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Abstract

Animal models are generalized linear mixed model (GLMM) used in
evolutionary biology and animal breeding to identify the genetic part of
traits. Integrated Nested Laplace Approximation (INLA) is a methodology
for making fast non-sampling based Bayesian inference for hierarchical
Gaussian Markov models. In this paper we demonstrate that the INLA
methodology can be used for many versions of Bayesian animal models. We
analyse animal models for both synthetic case studies and house sparrow
population case studies with Gaussian, Binomial and Poisson likelihoods
using INLA. Inference results are compared with results using Markov
Chain Monte Carlo (MCMC) methods. We also introduce an R package,
AnimalINLA, for easy and fast inference for Bayesian Animal models using
INLA.

Keywords: Additive genetic effects; Approximate Bayesian inference; Her-
itability; House Sparrow; Natural populations; Quantitative genetics.

1 Introduction

Quantitative genetics is the study of quantitative traits, and is a cornerstone
in both evolutionary biology and animal breeding. Examples of quantitative
traits are the height of adult humans, the amount of milk a cow produces and
the litter size in sheep. Quantitative traits often display a continuous Gaussian
distribution of phenotypic (observed) values, e.g. adult height for humans,
and bill depth of house sparrows. However, not all quantitative traits follow
a continuous Gaussian distribution. Examples are the presence or absence of
intramammary infection in cows and litter size in sheep. Most life-history traits
such as lifespan (how long an individual lives) and reproductive success (the
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number of offspring) are also non-Gaussian. These are important traits in an
evolutionary perspective as they are major components of individuals’ fitness
(see e.g. Freeman and Herron, 2004).

The quantitative genetic theory is based on the assumption that the char-
acter is determined by a large number of genes with multiple alleles as well
as by environmental conditions. An important quantitative genetic parameter
is the heritability of a trait; the proportion of the phenotypic (observed trait)
variance in a population which is explained by additive genetic effects. Genetic
effects are additive if the effect of two or more gene loci are equal to the sum
of their individual effects. See, e.g., Lynch and Walsh (1998), Simm (1998) and
Sorensen and Gianola (2002) for an introduction to quantitative genetics.

To estimate the additive genetic variance (and thus the heritability) of dif-
ferent kinds of traits, biologists and animal breeders often use a generalized
linear mixed model (GLMM) called an animal model. In an animal model indi-
vidual i ‘s trait, yi has a genetic part, ui. The value ui is known as the breeding
value of individual i. From the assumption that the breeding value is the sum
of effects of many genes and from the central limit theorem, the breeding values
are assumed to have a Gaussian distribution with a dependence structure given
by the pedigree.

Inference for any stochastic model can either be done in a frequentist or in
a Bayesian framework, see Blasco (2001) for a discussion of the animal model.
Since early 1960’s animal breeders have successfully used the frequentist ap-
proach with Restricted Maximum Likelihood (REML), to for example increase
meat or milk yield in cattle (Simm, 1998). However, this approach has its lim-
itations when it comes to calculating breeding values (Wilson et al., 2009) and
for non-Gaussian traits (Tempelman and Gianola, 1994; Sorensen and Gianola,
2002; Fong et al., 2010). In a Bayesian framework parameters are considered
random variables. This solves the problems of calculating breeding values and
making inference for non-Gaussian traits (Tempelman and Gianola, 1994; Fong
et al., 2010). This flexibility of the Bayesian framework has made Bayesian
animal models increasingly popular. They have been used in animal breeding
since late 1970‘s (Dempfle, 1977; Blasco, 2001; Sorensen and Gianola, 2002),
while they only recently have been introduced to evolutionary biology (O’Hara
et al., 2008; Ovaskainen et al., 2008; Hadfield, 2010; Steinsland and Jensen,
2010).

Markov Chain Monte Carlo (MCMC) methods is the traditional way of do-
ing inference for Bayesian animal models (Sorensen and Gianola, 2002). MCMC
is a very flexible methodology that can be used to make inference for any
Bayesian model, and we can get posterior estimates for any random variable /
parameter, marginally, jointly or functions of them. However, it has its pitfalls:
for models with many variables MCMC is computationally expensive, i.e. it can
take hours to do the inference. Further, the quality of the results can be difficult
to assess as the Markov chain may suffer from undetected slow convergence or
poor mixing. Setting up a good MCMC algorithm (quick convergence, good
mixing and computationally fast) is challenging for a non-specialist. Recently
this has improved for animal models as there are now packages available for
doing inference for animal models with MCMC both in R (MCMCglmm; Hadfield,



2010) and in BUGS (Lunn et al., 2000).
For hierarchical Gaussian Markov random field models a non-sampling based

alternative to MCMC, the Integrated Nested Laplace Approximations (INLA)
has recently been introduced, (Rue et al., 2009). Using INLA we can calculate
marginal posteriors for all parameters and each random effect, as well as the
posterior for linear combinations of random effects. Because INLA is based
on direct numerical integration instead of simulations, it is much faster than
MCMC and more accurate for a given computation time (Rue et al., 2009).
Steinsland and Jensen (2010) used a similar approach for doing non-sampling
based inference for a Gaussian trait. INLA has been used in several fields
of statistics, e.g. survival analysis (Martino et al., 2010), for spatial GLMM
(Eidsvik et al., 2009) and in disease mapping (Schrödle et al., 2011).

This paper contributes to easier and faster Bayesian inference for both Gaus-
sian and several non-Gaussian animal models by demonstrating that these mod-
els fit the INLA-framework and by providing an R-package, AnimalINLA, for
doing the inference.

In Section 2 the data used in the case studies are introduced. Section 3
briefly revise relevant requirements for using INLA and the possibilities INLA
gives. The animal models we use are fully specified in Section 4. In section 5
and 6 results from the synthetic case studies and house sparrow case studies
are presented, respectively. Inference is done with INLA and for some cases
results are compared with MCMC. The results of the house sparrow case study
is discussed in Section 7, and Section 8 ends the article with a conclusion.

2 Data

For the case studies we have used data from a natural insular metapopulation
of house sparrow (Passer domesticus) on five islands off the coast of Helgeland
in Northern Norway (66◦N, 13◦E).

From adults and juveniles (i.e. birds born the same summer) a small blood
sample was collected and from adults several morphological traits were mea-
sured (including bill depth). The blood samples were used to determine genetic
parentage, and a genetic pedigree for the birds on the study islands could be
established. For a more thorough description of the field work, study area and
genetic parenthood analyses, see (Ringsby et al., 2002; Jensen et al., 2008; Pärn
et al., 2009) and references therein.

This study system has many qualities for providing data on morphology
and fitness-related traits as more than 90% of all birds on the five main study
islands were individually ringed. Further, intensive observation and capture
protocols each year gave good estimates of the lifespan of individual birds (a
bird was consider dead when it was no longer captured or observed).

For all case studies we used 1993 to 2002 as our study period, and we used
the same pedigree, which consisted of the np = 3574 individuals that were
present on the 5 main study islands in this period. The pedigree spanned seven
generations. For our case studies we used individual data on 1) bill depth, 2)
breeding season success and 3) lifetime reproductive success. For all birds sex,



hatch year and hatch island was available.
In case study one we consider bill depth as one year old. Bill depths were

approximately Gaussian distributed (see Appendix C, Figure C.1), and we have
measurements for nd = 1025 birds. Many individuals in the pedigree had
missing data for this trait because the bird did not survive until it was one year
old. For individuals that were not measured as one year old, but later in life we
have used bill depths adjusted to one year old size as in Jensen et al. (2008).
We standardized the data to have mean 0 and variance 1.

In case study two we considered breeding season success. If at least one of
the offspring an adult bird produced in a given breeding season survived until
recruitment (i.e. one year of age) we defined its breeding season a success.
Otherwise the breeding season was a failure. The breeding season could be a
failure either because the bird did not produce any offspring, or because all its
offspring died before recruitment. The data consist of pairs of values (ni, yi),
where ni is the number of breeding seasons individual i had during the study
period (e.g. it was alive and adult) and yi is the number of successful breeding
seasons, yi ≤ ni. Individuals that died before their first breeding season (did
not recruit) or that emigrated to an island not among the 5 main study islands
have no data. There are nd = 1182 individuals with data. Of these about 71%
did not have any successful breeding seasons.

In case study three we consider data on individual lifetime reproductive
success (LRS), i.e. the number of recruits the individual produced over its
lifetime. Data takes the form (ni, yi) where ni is identical to ni in case study
two, and yi is the total number of recruits produced in the study period. For
this trait we had data for the same nd = 1182 individuals as in case study two.
yi ranged from 0 to 10, with mean 0.64. 71% produced no recruits, and about
46% of the 344 individuals that produced one or more recruits produced only
one.

3 Latent Gaussian models and INLA

In this section we give a brief introduction to latent Gaussian models and how
Integrated Nested Laplace approximation (INLA) can be used to make approx-
imations for posterior marginals for these models.

In general, latent Gaussian models are hierarchical models where we assume
a np-dimensional latent field x to be point-wise observed through nd ≤ np data
y. The latent field x is assumed to have Gaussian density conditional on some
hyperparameters θ1: x|θ1 ∼ N (0,Q−1(θ1)).

The data y are assumed to be conditionally independent given the latent
field x and, possibly, some additional hyperparameters θ2. The model definition
is completed by assigning a prior density to the hyperparameters θ = {θ1,θ2}.
In addition, some linear constraints of the form Bx = e, where the matrix B
has rank k, may be imposted (Rue et al., 2009).

INLA provides a recipe for computing in a fast and accurate way, approxi-
mations to marginal posterior densities for the hyperparameters π̃(θ|y) and for
the latent variables π̃(xi|y). Such approximations are based on a smart use of



Laplace or other related analytical approximations and of numerical integration
schemes. As a by-product of the main computations INLA can also compute
the Deviance Information Criteria (DIC), a measure of complexity and fit useful
to compare different models. The model which receives the lowest value of DIC
is considered the best model, and a difference in DIC of more than 10 definitely
rule out the model with the higher DIC (Spiegelhalter et al., 2002). Moreover,
it is also possible to compute posterior marginals for linear combinations of the
variables in the latent field.

In order for the INLA methodology to work in a fast and efficient way, latent
Gaussian models have to satisfy some additional properties. First, the latent
Gaussian model x, often of large dimension, admits conditional independence
properties, that is, it is a Gaussian Markov random field (GMRF) with a sparse
precision matrix Q (Rue and Held, 2005). The efficiency of INLA relies, in
fact, on efficient algorithms for sparse matrices. Secondly, because INLA needs
to integrate over the hyperparameter space, the dimension of non-Gaussian θ
should not be too large, say ≤ 14. Finally, each data point yi depends on the
latent Gaussian field only through the linear predictor ηi = g(µi) where g(·) is
a known link function and µi = E(yi), i.e. π(yi|x,θ) = π(yi|ηi,θ).

INLA presents several advantages over MCMC based inference: it provides
accurate results in just a fraction of the time needed by smart MCMC algo-
rithms, and it does not require convergence diagnostics. Moreover, the R-INLA

package (available at www.r-inla.org) makes inference from GRMF models
using the INLA methodology easy.

4 Animal Models

In this section we show that animal models are latent Gaussian Markov random
field (GMRF) models which fits into the INLA framework described in Section
3. Moreover, we describe in detail the different versions of animal models we are
interested in. For a more in depth introduction to animal models, see Sorensen
and Gianola (2002).

In general, animal model is a generalized linear mixed model; the observed
trait yi, i = 1, . . . , nd belongs to an exponential family

yi ∼ π(yi;µi,θ2),

where the expected value µi = E(Yi) is linked to a linear predictor ηi through
a known link function g(·), so that g(µi) = ηi. The linear predictor ηi accounts
for the effects of various covariates and the breeding value in an additive way;

ηi = β0 + zTi β + ui + εi, (1)

where β0 is an intercept, β = (β1, . . . , βnf
) are fixed effects, ui individual i’s

breeding value, εi it’s individual effect, and zTi is a known incidence vector.
The fixed effects (in a frequentist framework) accounts for group-specific effects
such as e.g. sex, year of birth and locality or sub-population. In a Bayesian
framework all parameters are treated as random variables, but out of conve-
nience we refer to β‘s as fixed effects. The breeding values are genetically linked



random effects also known as additive genetic effects. The individual effects are
unstructured Gaussian random effects, often named the environmental effect in
quantitative genetics.

We assign a vague Gaussian prior to β: β ∼ N (0, σ2βI), where σ2β is a
known (large) variance and I is the identity matrix. The individual effects are
ε ∼ N (0, σ2ε I). The breeding values for the population, u = (u1, u2, . . . unp),
are assumed to have a dependency structure corresponding to the pedigree

u|A, σ2u ∼ N (0, σ2uA),

where A is the relationship matrix and σ2u is the additive genetic variance (see
e.g. Lynch and Walsh, 1998; Sorensen and Gianola, 2002). The inverse of the
relationship matrix, A−1, is a sparse matrix due to the fact that the breeding
values forms a GMRF (Steinsland and Jensen, 2010). A−1 can be calculated
from the pedigree (Quaas, 1976). Note that there might be more individuals in
the pedigree than individuals with observations, nd ≤ np, and we have assumed
an indexing such that ui corresponds to yi.

Further, to avoid identification problems we include a common intercept
and constrain all factors and the breeding values to sum to zero (see Steinsland
and Jensen, 2010).

The animal model as described above is a latent GMRF model where the
latent field is x = ({ηi},β,u) and the hyperparameter vector θ includes the
variances (σ2u, σ2ε ) and, possibly, the parameters in the likelihood function. The
precision matrix for the latent field x is sparse because the inverse of A is
sparse. Moreover, the likelihood of each data point depends on the latent field
only through the linear predictor ηi. Therefore INLA can be applied to the
animal model.

In our analyses we might be interested in marginal posterior for individual
breeding values, ui, fixed effects β, the additive genetic variance σ2u, the in-
dividual variance σ2e , the heritability h2 or to evaluate the model using DIC.
The heritability is loosely speaking the proportion of the variability the genes
account for in a phenotypic trait. Precise definitions of heritability are given
in subsequent subsections. In addition, it might be interesting to look at linear
combinations of breeding values

∑
i∈C wiui, where wi are weights, for example

the mean of beeding values for different cohorts.

4.1 Animal model for Gaussian data

For many continuous traits, such as the bill depth of house sparrows, it is natural
to assume a Gaussian likelihood with an identity link function, ηi = µi. The
animal model can then be written as: yi ∼ N (µi, σ

2
e), where the linear predictor

is modelled as in (1) and the variance of σ2e is the variance of individual effects,
often referred to as environmental variance.

A Gaussian animal model can be formulated in two alternative ways, both
fitting the INLA framework. Both model formulations have their numerically
advantages depending on the aim of the analysis.



Model formulation 1 (MF1): Likelihood yi|ηi ∼ N (ηi, σ
2
e) and latent field

ηi = β0 + zTi β + ui + εi, where the variance of ε is fixed to a small value;
σ2ε = σ2small.

Model formulation 2 (MF2): Likelihood yi|ηi ∼ N (ηi, σ
2
small), i.e. the vari-

ance of the likelihood is fixed to a small value, and latent field ηi =
β0 + zTi β + ui + εi, where the variance of ε is σ2e .

MF1 and MF2 coincide if the same priors are used for the hyper-parameters
(β, σ2e , σ

2
u). For MF1 ε can be omitted from the model. It is included here to

be consistent with MF2. In MF2 σ2small can be interpreted as measurement
uncertainty. Both formulations are latent Gaussian fields with only two non-
Gaussian parameters, namely θ = (σ2u, σ

2
e).

There are two situations in which we have to be cautious which model
formulation we use; when finding the posterior for the heritability h2, and
evaluating models using DIC.

In general, and in the Gaussian case, the narrow sense heritability, is defined
as the proportion of the phenotypic variance which is due to additive genetic
variance (Lynch and Walsh, 1998)

h2 =
σ2u

σ2u + σ2e
. (2)

While it is easy using the INLA algorithm to compute posterior marginals for
the hyperparameters, computing functions of more than one hyperparameter
becomes computationally demanding. Out of convenience, we therefore use
MF2, parametrized with (σ2u, h

2) instead of (σ2u, σ
2
e). Further, (σ2u, h

2) is given
a prior such that it corresponds to the prior of (σ2u, σ

2
e), and hence this is a pure

reparameterization.
On the other hand, DIC is based on evaluating the likelihood, and is not

invariant with respect to parametrization, (Spiegelhalter et al., 2002). Using
MF2, i.e. a fixed small variance for the likelihood does not work numerically;
almost all models get the same DIC to the precision given by INLA. So if DIC
needs to be calculated MF1 should be used.

To summarize, when ui,
∑

i∈C wiui, β or σ2u is of interest both MF1 and
MF2 might be used. If σ2e or DIC is the aim of the analyses MF1 has to be
used, while MF2 with parametrization (σ2e , h

2) has to be used if h2 is of interest.
Hence we might have to fit two (INLA) models to get all estimates of interest.

4.2 Animal model for Binomial data

In case of binomial data, the animal model is defined as: yi ∼ Bin(ni, pi) i =
1, . . . , nd, where ni is the numer of trials and pi is the probability of success.
Moreover, we assume a logit link function, so that the linear predictor is defined
as: ηi = logit(pi) = log( pi

1−pi ). The linear predictor is then modelled as in (1).
In the bivariate case ni = 1. Then the variance of the non-structured random
effect σ2e is confounded with the link, and is not identifiable (Sorensen and
Gianola, 2002) because the individual effects are already accounted for through



the link and the likelihood. Therefore we omit ε from the linear predictor, and
use

ηi = β0 + zTi β + ui. (3)

For binomial data with ni > 1 a non-structured random effect could be used
to account for overdispersion.

For binomial data it is not immediately obvious how to define the heritability
of the trait. The most common definition is derived from the idea that there
exists a latent (unobserved) continuous trait called liability li such that we
register a success if li < 0 and a failure if li > 0 (Lerner, 1950). The definition
of heritability depends also on the type of the link function and in the case of
the logistic function it is

h2 =
σ2u

σ2u + π2

3

(4)

were π2

3 is the variance of a logistic variable (see Vazquez et al., 2009). Note
that the heritability on the latent scale does not correspond to the proportion of
explained variance in the phenotype, e.g. the binomial data. For a discussion on
heritability for non-Gaussian traits, see Dempster and Lerner. (1950); Visscher
et al. (2008).

The binomial animal model is a latent Gaussian model with only one non-
Gaussian hyperparameter, θ = σ2u. The heritability, as defined in (4), is a
function of only one random variable, σ2u, and can therefore easily be calculated
from σ2u’s marginal posterior distribution.

4.3 Animal model for (zero-inflated) Poisson data

Count data are often modelled as Poisson distributed: yi ∼ Poisson(µi) with
µi = Eiλi, where Ei is the known exposure, e.g. the lifetime, and λi is the
intensity, e.g. the annual reproductive success. We assume an exponential link
function ηi = log(λi), and modell the linear predictor η as in (3).

Dataset which are almost Poisson, but have too many zero-observations,
often occur. Then a zero-inflated Poisson (ZIP) distribution might be useful.
ZIP models are a mixture of a Poisson distribution and a distribution with point
mass one at zero. There are several versions of zero-inflated Poisson, we will
use ZIP (p, µi) defined as: Prob(y| . . . ) = p× 1[y=0] + (1− p)× Poisson(y;µi),
where 1[y=0] is an indicator function and Poisson(y;µi) indicates the Poisson
likelihood with mean µi, and p is the proportion of extra zeros.

Poisson and zero-inflated Poisson animal models are latent Gaussian fields
with hyperparameter vectors θ = σ2u and θ = (σ2u, p), respectively.

In the Poisson case it has been proposed that the heritability on the log
scale can be defined as (Foulley et al., 1987; Matos et al., 1997; Vazquez et al.,
2009)

h2η =
σ2u

σ2u + λ−1
(5)

where λ is the average intensity; λ = 1
nd

∑nd
i=1 λi = 1

nd

∑nd
i=1 exp(ηi).

The heritability (5) is then a function of one hyper-parameter and the ran-
dom variable λ which is a linear combination of functions of predictors ηi. Such



a quantity is (at least currently) not possible to compute using INLA. An ap-
proximated estimate of h2 can be computed by using a point estimate for λ
together with the marginal posterior of σ2u. The point estimate can either be
calculated directly from data, or by plugging in point estimates for the pre-
dictors η. With this model we calculate the heritability of the intensity, e.g.
annual reproductive success. If the heritability of LRS is of interest, this can
be estimated by setting the exposure Ei = 1 (and only using individuals that
are uncensored at either end of the study period).

5 Synthetic case studies

In this section we illustrate the INLA methodology using a series of syntetic
case studies for the models described in Section 4. We report here results for the
Gaussian and the Binomial model. For corresponding results for the Poisson
model see Appendix A, Table A.1.

To make our simulated data set as realistic as possible we do the following:
first, we simulate data based on the pedigree of the house sparrow dataset with
np = 3574 individuals as described in Section 2. Second, we replicate in the
simulated data set the same missing data structure that we find in the house
sparrow data set.

Inference is done using the AnimalINLA package. See Appendix B for R
codes. As priors for σ2u and σ2e we use InvGamma(0.5, 0.5).

5.1 Synthetic Gaussian case study

In our first experiment we deal with Gaussian data simulated from:

yi|µi, σ2e ∼ N (µi, σ
2
e) (6)

ηi = µi = β0 + ui (7)

where u|A, σ2u ∼ N (0, σ2uA
−1), and A−1 is computed from the house sparrow

pedigree.
We simulate data for β0 = 0 and values of σ2u and σ2e between 0 and 1 such

that σ2u + σ2e = 1. Moreover, we assume as missing all measurements that are
missing for bill depth in the house sparrow data set.

We fit the model assuming a sum to zero constraint on the breeding values,∑
ui = 0. Because we in this experiment are interested in estimating the

variance parameters we choose the model formulation MF1 described in Section
4.1.

Table 1 shows the estimated posterior mean together with standard devia-
tions, and the 95% credible interval (CI) for σ2u and σ2e . The results indicate
that INLA performs well, giving posterior means quite close to the true values
of σ2u and σ2e , with small standard deviations and 95% CI that contain the true
value. However, for small values for σ2u (less than 0.1) there seems to be some
bias in the estimate of the genetic variance. This is briefly discussed in Section
7.



Table 1: Inference from INLA for synthetic Gaussian data, simulated under
model 6 with different values for σ2u and σ2e and α = 0. σ̂2u and σ̂2e are the
posterior means with standard deviations (sd), and 95% credible intervals (CI).
∆DIC is the difference of DIC from model (6) and (7) and a model with only
an intercept, specified in model (8) and (9).

σ2
u σ̂2u (sd) 95% CI σ2

e σ̂2e (sd) 95% CI ∆DIC

0 0.09 (0.03) (0.05,0.17) 1 0.88 (0.05) (0.80,0.98) -9.770

0.05 0.12 (0.04) (0.06,0.21) 0.95 0.95(0.05) (0.85,1.05) -2.259

0.1 0.13 (0.04) (0.07,0.23) 0.9 0.90 (0.05) (0.80,1.01) 1.316

0.15 0.14 (0.04) (0.07,0.23) 0.85 0.87 (0.05) (0.77,0.98) 6.990

0.2 0.20 (0.06) (0.11,0.33) 0.8 0.85 (0.06) (0.74,0.97) 30.083

0.3 0.29 (0.07) (0.18,0.45) 0.7 0.68 (0.06) (0.56,0.81) 92.820

0.4 0.38 (0.07) (0.26,0.53) 0.6 0.63 (0.06) (0.51,0.76) 161.147

0.5 0.49 (0.08) (0.36,0.66) 0.5 0.50 (0.06) (0.39,0.64) 274.218

0.6 0.60 (0.07) (0.47,0.75) 0.4 0.39 (0.05) (0.29,0.50) 454.308

0.7 0.71 (0.08) (0.56,0.90) 0.3 0.35 (0.06) (0.24,0.49) 552.164

0.8 0.75 (0.08) (0.61,0.91) 0.2 0.23 (0.05) (0.14,0.35) 853.660

0.9 0.88 (0.07) (0.75,1.02) 0.1 0.15 (0.04) (0.08,0.25) 1293.086

1 0.95 (0.06) (0.84,1.07) 0 0.09 (0.03) (0.05,0.16) 1639.385

For each simulated data set we fit also a model without genetic effect, hence
where the model in (6) and (7) simplifies to:

yi|µi, σ2e ∼ N (µi, σ
2
e) (8)

ηi. = µi = β0. (9)

The aim is to check whether, using DIC, it is possible to detect when it
is important to include the genetic effect in the model. Table 1 reports the
difference in DIC (∆DIC) between model (7) and model (9). The results show
that when the heritability is practically zero (h2 = σ2u < 0.1) we, correctly,
choose the simpler model, while for larger values of σ2u the genetic component
is identified as important. The posterior marginal of σ2u and σ2e for INLA and
MCMC are compared in Appendix C, Figure C.2.

5.2 Synthetic Binomial case study

Binomial data can be challenging to analyse, especially when the the number
of trials ni is very low (Fong et al., 2010). To analyse the performance of INLA
for binomal data we have carried out different simulation studies and compared
the estimates obtained with INLA with those obtaind using MCMC (MCMCglmm,
Hadfield, 2010).

We simulate data from the model yi|pi ∼ Bin(ni, pi) with a logit link func-
tion ηi = logit(pi) = α + ui. Where u|A, σ2u ∼ N (0, σ2uA

−1), and A−1 is



computed from the house sparrow pedigree. We simulate data for α = 0 and
values of σ2u such that the corresponding heritability, computed as in Equation
(4), varies between 0 and 1.

In our first experiment we let ni = 1, ∀i = 1, . . . , np, hence we have binary
data for all the individuals in the pedigree. This case is, in general, particu-
larly difficult, because with no replicates for any of the individuals the genetic
variance is difficult to identify. When we look at the posterior estimate for σ2u,
we see that the performance of INLA is quite bad (see panel a of Figure 1).
The estimates for the heritability are rather biased and, in practice, it is almost
impossible to distinguish bethween cases with high and low heritability of the
binary trait. INLA is based on a Gaussian approximation of the log-likelihood
functions which, in this case, has a very non-Gaussian behaviour. Moreover,
the dependence structure induced by the house sparrow pedigree is not strong
enough to allow for a correct estimation of the genetic variance.

The performance of INLA improves very fast with increasing number of
trials. In our second experiment we let ni = 2, ∀i = 1, . . . , np, hence we have
two trials for each individual in the pedigree. In this case, the presence of
replicated measures makes it possible to estimate the genetic variance more
accurately. Panel b of Figure 1 shows that the posterior means computed by
INLA are very close to those computed using MCMC and close to the true value
of h2. We still see a small bias for small values of h2 but not such that it would
be problematic in a real data scenario. Even better estimates are obtained in
the third experiment where the number of trials ni changes from individual to
individual in the pedigree and is randomly sampled between 1 and 9 (see panel
c of Figure 1).

In the last experiment the number of trials ni is as in the house sparrow
breeding season success data set (see Section 2). Moreover, we also reproduce
in the simulated data set the same missing data structure as in the real data
set. In this experiment the number of trials is sampled uniformly between 1
and 9 and there are are 2392 individuals with missing data. That is, for more
than 65% of the individuals in the pedigree the trait under consideration was
not recorded. Results shown in Figure 1, panel d, are similar to those for the
two previous cases. The estimates seem to be rather accurate with a small bias
for very small values of the heritability. Moreover, results from INLA agree
well with those from MCMC. In this experiment we have larger CI around the
posterior mean when compared to the one in Figure 1, panel c. This is due to
the presence of missing data.

6 House sparrow case studies

In this section we analyze the data introduced in Section 2 using the animal
models in Section 4. To do inference we use INLA, described in Section 3.
We have three case studies; bill depth, breeding season success and lifetime
reproductive success (LRS). For each case study we first do model comparison
using DIC to choose which fixed effects (sex, hatch year and hatch island) and
random effect (additive genetic effect) to include in our model. For the best
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Figure 1: True vs estimated heritability: posterior mean (solid line) and 95%
credible intervals for INLA (black, dotted lines) and MCMC (grey, dashed lines).
The number of trials is 1 in panel (a), 2 in panel (b), uniform between 1 and 9
in panel (c) and as distributed in the house sparrow data set in panel (d).

model we do further analysis according to the chosen model and the case study.
This include estimating parameters, heritability and mean breeding values for
each cohort. To compare INLA and MCMC, inference for some analyses for
each case are done with MCMCglmm (Hadfield, 2010). All computation times
reported are for a dual-core 2.5GHz laptop.

For all models we set β ∼ N(0, σ2β), σ2β = 4.5e5 and assume Gamma priors

for σ2u ∼ Γ(0.5,0.5) and σ2e ∼ Γ(0.5,0.5) when needed. We choose the best
model by starting with the full model;

ηi = β0 + βsex(i) + βyear(i) + βisland(i) + ui, (10)

and remove one variable at the time in a stepwise manner. In each step all
nested models are examined, but only the one with lowest DIC (i.e. the best
one at each step) is reported in Table 2.



6.1 Bill depth

Bill depth is a Gaussian trait and we use the animal model described in Section
4.1.

The results from the model choice procedure are presented in Table 2. We
see that the full model turns out to be the best. Our further analyses for bill
depth are based on this model.

We find the marginal posterior distribution for the variances; σ2u has pos-
terior mean 0.31 (sd = 0.05) and 95% credible interval (CI) (0.22,0.42). For
σ2e we get a posterior mean 0.46 (sd = 0.05) with 95% CI (0.39,0.56). We also
calculate the marginal posterior of h2 using MF2; mean 0.41 (sd = 0.06) with
95% CI (0.30,0.51). The posteriors for σ2u, σ2e and h2 are plotted in panel a and
b of Figure 2. The computation time for INLA was 5 seconds for both MF1
and MF2. MCMCglmm gives the same estimates as INLA, see Appendix C, Figure
C.2. For 10000 iterations MCMCglmm used 60 seconds (the MCMC error is still
clearly visible and we would need more samples to have the same accuracy as
the approximation in INLA).

To investigate trends in the breeding values over years we find the posterior
mean breeding values for each hatch year year (i.e. cohort);

∑
i∈Cyear

1
nyear

ui,
where nyear is the number of individuals with hatch year year, and the sum
is over all these individuals. Linear combinations are easily specified in INLA,
and are estimated at the same time as the other analysis.

The results shown in panel d of Figure 2 suggest that micro-evolution has
occurred during the study period, with an increase in breeding values across
cohorts. The mean phenotypic bill depth for each cohort also suggests a change
in bill depth, but in the opposite direction (see panel c of Figure 2). We also
looked at the difference between the cohorts 1993 and 2002 in the posterior
mean breeding values,

∑
i∈C1993

1
n1993

ui -
∑

i∈C2002

1
n2002

ui, to investigate if the
difference between those cohorts was significant. We found that the difference
between mean breeding values for cohorts hatching in years 1993 and 2002 was
significant, with mean difference -0.090 (sd = 0.044) and 95% CI (-0.180,-0.005).
The posterior marginal of the difference is given in Appendix C, Figure C.3.

Note that the estimates of linear combinations we obtain here take into
account dependencies, and hence do not suffer from the same biases as when
using regression on best linear unbiased predictor (BLUP) estimates obtained
from REML-based analyses as discussed in Wilson et al. (2009) and Hadfield
et al. (2010).

6.2 Breeding season success

Breeding season success is the number of breeding seasons that is a success,
i.e. results in at least one recruit. These data are in nature binomial, and are
analyzed using the animal model in Section 4.2.

Results from the model selection procedure are reported in Table 2. We find
that the best model do not include linear additive genetic effects, and hence
that the inherited part of breeding season success is zero or very close to zero.

However, if we use the full model to estimate σ2u we get posterior mean 0.13,
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Figure 2: Parameters from animal models for the Gaussian trait bill depth in
Norwegian house sparrows: posterior marginal distributions approximated by
INLA. σ2u (solid line) and σ2u (dotted line) in panel (a), heritabililty h2 in panel
(b), mean phenotypic bill depth with 95% confidence interval for cohorts 1993-
2002 in panel (c), linear combinations with posterior mean breeding values (solid
line) and 95% credible interval (dashed line) for cohorts 1993-2002 in panel (d).



Table 2: Deviance information criteria (DIC) for different models explaining
variance in bill depth, breeding season success and lifetime reproductive success
(LRS) of Norwegian house sparrows. * indicates the best model, i.e. the model
with lowest DIC value.

Bill depth∼ DIC

sex + year + island + u 2471.359 *
year + sex + u 2471.492
year + u 2484.178
u 2584.277

Breeding season success ∼ DIC

sex + year + island + u 1718.687
sex + year + island 1709.878 *
year + island 1710.776
year 1713.180

LRS ∼ DIC

year + sex + island + u 2275.140 *
year + sex + island 2275.729
year + sex 2283.010
sex 2291.700

standard deviation 0.05 and 95% credible interval (0.07,0.24). Furthermore,
using (4) gives posterior heritability with mean 0.04 (sd = 0.01) and 95% CI
(0.02,0.07). These estimates are similar to those from the synthetic dataset
when heritability is equal or close to zero in Section 5.2 (Figure 1).

6.3 Lifetime Reproductive Success

Lifetime reproductive success for an individual is the number of recruits it pro-
duces during its lifetime. This is count data, and we analyzed this trait using
the animal model in Section 4.3 with Ei = ni, were ni is the number of breeding
seasons individual i has during the study period. Due to the large amount of ze-
ros we suspect that we need a model that account for overdispersion. Therefore,
we first fitted the full model with two different likelihood models; Poisson (DIC
= 2421.465) and zero-inflated Poisson (DIC = 2275.140). Because zero-inflated
Poisson gave lowest DIC, we proceeded with this likelihood when choosing which
fixed and random effects to include in the model. Also the histogram of life-
time reproductive success divided by lifespan indicated a zero-inflated Poisson
distribution (see Appendix C, Figure C.4). The model with lowest DIC is the
full model, although very close to the model without additive genetic effects
(Table 2). We proceed with this model in our analysis of lifetime reproductive
success. Remember when modelling LRS in such a way, here controlling for
lifetime, the likelihood is for LRS and the estimated heritability is actually for
the annual reproductive success (intensity). Hence, the results suggests that
annual reproductive success might be heritable.
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Figure 3: Posterior distribution of the heritability (h2) and additive genetic
variance (σ2u) of a zero-inflated Poisson distributed trait, annual reproductive
success, in Norwegian house sparrows.

Accordingly, the posterior for σ2u is 0.11 (sd = 0.03) with 95% CI (0.06,0.18).
To obtain the posterior of h2 defined as in (5) we plug in the point estimate

λ∗ =
∑
yi∑
ni

. This gives a posterior mean of the heritability of 0.03 (sd = 0.01),

95 % CI (0.02,0.05). Posterior distributions for σ2u and h2 are given in Figure
3.

7 Discussion

In this section we discuss the findings of the house sparrow case study. Our
study suggests that there may be an increase in mean breeding value across
cohorts for bill depth (panel d of Figure 2). Accordingly, we found a significant
difference between the first and last study year (1993-2002). This change indi-
cates that a microevolutionary change has ocurred in bill depth. For the same
population Ringsby et al. (2009) found evidence that bill depth is important
in obtaining food (i.e. for efficiency and feeding rate). This suggests that bill
depth might be under selection (see Jensen et al., 2008). When estimating lin-
ear combinations dependencies and uncertainties of breeding values have been
taken into account, and we avoid the biases discussed in Wilson et al. (2009)
and Hadfield et al. (2010). However, it is difficult to determine whether the ob-
served change in breeding values is due to an evolutionary response to selection
on bill depth or random genetic drift, as genetic drift may cause independent
fluctuations in breeding values across generations (Hadfield et al., 2010).



The observed phenotypic mean bill depth also changed across cohorts. This
change was however in the opposite direction of the change in breeding val-
ues (panel c of Figure 2). Whereas studies of other natural bird populations
have found evidence for this divergence in observed and predicted evolutionary
changes (Merilä et al., 2001; Postma et al., 2007), this is however not a general
result, as other studies have found changes that were in the same direction (see
e.g. Grant and Grant, 2002; Sheldon et al., 2003). The directions of phenotypic
and genetic change may differ due to a number of reasons. For example, changes
in the environment may oppose any genetic changes and thus conceal a genetic
response to selection. Another possible reason is that the strength and direc-
tion of seletion fluctuate in time and space (Merilä et al., 2001). Importantly,
selection can act on traits that are found to be genetically correlated with bill
depth (Jensen et al., 2008), and not on bill depth itself. Former studies of these
house sparrow populations indicate that both these explanations are possible
(see e.g. Ringsby et al., 2002; Engen et al., 2007).

Both breeding season success and annual reproductive success are traits
closely related to fitness. Fitness related traits have previously been found
to be largely influenced by the environment and thus have low heritability
(Merilä and Sheldon, 2000). In our study the breeding season success was not
found to be heritable, and annual reproductive success had very low heritability.
Consequently, our results coincide with other studies in natural populations
(see Jones, 1987; Merilä and Sheldon, 2000), finding low heritability for fitness-
related traits.

8 Conclusion

In this paper it is demonstrated that INLA provides a suitable methodology
for doing inference for a range of animal models. In case studies we have
considered models with additive genetic effects (breeding values u), individual
effects (environmental effects ε) and in addition fixed effects, all factors. These
case studies required animal models with Gaussian, Binomial (with logit link),
Poisson and zero-inflated Poisson (with log link) likelihoods.

Animal models might have a range of likelihoods. The R-INLA software
also support different zero-inflated Gaussian and Binomial likelihoods, survival
models (exponential, Weibull and Cox likelihoods), Student-T and skew-normal
likelihoods (see www.r-inla.org). It is also straightforward to make inference
with INLA for animal models extended with other additive random effects, such
as maternal effects or litter effects, as well as covariates.

Furthermore, we also demonstrated that linear combinations are easily com-
puted in INLA, and that this can give interesting insight into for instance the
microevolutionary processes.

We have compared inference obtained using INLA and MCMC. The general
conclusion is that INLA is a fast and accurate approximation method. However,
it is less flexible than MCMC methods, and we experienced this in case study
three (LRS-data, Poisson likelihood) were we were not able to calculate the
heritability as defined in (5) using INLA. Though an approximated estimate



could be obtained. In the Gaussian case heritability estimates can be obtained
with INLA using a tailored reparametrization.

In the synthetic case study of binary traits, we have also shown that INLA
gave very biased posteriors for the additive genetic variance σ2u (for the pedigree
we have used). Hence, we recommend that one should not use INLA for a binary
animal model unless a simulation study suggests that INLA gives correct results
for the pedigree and missing data structure of the particular data set in question.

Both MCMC and INLA results showed biased estimates for small values of
σ2u. This could be due to our choice of prior. Priors for variances are discussed
in Gelman (2006). We suggest that this should be further investigated, but is
outside the scope of this paper.

The R-package AnimalINLA has been developed for performing inference us-
ing INLA for animal models with likelihoods applied in this paper. It can be
downloaded at
www.r-inla.org. This package includes functionality for calculating the inverse
of the relationship matrix A from a pedigree. Furthermore, there are tailored
functions for finding posteriors for σ2u, σ2ε , the heritability for Gaussian, bino-
mial and Poisson likelihoods and linear combinations such as

∑
i∈C ui. These

functions use R-INLA with suitable default settings. The R-INLA code is also
included to give a good starting point to users who wants to make modifica-
tions, e.g. other likelihoods or more random effects. Through providing easy to
use software which gives results fast we hope Bayesian animal models become
accessible to a wider audience of biologists and animal breeders.
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A Appendix Tables

Table A.1: Inference from INLA for synthetic Poisson data, simulated under
model yi | λi ∼ Pois(ni, λi), ηi = log(λi) = β0 + ui with β0 = 0, with missing
pattern as in the house sparrow Possion case study. σ̂2u is the posterior mean
with standard deviations (sd), and 95% credible interval (CI).

σ2
u σ̂2u (sd) 95% CI

0 0.08 (0.02) (0.05,0.13)

0.05 0.09 (0.02) (0.05,0.13)

0.1 0.12 (0.03) (0.07,0.18)

0.15 0.14 (0.03) (0.09,0.21)

0.2 0.20 (0.04) (0.13,0.27)

0.3 0.33 (0.05) (0.25,0.43)

0.4 0.43 (0.05) (0.33,0.54)

0.5 0.53 (0.06) (0.43,0.65)

0.6 0.60 (0.06) (0.49,0.73)

0.7 0.68 (0.06) (0.56,0.81)

0.8 0.84 (0.08) (0.69,1.00)

0.9 0.91 (0.08) (0.77,1.08)

1 0.99 (0.09) (0.83,1.17)



B Appendix R codes

Simulating data with same dependency as the real pedigee, where the sparse
structure matrix Cmatrix is obtained from A−1 calculated in the R package
AnimalINLA

(www.r-inla.org/related-projects/animalinla).
We simulated data with different values of σ2u =var.u and σ2e =var.e with

the function simulate.breeding.values:

Simulation code for breeding value:

##need the package "spam"

install.packages("spam")

inla.complete.Cmatrix <- function(C)

{

idx = (C$i != C$j)

return (list(i=c(C$i, C$j[idx]), j=c(C$j, C$i[idx]),

values=c(C$values, C$values[idx])))

}

simulate.breeding.values <- function(Cmatrix, varu, nsamples = 1)

{

library(spam)

prec = 1/varu

Comp = inla.complete.Cmatrix(Cmatrix)

S = spam(x = list(i = Comp$i, j = Comp$j, values =

Comp$values))

Q = prec * S

breeding = rmvnorm.prec(nsamples,mu=rep(0, nrow(Q)), Q)

breeding = as.vector(breeding)

}

##define the sparse-matrix from the relationship matrix

##computed in compute.Ainverse(), used in simulate.breeding.values()

Cmatrix = list(i= xx$Ainverse[,1],j = xx$Ainverse[,2], values =xx$Ainverse[,3])

Synthetic Gaussian case study (Section 5.1 in Animal models
and Integrated Nested Laplace Approximations)

library(AnimalINLA)

##Run AnimalINLA

xx=compute.Ainverse(pedigree)

##number of individuals in the pedigree



Nbird = dim(pedigree)[1]

## choose the values of the hyperparameters

var.u = 0.6

var.e = 0.4

## simulate the breeding values and the environemental effect

breeding = simulate.breeding.values(Cmatrix, var.u)

env = rnorm(Nbird, mean = 0, sd = sqrt(var.e))

## compute the trait

trait = breeding + env

## make the data frame

data = data.frame(y=trait,u=1:Nbird)

##Run AnimalINLA

gauss=animal.inla(response=y, genetic=c("u"),

Ainverse =sparseMatrix(i=xx$Ainverse[,1],

j=xx$Ainverse[,2],x=xx$Ainverse[,3]),

data=data, type.data="gaussian",

dic=TRUE,sigma.e=TRUE)

##hyperparameteres

gauss$summary.hyperparam

Synthetic Binomial case study (Section 5.2 in Animal models
and Integrated Nested Laplace Approximations)

library(AnimalINLA)

##need the package "boot"

install.packages("boot")

library(boot)

## numbers of individuals in the pedigree

Nbird = dim(pedigree)[1]

## set the value for the hyperparameter, where beta0 is the intercept

var.u = 0.3

beta0 = 1

## set the number of trials

Ntrials = sample(1:9, 3574 , replace=T)

## simulate breeding values

breeding = simulate.breeding.values(Cmatrix, var.u)

eta = beta0 + breeding



p = inv.logit(eta)

## simulate the trait

trait = rbinom(Nbird, Ntrials, p)

data = data.frame(y = trait,u = as.factor(1:Nbird),

e = as.factor(1:Nbird),

Ntrial = Ntrials,

Individual = datasetGIndividual)

##Run AnimalINLA

xx=compute.Ainverse(pedigree)

bin=animal.inla(response=y, genetic=c("u"),

Ntrials = Ntrial,

Ainverse =sparseMatrix(i=xx$Ainverse[,1],

j=xx$Ainverse[,2],x=xx$Ainverse[,3]),

data=data,type.data="binomial",

dic=TRUE)

##hyperparameteres

bin$summary.hyperparam

Synthetic Poisson case study

library(AnimalINLA)

##number of individuals in the pedigree

Nbird = dim(pedigree)[1]

## choose the values of the hyperparameters

var.u = 0.7

##Run AnimalINLA

breeding = simulate.breeding.values(Cmatrix, var.u)

## compute the trait

eta = breeding

lambda=exp(eta)

trait=rpois(Nbird,lambda)

## make the data frame

data = data.frame(y=trait,u=1:Nbird,n=rep(1,Nbird))

##Run AnimalINLA

xx=compute.Ainverse(pedigree)



pois=animal.inla(response="y", genetic=c("u"),

Ainverse =sparseMatrix(i=xx$Ainverse[,1],

j=xx$Ainverse[,2],x=xx$Ainverse[,3]),

E=n,data=data,type.data="poisson",dic=TRUE)

##hyperparameters

pois$summary.hyperparam



C Appendix Figures
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Figure C.1: Histogram showing phenotypic bill depth observations for house
sparrows in northern Norway, indicating a Gaussian distribution.
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Figure C.2: INLA (solid line) and MCMC estimate (histogram) for the posterior
marginal of σ2u (panel a) and σ2e (panel b) for the bill depth of house sparrows
in northern Norway.
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Figure C.3: Posterior of difference in mean breeding values for bill depth be-
tween cohorts 1993 and 2002 in house sparrows in northern Norway.
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Figure C.4: Histgram showing observed lifetime reproductive sucess (LRS) rel-
ative to the lifespan (LRS/lifespan) in house sparrows in northern Norway,
indicating a zero-inflated Poisson distribution.


