-geometric PB designs. In Box and Tyssedal (1996), 

these were classified according to projectivity 2P  and 3P  for number of runs less 
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than or equal to84 , and in Samset and Tyssedal (1999) they were also classified with 

respect to projectivity 4P .  Some of these PB designs are constructed by doubling, a 

technique that is illustrated using the 12 run PB design below:   










 i

i

PB12PB12

PB12PB12
    (12) 

where PB12 represents the 11 columns of the 12 run PB design.  This is an orthogonal 

design with 23 factors in 24 runs and follows the structure for split plot designs given in 

(1). However, as shown in Box and Tyssedal (1996), this design has 2P  unless the 

column 








 i

i
 is removed. Then this design constitutes a )3,1111,24,(  screen which is 

impressive in terms of allowable number of factors and number of runs of same 

projectivity compared to geometric designs. Most non-geometric PB designs are 

 3,1, nn  screens from which  3,1,1,2  nnn  screens can be constructed. The 

exceptions are for the number of runs 8856,40,n or 96 where only 2-n  of the main-

effects columns can be used. From these  3,2,2,2  nnn  screens can be constructed.  

Note that this technique can also be used to create 3P  split-plot designs from 

geometric designs as long as  W  is a 3P  design.  

 Despite the impressive number of whole-plot and sub-plot factors that can be included 

in a  3,,, nsnwN  screen obtained from a non-geometric design using the doubling 

technique, these designs have a problem in common with 3P  SPMIP designs 

constructed from geometric designs. Some whole-plot interactions are fully aliased with 

sub-plot interactions which may complicate the identification of the active effects. This 



 22 

can be avoided by using distinct columns in W and S ; for instance different columns 

from non-geometric 3P  PB design as shown in Table 5.   

 The design in Table 5 has 11 factors K,B,A,   in 24 runs. It is constructed from 

a 12 run PB design. To obtain the 24 run SPMIP design, the first six columns of PB12 are 

replicated and the remaining 5 columns are folded over. In the split-plot structure the first 

6 columns represent whole-plot columns and the last 5 are sub-plot columns. While a P = 

3 split-plot design constructed from geometric designs exists for our industrial example 

(see Table 2) the design in Table 5 represents an alternative design in only 24 runs where 

complete aliasing between two-factor interactions is avoided.  

  Adding a column of the form 








 i

i
 gives us the following design matrix : 

    








 iSWi

iSWi
.     (13) 

The resulting design has no restriction on wn  and sn  except that 12w sn +n  . Let us 

denote these designs as  ,w sN, n +n m P  screens where m  is the maximum number of 

factors allowed in order to have a projectivity P  design. For 16N  it is, as pointed out 

earlier, possible to have  3,4,4,16  screens or  2,7,8,16  screens (Huang et al (1998), 

Bingham and Sitter (1999)).  At the expense of increasing the number of runs to 24, in 

the  3,12,24  sw nn  design, wn and sn  can be anything between 1 and 11 as long as 

their sum does not exceed 12.  
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TABLE 5. A 24 run SPMIP design constructed from a 12 run PB design. 

           The 6 first columns are repeated twice. The last 5 are folded over. 
 

A B C D E F G H I J K 
 1 -1  1 -1 -1 -1  1  1  1 -1  1 
 1  1 -1  1 -1 -1 -1  1  1  1 -1 
-1  1  1 -1  1 -1 -1 -1  1  1  1 
 1 -1  1  1 -1  1 -1 -1 -1  1  1 
 1  1 -1  1  1 -1  1 -1 -1 -1  1 
 1  1  1 -1  1  1 -1  1 -1 -1 -1 
-1  1  1  1 -1  1  1 -1  1 -1 -1 
-1 -1  1  1  1 -1  1  1 -1  1 -1 
-1 -1 -1  1  1  1 -1  1  1 -1  1 
 1 -1 -1 -1  1  1  1 -1  1  1 -1 
-1  1 -1 -1 -1  1  1  1 -1  1  1 
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 

 1 -1  1 -1 -1 -1 -1 -1 -1  1 -1 
 1  1 -1  1 -1 -1  1 -1 -1 -1  1 
-1  1  1 -1  1 -1  1  1 -1 -1 -1 
 1 -1  1  1 -1  1  1  1  1 -1 -1 
 1  1 -1  1  1 -1 -1  1  1  1 -1 
 1  1  1 -1  1  1  1 -1  1  1  1 
-1  1  1  1 -1  1 -1  1 -1  1  1 
-1 -1  1  1  1 -1 -1 -1  1 -1  1 
-1 -1 -1  1  1  1  1 -1 -1  1 -1 
 1 -1 -1 -1  1  1 -1  1 -1 -1  1 
-1  1 -1 -1 -1  1 -1 -1  1 -1 -1 
-1 -1 -1 -1 -1 -1  1  1  1  1  1 

 

  

Compared to the  2,7,8,16  screen, the projectivity is increased by one and hence no full 

aliasing exists between main effects and two-factor interactions or between any two two- 

factor interactions. Complete aliasing between two-factor interactions will only happen if 

the number of runs in the base design equals 40, 56, 88 or 96 (Samset and Tyssedal 

1999). The 








 i

i
 column is orthogonal to all main effects and two-factor interaction 

columns. Hence a factor assigned to this column has the special property that its main 

effect and interaction effects with all other factors can be estimated free of aliasing 

directly. This column is an obvious candidate for a sub-plot factor of particular interest.   

  Fold-over of non-geometric PB designs can be used to construct SPMIP designs 

for which main effects can be estimated free of aliasing from two-factor interactions. For 
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instance the design created from the 12 run PB design by fold-over: 










 i

i

PB12-

PB12
      (14) 

is a  4,12,24  screen, with all main effect columns orthogonal to two-factor interaction 

columns. Picking W and S  columns from this design expanded by a column of the form 










i

i
 allow us to construct a design with up to 13 whole-plot and sub-plot factors in 48 

runs, with the desired property. In this case some two-factor interactions will be partially 

confounded. Table 6 provides a list of SPMIP designs with good projective properties 

constructed from non-geometric PB designs.  

TABLE 6. A list of orthogonal two-level projectivity 3P  and 4P  SPMIP designs 

constructed from non-geometric designs for the number of runs 96N . 
 

Number of 

 runs N  

3P  screens Way of 

construction 
4P  

 screens 

Way of 

construction 

24 )3,11,11,24(  

 24, 12,3w sn +n   

From PB12 

From PB12 

  

40 )3,19,19,40(  

 40, 20,3w sn +n   

From PB20 

From PB20 

  

48  3,23,23,48  

 48, 24,3w sn +n   

From PB24 

From PB24 
 48, 13,4nw+ns 

 

From fold-over of 

PB12 

56  3,27,27,56  

 56, 28,3w sn +n   

From PB28 

From PB28 

  

64 (64, 32,3)w sn +n   From PB32   

72  3,35,35,72  

(72, 36,3)w sn +n   

From PB36 

From PB 36 

  

80  3,38,38,80  

(80, 40,3)w sn +n   

From PB40 

From PB40 
 80, 21,4w sn +n   From fold-over of 

PB20 

88  3,43,43,88  

(88, 44,3)w sn +n   

From PB44 

From PB 44 

  

96 )3,47,47,96(  

(96, 48,3)w sn +n   

From PB48 

From PB48 
 96, 25,4w sn +n   From fold-over of 

PB24 
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          7. DISCUSSION 

Split-plot designs, where for each level combination of the whole-plot factors 

only two runs as mirror images are used, are very run efficient. These designs are useful 

in many practical situations. Typical examples include treatments to be applied to 

subjects with two eyes, two ears, or two feet, or animal litters of two being easier to 

obtain than of four or more.  In these situations the proposed designs will yield useful and 

effective alternatives.  Moreover these designs split s and ws effects and w, ww and ss 

effects into two orthogonal sub-spaces, which simplify the identification of active factors 

and also the estimation of active effects. This is discussed further in Tyssedal and 

Kulahci (2005).  

For screening and model estimation it is an advantage to be able to separate main 

effects from two-factor interactions. Designs of projectivity 3P  or higher avoid full 

aliasing between main effects and two-factor interactions. For geometric designs they 

even ensure these effects to be free of aliasing. If many factors need to be investigated the 

 3,,, PnsnwN  screens constructed from non-geometric designs offer the advantage of 

allowing more factors to be investigated in designs with a fixed projectivity compared to 

designs constructed from geometric designs. To be able to clearly estimate the two-factor 

interactions, geometric designs will need to be of projectivity 4P  or higher. This 

corresponds to more runs or fewer factors in the investigation. Interesting run-efficient 

alternatives are the  ,w sN,n +n m P  screens constructed from non-geometric PB 

designs by repeating some columns and taking a fold-over of the others.  Except when the 

number of runs in the baseline designs is equal to 40, 56, 88 or 96, these designs have 
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only partial confounding between any two effects as long as these are main effects or 

two-factor interactions, see Samset and Tyssedal (1999). This makes them very appealing 

split-plot designs for both screening and robust design experimentation.  

 

 APPENDIX: A PROOF OF THE NUMBER OF ALLOWED WHOLE-PLOT  AND 

SUB-PLOT FACTOR COLUMNS IN A P=3 SPMIP DESIGN CONSTRUCTED FROM 

A GEOMETRIC DESIGN 

For matrices defined as in (6) the following general properties hold.  

1. Entry-wise multiplying together two columns gives a new column in the matrix.  

2. For any factor exactly half of the columns are involved with that factor either as a 

main effect column or as interaction effects columns.  

Result: If 2kN  , 3k    is the number of runs in a SPMIP design constructed from a 

geometric design, the maximum number of whole-plot factors as well as sub-plot factors 

allowed in order to have a 3P  SPMIP design is 4N . 

Proof : For N=8 an 8 run 3P  SPMIP is given in (8). Clearly we can not 

augment on any of the numbers of whole-plot and sub-plot factors in this design without 

adding interaction columns. 

Assume 8N . The columns in 








W

W
 have to be taken from

k-1

k-1

D

D

 
 
 

. 








W

W
 is of 

projectivity 3P  if and only if W  is of projectivity 3P  which is only possible for 

4N  of the columns or less, Box and Tyssedal (1996). Now let i  be a column of 12 k  

+1’s. The columns in 
k-1

k-1

D

-D

 
 
 

 are obtained by entry-wise multiplying the columns in 
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k-1

k-1

D

D

 
 
 

  by
 
 
 

i

-i
. The following construction will always give a  3,4,4, NNN  screen. 

Choose 4N  columns from 
k-1

k-1

D

D

 
 
 

 such that 








W

W
 is of projectivity 3P  and let 

*
W

W

 
 
 

 

be the remaining columns in
k-1

k-1

D

D

 
 
 

. Note that the columns in 

*
W

W

 
 
 

can be obtained by  

entrywise multiplying the columns in 








W

W
 by an arbitrary factor column in 









W

W
. Let 

S

-S

 
 
 

 be the columns obtained by entrywise multiplying the columns in 

*
W

W

 
 
 

by 
 
 
 

i

-i
.  

Then 
W S

W S

 
 

 
 is of projectivity 3P  since no entrywise product of two of its 

columns are in
W S

W S

 
 

 
. 

Now for any one of the whole plot factors in 
k-1

k-1

D

D

 
 
 

, say factor A, exactly 4N  of 

the columns in 
k-1

k-1

D

D

 
 
 

 is involved with that factor, either as a main-effect column or as 

interaction effects columns. Therefore exactly 4N  of the columns in 
k-1

k-1

D

-D

 
 
 

 are 

interaction effects columns where factor A is involved. These columns entrywised 

multiplied by the column for factor A will then necessarily give the remaining 4N  
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columns in
k-1

k-1

D

-D

 
 
 

.  Since two-factor interaction columns have to be excluded we can 

have at most 4N  columns in 
S

-S

 
 
 

 in order to have a 3P  SPMIP design.   
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