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Shrinked (1− α) ensemble Kalman filter and α particle filter

Javad Rezaie and Jo Eidsvik

Department of Mathematical Sciences, NTNU, Norway

State estimation in high dimensional systems remains a challenging part of real time analysis. The ensemble
Kalman filter addresses this challenge by using Gaussian approximations constructed from a number of samples.
This method has been a large success in many applications. Unfortunately, for some cases, Gaussian approxi-
mations are no longer valid and the filter does not work so well. In this paper we use the idea of the ensemble
Kalman filter together with the more theoretical particle filter. We outline a Gaussian mixture approach based
on shrinking the predicted samples to overcome sample degeneracy, while maintaining non-Gaussian nature. A
tuning parameter determines the degree of shrinkage. The computational cost is similar to the ensemble Kalman
filter. We compare several filter methods on three different cases, a target tracking model, the Lorenz 40 model,
and a reservoir simulation example conditional on seismic and electromagnetic data.
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1 Introduction

State estimation is an important problem in engineering and science. If we represent the system dynamics (dif-
ferential or difference equations) in state space form, the measurements are transformed, noisy and an incomplete
representation of the system state. Filtering methods extract the probability distribution of the state at every
time point, given all measurements until that time. For dynamic systems it is natural to perform the estimation
process as soon as new observations arrive. Thus, recursive Bayesian estimation algorithms are the most powerful
tool for dealing with filtering problems. This consists of sequentially going forward in time according to two-step
routine: i) a forward propagation step using the system dynamics, and ii) an updating step when the new data
gets available. Step i) is known as the prediction problem, while step ii) is the filtering problem.

The celebrated Kalman filter (KF) is the optimal solution to the recursive estimation challenge under certain
model restrictions [10]. These assumptions include a linear dynamical and observation model, Gaussian initial
conditions, and independent Gaussian process and observation noise. For nonlinear systems, we can use lineariza-
tion and apply the KF for the resulting system. This is known as the extended Kalman filter (EKF) [8]. If system
nonlinearity is high, the EKF may diverge. Sigma point Kalman filters was proposed to overcome some of the
weak points of linearized filters [9], [7], [13] and [17]. They have very good performance for small to medium size
systems, but for high dimensional systems the computational burden becomes too large. The ensemble Kalman
filter (ENKF) uses Monte Carlo realizations along with a Gaussian approximation in the updating step. It has
shown very good results for high dimensional systems [3] and [4].

All the algorithms mentioned above have a Gaussian approximation as the key ingredient. Even though the
algorithms have been successful for high dimensional non-linear problems, one cannot really justify a Gaussian
approximation in these problems, apart from using computational convenience as an argument. Noteably, there
are no asymptotic results saying that the ENKF converges to the optimal filtering distribution when the number
of samples goes to infinity. The Particle filter (PF) is a Monte Carlo based algorithm which approximates the
posterior distribution with weighted samples [1]. Under very weak regularity conditions, the PF converges to the
optimal filtering distribution when the sample size goes to infinity. It works well for small dimension systems with
general non-Gaussian and non-linear models, but for high dimensional systems it suffers from sample degeneracy,
i.e. all samples collapse to one sample. In theory one can overcome this problem by increasing the number of
Monte Carlo samples, but this has to increase faster than the system dimension, and for most practical purposes
the computational burden becomes too large.

In this paper we outline a method between the ENKF and the PF. We are interested in maintaining the
robust properties of the ENKF, while encouraging some good theoretical properties as the sample size increases.
The filtering method we propose here fits a Gaussian mixture distribution to the predictive distribution. This
mixture is constructed by shrinking the particles towards the overall mean. We use a tuning parameter α to
control the degree of shrinkage. The extreme cases are the PF (α = 1) and the ENKF (α = 0). The covariance
of the predictive distribution is controlled by scaling the elementwise covariances of the mixture components. If
the main computational cost is the forward propagation, which is often the case in high dimensional applications
such as fluid flow simulation, the computation time of our method is at the order of the ENKF.

Some recent publications are similar, but different to the current paper. Sætrom et. al changed ENKF
updating schemes based on shrinkage methods known from multivariate linear regression such as partial least
square regression and principal component regression and consequently they reduced effects caused by collinear
ensemble members [16]. Stordal et. al also combine ENKF with PF using the shrinkage idea on weights in
order to increase ENKF performance [15]. Dovera and Della Rossa modify classical ENKF for dealing with
multimodal distributions by considering Gaussian mixture models [2]. In [16] they increase ENKF performance
but the approach could still experience problems in non-Gaussian distributions. The proposed method in [15] is
good for low to medium size but for high dimensional systems they do not propose a method for tuning the filter
that works as effectively as ENKF. [2] just consider multimodal problems. We approximate the distributions
with a mixture of Gaussian in order to deal with general non-Gaussian cases. Besides by defining an algorithm
for tuning the filter parameter we can deal with high dimensional systems.

In Section 2 we define the model assumptions used in this paper. Section 3 outlines the α shrinked ensemble-
particle filter. Section 4 provides examples from target tracking, the Lorenz 40 model and a reservoir simulation
example.
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2 Notation and modeling assumptions

Denote the state variable at time t by xt, and let Xt = (x1, . . . ,xt) be the collection of the state variables from
time 1 to the current time t. Further, the observations at time t are denoted yt, and Y t = (y1, . . . ,yt) is the
collection of observations at this current time step. We assume continuous state and observation variables, i.e.
xt ∈ Rn and yt ∈ Rm, where the dimensions n and m tend to get large in most modern applications.

We use a state space formulation with the usual conditional independence assumptions. This means that the
conditional probability density function of xt, given all previous state and observation variables, only depends
on the previous state. Moreover, the conditional distribution of observation yt, given the state at that time and
all previous states and observations, only depends on the state at the current time. Mathematically these two
assumptions entail that the conditional distributions are π(xt|Xt−1,Y t−1) = π(xt|xt−1) and π(yt|Xt,Y t−1) =
π(yt|xt), respectively. The joint density of Y t and Xt can then be factorized using the conditional independence
assumptions:

π(Y t,X t) =

t
∏

i=1

π(yi|xi)

t
∏

i=2

π(xi|xi−1)π(x1). (1)

Here, π(x1) is the specified probability density function of the initial state variable. The joint model is defined
once we have specified this initial distribution, along with the density for the dynamical propagation model
π(xt|xt−1) and the likelihood model π(yt|xt). Depending on the dynamical model and the information content
in the data, there will often be a transient phase for small t, revealing the initial conditions.

We next specify our particular assumptions about the forward propagation and the likelihood model. Gener-
ically, we let N(x;µ,Σ) denote the Gaussian probability density function of random variable x, with mean µ

and covariance matrix Σ. We model the dynamics of the system in the following way:

π(xt|xt−1) = N(xt;gt(xt−1),P ), (2)

where the expectation term is defined by a non-linear function gt(·). This function is usually the computationally
hard part, involving a forward propagation of complex physical phenomena. For instance, in a reservoir simulation
application, this function consists of numerical solutions of the partial differential equations for fluid flow in porous
media. The covariance matrix P provides a correction term for non-modeled physics, and may be a result of
using coarse scales in a physical simulator or a compensation for simplified physics, such as a treating some
physical properties as fixed in the dynamical model.

We assume a linear (or linearized) likelihood model, with additive Gaussian noise, i.e.

π(yt|xt) = N(yt;H txt,R). (3)

The matrix H t is defined by the data acquisition of the problem, while R is the covariance matrix of the
measurement noise. Whereas the dynamical model could be very non-linear, the likelihood is assumed linear or
close to linear. In a physical application this assumption for the likelihood entails that a measurement equation
is well known and can be solved analytically. In the simplest case we have m = n and Ht = In indicating that
we measure the state directly, with additive noise. Note that we let the function gt depend on the time variable,
and the same holds for the expectation operator H t in the likelihood. For simplicity, specify the covariance
matrices P and R as fixed over time, but this is easily generalized.

The filtering task consists of sequential propagation and updating as we obtain new observations. At time
t-1, consider that we have the updated (filtering) distribution of the state given all observations until that time,
denoted by the density π(xt−1|y1, ...,yt−1) = π(xt−1|Y t−1). The one-step prediction density is constructed from
the dynamical model

π(xt|Y t−1) =

∫

π(xt|xt−1)π(xt−1|Y t−1)dxt−1, (4)

where the model assumptions simplify the integrand according to π(xt|xt−1,Y t−1) = π(xt|xt−1). When the new
observation yt is available, we combine the system dynamics and the likelihood in Bayes rule for the updating:

π(xt|Y t) =
π(yt|xt)π(xt|Y t−1)

π(yt|Y t−1)
∝ π(yt|xt)π(xt|Y t−1), (5)
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where the conditional independence assumption of the data yt is used. This recursive Bayesian method gives the
exact solution to the general filtering problem, but for practical applications we cannot implement it for large
systems because we must calculate multi dimensional complicated integrals. Thus, some simplified conditions on
the system dynamics and observations have to be considered, inducing some consistent approximations.

A sampling approximation of the filtering distribution can be established using Monte Carlo realizations[5].
Suppose we have B independent and identically distributed samples x1t−1, ..., x

B
t−1 from π(xt−1|Y t−1). The sample

approximation to the filtering distribution at time t− 1 is then

π(xt−1|Y t−1) =
1

B

B
∑

b=1

δ(xt−1 − xb
t−1), (6)

with the Dirac function δ(x) = 1 if x = 0, and δ(x) = 0 otherwise. For the prediction step, all B samples are
run through the dynamical model, i.e. gt(x

b
t−1), b = 1, ..., B. In several applications the gt(·) evaluation is so

time consuming that this dynamical model can only be run about B ∼ 100 times. In the next section we discuss
various approaches for recursive updating of this size B sample approximation of the filtering distributions.

3 Shrinked Gaussian mixture filters

The algorithms presented below differ in the construction of a predictive density, and the induced filtering
density. We first present a particular PF, which is exact when B → ∞. The PF is represented by a marginalized
Gaussian mixture distribution, and denoted the Gaussian mixture Monte Carlo (GMMC) filter. In the practical
situation, B cannot get large enough, and this filter will degenerate for high dimensional systems. The ENKF
is next presented as a collapsed Gaussian mixture, with all means in the mixture being identical. Finally, we
outline the shrinkage idea to overcome the sample degeneracy, while maintaining some asymptotic properties.
We approximate the predictive distribution with a mixture of Gaussians whose mean is between that of the PF
and the ENKF. A tuning parameter, α, is used to adjust the particles between the two extremes given by the PF
and overall mean. We denote the resulting filter by the robustified Gaussian mixture Monte Carlo (RGMMC)
filter.

3.1 Gaussian mixture Monte Carlo filter

The prediction formula is given in equation (4). In our model formulation, with the sample approximation in
equation (6), this prediction step becomes an integral over a Gaussian weighted with B Dirac functions. The
prediction distribution is thus a mixture of B Gaussian densities:

π (xt|Y t−1) =

∫

N(xt;gt(xt−1),P )π(xt−1|Y t−1)dxt−1

=
1

B

B
∑

b=1

∫

N(xt;gt(xt−1),P )δ(xt−1 − xb
t−1)dxt−1

=
1

B

B
∑

b=1

N(xt;gt(x
b
t−1),P )

=

B
∑

b=1

π(b|Y t−1)π(xt|Y t−1, b), (7)

where π(b|Yt−1) =
1

B
is used to clarify the identically weighted components b = 1, 2, ..., B in the mixture.

The filtering step becomes

π(xt|Y t) ∝ N(yt;H txt,R)π(xt|Y t−1)

π(xt|Y t) =
B
∑

b=1

N(xt; x̂
b
t ,S)π(b|Y t), (8)
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where x̂b
t and S are the updated mean and covariance matrix, given component b, i.e. π(xt|Y t, b). This Gaussian

density is obtained by the usual KF formula for fixed component b:

x̂b
t = gt(x

b
t−1) + PH

′

tQ
−1
t (yt −H tgt(x

b
t−1)),

St = P − PH
′

tQ
−1
t H tP , Qt = H tPH

′

t +R. (9)

The weights wb = π(b|Y t) ∝ π(yt|Y t−1, b)π(b|Y t−1), where π(yt|Y t−1, b) is a Gaussian marginalized over xt.
Since expression (8) must be a pdf, the weights wb are required to sum to 1. We get

wb =
N(yt;H tgt(x

b
t−1),Qt)

∑B
c=1

N(yt;H tgt(x
c
t−1

),Qt)
. (10)

The filter proceeds by repeating the following B times:

1. Sample a component b from probability

vector (w1, ..., wB).

2. Sample xb
t ∼ N(xt; x̂

b
t ,St).

A Dirac representation for π(xt|Y t) is given by the equally weighted B samples. This procedure continues again,
from time t to t+ 1, according to the dynamical model gt(·), just like our starting point in equation (7) at time
t− 1.

The filtering distributions are Gaussian mixtures, while the Monte Carlo step is used to propagate the
particles forward in time. Note that the updated Gaussian mixture for π(xt|Y t) is exact, given the B sample
Dirac represention of π(xt−1|Y t−1). The resulting PF is much more stable than the standard bootstrap filter
[1], since we have marginalized over xt in the weights wb. In contrast, the bootstrap filter weight the forward
propagated particles according to the likelihood, and the weights wb would become less uniform. Still, the Monte
Carlo sample approximation applied in the GMMC filter might not be so good for small B. The weights wb could
still be very non-uniform, at least in high dimensional systems, and sample degeneracy would occur. Clearly, if
one H tgt(x

b
t−1) is much closer to the data yt than the others, the associated wb in equation (10), while all others

are near 0. The mixture is then focused on one component, and the approach underestimates the variability of
the distribution. These effects of course depend on the number of particles B, the non-linearity gt(·), and the
covariance matrix Qt. The degeneracy problem is most dominant for large dimensional problems. Heuristically,
in high dimension, say with a diagonal Qt, none of the particles H tgt(x

b
t−1) are close to the data yt, but the

closest is much closer than the second closest. The squared mismatch distances, summed over m data dimensions,
is given by

∑m
j=1

Q−1

t,jj(yjt−Hjgt,j(x
b
t−1))

2, which will blow up linearly with dimension. Thus, degeneracy occurs
fast in high dimension, unless the variances are very large, or the non-linearity works in some favorable way.

One alternative is of course to increase the sample size B. When B goes to infinity, the GMMC filter is
the exact solution. However, this sample size B must typically increase faster than the dimension and for some
non-linear problems the B cannot be very large because of the computation time of gt(·). Other tricks that slow
down degeneracy are tapering or localization of the covariance matrix, which effectively reduces the dimension.

3.2 Ensemble Kalman filter as a collapsed Gaussian mixture

The ENKF is based on a Gaussian approximation to the predictive distribution π(xt|Y t−1). For our model this
entails matching the mean and covariance matrix of the predictive Gaussian mixture distribution in equation
(7). They are given by

x̄t =
1

B

B
∑

b=1

gt(x
b
t−1)

P̄ t = P +
1

B

B
∑

b=1

(gt(x
b
t−1)− x̄t)(gt(x

b
t−1)− x̄t)

′

, (11)
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where we have used the formula for double covariance V ar(X) = E(V ar(X|b)) + V ar(E(X|b)), conditioning on
the mixture components. The predictive distribution used in an ENKF update becomes

π̂(xt|Y t−1) = N(xt; x̄t, P̄ t)

=
1

B

B
∑

b=1

N(xt; x̄t, P̄ t), (12)

which can be regarded as a Gaussian mixture of B terms, all with the same mean and covariance. Thus, this
mixture density has collapsed to a single Gaussian.

The updated distribution for the ENKF is

π̂(xt|Y t) =
π(yt|xt)π̂(xt|Y t−1)

π(yt|Y t−1)

π̂(xt|Y t) ∝ N(yt;H txt,R)N(xt; x̄t, P̄ t)

π̂(xt|Y t) = N(xt; x̄t + P̄ tH
′

tQ̄
−1

t (yt −H tx̄t), S̄t)

S̄t = P̄ t − P̄ tH
′

tQ̄
−1

t H tP̄ t,

Q̄t = HtP̄ tH
′

t +R. (13)

Sampling from this updated distribution is achieved by drawing B i.i.d Gaussians from π̂(xt|Y t).
The ENKF is robust in the sense that no degeneracy occurs. Viewed as a collapsed mixture of Gaussians, all

the weights are constant, equal to 1

B
. All the particles in the predictive distribution have collapsed to the mean,

and the components have the same covariance matrix. However, one cannot find theoretical justification for the
Gaussian approximation of the prediction density. If this is assumption is reasonable, the filter will perform very
well. If the approximation is too far from the true non-Gaussian distribution, the filter will introduce bias and
possibly diverge. In high dimensional systems this does not seem to happen so often, and the practical aspects
of the ENKF have shown very useful.

3.3 Robustified Gaussian mixture Monte Carlo filter

We now present the robustified Gaussian mixture Monte Carlo (RGMMC) filter, that aims to stabilize the
GMMC from Section 3.1, using the ENKF in Section 3.2 as a guide. Define for b = 1, ..., B

zb
t = αgt(x

b
t−1) + (1− α)x̄t, (14)

where zb
t are shrinked versions of the predictive particles. We can interpret the shrinkage as follows: For the two

dimensional case, if Z = αX1 + (1− α)X2; 0 ≤ α ≤ 1, then Z is a point between X1 and X2 on the straight line
which connects X1 and X2, see Figure 1. As a result (with a predicted sample point of view), the new predicted
sample zb

t = αgt(x
b
t−1)+ (1−α)x̄t is a sample on the hyperplane which connects gt(x

b
t−1) to x̄t and the position

of this sample is between gt(x
b
t−1) and x̄t on the same hyperplane. The interpretation of equation (14) is then

that the predicted particles are shrinked towards the mean. Using α = 0, the shrinking is large, and the result
is the ENKF. Using α = 1, there is no shrinkage, and the result is GMMC filtering.

Associated with the shrinkage we compute a predictive covariance matrix for every mixture component.
By construction, we make sure that the total covariance matches that of the Gaussian mixture distribution in
equation (7), just like for the ENKF. We want the predictive distribution in the RGMMC to have components
π̃(xt|Y t−1, b) = N(xt; z̃

b
t , P̃ t), for b = 1, .., B, where P̃ t ensures the second order properties of the predictive

distribution. Note that for the shrinked variables we have zb
t − z̄t = α(gt(x

b
t−1)− x̄t). By using the formula for

double covariance, conditioning on the mixture components, we can ensure that the following holds:

P̃ t + α2 1

B

B
∑

b=1

(gt(x
b
t−1)− x̄t)(gt(x

b
t−1)− x̄t)

′

= P +
1

B

B
∑

b=1

(gt(x
b
t−1)− x̄t)(gt(x

b
t−1)− x̄t)

′. (15)
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Figure 1: A graphical description of shrinkage zb
t = αgt(x

b
t−1) + (1− α)x̄t

Then, the component-wise covariance matrix for the shrinked mixture becomes

P̃ t = P + (1− α2)
1

B

B
∑

b=1

(gt(x
b
t−1)− x̄t)(gt(x

b
t−1)− x̄t)

′. (16)

The predictive distribution for the robustified version is a mixture over these mean and variances, such that

π̃(xt|Y t−1) =
1

B

B
∑

b=1

N(xt;z
b
t , P̃ t). (17)

The updating proceeds as for the GMMC filter, with

π̃(xt|Y t) ∝ N(yt;H txt,R)π̃(xt|Y t−1),

π̃(xt|Y t) =

B
∑

b=1

w̃bN(xt; x̃
b
t , S̃t), (18)

where x̃b
t and S̃t are the updated mean and variance, given particle b, i.e.

x̃b
t = zb

t + P̃ tH
′

tQ̃
−1

t (yt −H tz
b
t)

S̃t = P̃ t − P̃ tH
′

tQ̃
−1

t H tP̃ t, Q̃t = H tP̃ tH
′

t +R. (19)

Naturally, all matrices in this expression depend on the shrinkage parameter α. The weights are now given by

w̃b =
N(yt;H tz

b
t , Q̃t)

∑B
c=1

N(yt;H tz
c
t , Q̃t)

. (20)
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Figure 2: The predictive distribution from ENKF, PF and RGMMC

Figure 2 shows an illustration of the predictive densities of GMMC, ENKF and RGMMC for a particular
0 < α < 1. The GMMC filter gives a very wiggly predictive density plot, while the ENKF is a Gaussian density.
Now, if data matches one of the spikes, the particle associated with this spike would get a very large weight wb

in the GMMC filter. This could cause degeneracy. The RGMMC filter is smoother, and closer to the Gaussian
curve representing the ENKF. If data matches one of the spikes in the GMMC representation, the associated
increase in the weight for the RGMMC filter, denoted w̃b, would not get that much larger than the remaining
weights.

The robustification occurs because of the shrinkage. First, the zb
ts are more similar than the gt(x

b
t−1). Second,

the variance Q̃t > Qt, and thus the weights become more uniform. The parameter α gives us some flexibility:
Small α entails a solution close to the Gaussian predictive density (like ENKF), while a large α is close to the
GMMC solution. One option is to tune α at every time t, i.e. α → αt. The tuning can be done using the weights
w̃b = w̃b(α). If one weight is too dominant, the effective sample size (ESS) is small, indicating degeneracy. We
can start with small α, and increase the α parameter until the effective sample size is above a threshold, for
instance a fixed fraction, say t1 =

B
5
.

Pseudo algorithm 1:

• Set α = 0.

• Tol=0.

• Repeat until Tol=1

1. Compute w̃ = (w̃1, ..., w̃B).

2. Compute effective sample size ESS(w̃).

3. If ESS(w̃) < t1 set Tol=1 and return α = α− ǫ. Otherwise α = α+ ǫ.

9



Figure 3: Effective sample size (ESS) for different values of α versus system dimension

The tuning parameter ǫ could be 0.1, or similar. Alternatively, one could start with the GMMC, and
decrease α until the ESS goes above the threshold. Trade offs between the two exists too, like starting above 0
in Pseudoalgorithm 1. Or guiding the algorithm by the α from the previous time-step. Here, the ESS is defined
by

ESS(w̃) =
B
∑

b=1

[BI(w̃b ≥
1

B
) +Bw̃bI(w̃b ≤

1

B
)]. (21)

One could certainly use alternative criteria for tuning the shrinkage parameter α. Since the properties of
the PF are well understood, we would like to ensure a similar asymptotic behaviour for the RGMMC filter. As
B → ∞, one expects that the tuned α goes towards 1, and then the aymptotic properties are valid because we
are in the PF domain. It is thus interesting to study the variability in the weights w̃b in equation (20), as a
function of B and α. The weights naturally depend on the model gt(·), the covariance matrices P and R, and
on the tuning parameter α. Implicitly, the dimensions m and n becomes very important, like discussed above.
Since the different particles have different mean values gt(x

b
t−1), it is very hard to derive any general properties

for the weights. Moreover, the particles zb
t are dependent because they are all shrinked towards the common

mean. In particular, if x0 ∼ N(x0; 0
¯
, k2In) and x1 = x0 + N(w; 0

¯
, In), the shrinked variables z1

1, ...,z
B
1 , with

zb
1 = αxb

0 + (1− α)x̄1, x̄1 =
1

B

∑B
b=1

xb
0, have covariance matrix (1 + k2)⊗ [A(α)A(α)

′

], with B ×B covariance

matrix A(α) = 1−α
B

1B1
′

B + αIB , where 1B is a length B vector of ones.
In order to study the weights by simulation, we use a Gaussian model of dimension n = m for both process

and data variables. We use one time step t = 1 only, generating gt(x
b) ∼ N(x; 0

¯
, k2In), b = 1, ..., B,. We

set k = 1 and x1 ∼ 1

B

∑B
b=1

N(x1;gt(x
b), In). The likelihood is y1 ∼ N(y1;x1, In). We study the effect of

dimension n varying from 5 to 100. The number of particles is B = 100, and we repeat the process 25 times to
compute an average ESS under each parameter setting. Figure 3 shows the ESS of the weights, for α parameters
between 0.05 to 0.95. For large α the effective sample size decreases quickly, indicating a degeneracy in the
weights. When α is close to 0, the updating is more like an ENKF and the ESS remains larger, but an α slightly
larger than 0 could give different effect than the ENKF.
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4 Simulation

In this part we compare the proposed algorithm with ENKF and GMMC. We consider four different cases;
the first two are single-sensor single target-tracking and multi-sensor multi-target tracking examples where the
posterior distributions are multimodal. The third one is the famous Lorenz 40 model and the last one is a
synthetic reservoir simulator example. For each case we change the value of the tuning parameter and ensemble
size for checking the performance of algorithms.

In the examples we compare the different algorithms in terms of mean square error (MSE), continuously
ranked probability score (CRPS) and probability distribution coverage. Here, at any time t we have MSE(t) =
∑

j(x̂j,t − xtruej,t )2, where x̂j,t is the estimated mean of the filtering distribution and the sum is over all n state
dimensions. An integrated MSE is achieved by summing out t. Further, CRPS is defined by CRPS(t) =
∑

j(F̂ (yj,t)− I(yj,t < yobsj,t ))
2 [6]. Where F̂ (.) is the empirical cumulative predictive distribution for data at time

t, given all former data Y t−1. If this predictive distribution is very focused on the true observation, the CRPS
becomes small. The sum is over all m observation dimension again, an integrated CRPS is obtained by summing
over all times t. The probability distribution coverage is defined as the fitted percentiles that covering the true
state.

4.1 Tracking targets with bimodal distributions

These examples describe the position and velocity of planes or ships moving in two dimensions. If we imagine
a monitoring system for planes or ships, their positions are measured by radar /sonar. The targets move in a
dependent pattern, i.e. if one turn, most likely others turn too.

In this simulation we consider two cases, one-sensor one-target and ten-sensor ten-target. We let xt =
[xt ẋt yt ẏt]

′

be the state vector of one target. For one target, (xt yt) is the (north,east) position, and similarly
(ẋt ẏt) is the (north,east) velocity. The absolute velocity is vt =

√

ẋ2t + ẏ2t , while the target is moving at bearing
ηt = arctan( yt

xt
).

With constant velocities, a target move in a straight line, and the dynamical model is linear. We consider
a situation where a target manoeuvres (30 degrees) to the west whenever the velocity vt becomes smaller than
a threshold c. This model is nonlinear, and the dynamics can be phrased by π(xt|xt−1) ∼ N(xt;gt(xt−1),P ).
Using a time-step dT , the one target dynamics for large velocity is:

gt(xt−1) =









1 dT 0 0
0 1 0 1
0 0 1 dT

0 0 0 1

















xt−1

ẋt−1

yt−1

ẏt−1









(22)

while for small velocity:

gt(xt−1) =









xt−1 + dTcos(ηt)vt−1

cos(ηt)vt−1

yt−1 + dTsin(ηt)vt−1

sin(ηt)vt−1]
′









(23)

ηt =
π

6
+ ηt−1, If vt−1 < c (24)

Thus, bearing ηt of one target at time t, changes westward, whenever the absolute velocity is small. This has
effect on the north and east velocity, whereas the absolute velocity vt = vt−1 remains the same, on expectation.
As a consequence, the predictions of the north and east positions will tend to be skewed or multimodal, when
the distribution for velocity is near the critical velocity c.

The process noise covariance matrix is P = diag([0.52, 22, 0.52, 22]) and initial conditions are drawn
from N(x0;µ0,P 0) where µ0 = [1000, 75, 1000, 75]

′

and P 0 = 100P .
We observe the north and east poition at every time point, with Gaussian additive noise. Thus, the likelihood

model for position data is linear and can be phrased by π(yt|xt) ∼ N(yt;H txt,R) where R = diag([52 52])
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Figure 4: One-sensor one-target, distribution Coverage for α = 0.8

and:

Ht =

[

1 0 0 0
0 0 1 0

]

. (25)

One-sensor one-target case

In this case we assume that we have one moving target and one radar/sonar sensor measures the target position
in Cartesian plane.

The main goal of this example is evaluating the performance of each filter for estimating a general distribution
when the system dimension is low (system dimension is n=4 for this case) and there is no sign of sample
degeneracy. The number of ensemble members is B = 500 and we repeat the simulation for 500 replicates in
order to reduce Monte-Carlo error. We predict that GMMC should be the best, because for low dimensional
systems it can approximate general filtering distributions without sample degeneracy.

Table 1 and Figures 4-5 present the simulation results for a α. We see that our prediction about GMMC is
correct and it is the best in terms of MSE, CRPS and probability distribution coverage. When α is close to 1
RGMMCs performance is close to GMMC. This result is natural since it is close to GMMC for large values of
α. By looking at Table 1, we also see that when α ≈ 0 RGMMCs estimation accuracy is close to ENKF. This
result is also predictable because the shrinked samples converges to the predicted ensemble mean.

Figure 4 tells us that the percentile coverage distribution starts from a high value (98%) then reduces rapidly.
The high initial coverage is caused by the initial state variables. It is noticeable that after some time steps
the percentile coverage for GMMC and RGMMC reduce with a lower rate than ENKF because the posterior
distribution goes away from Gaussian distribution and ENKF could not approximate posterior distribution very
well.

Figure 5 shows the MSE and associated confidence intervals, which are calculated based on bootstraping.
GMMC has the lowest trend. We can see similar results on MSE and CRPS trends. Simulation results show
that for 0 < α < 1, RGMMC is some thing between ENKF and GMMC.
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Figure 5: One-sensor one-target, MSE for α = 0.8

Table 1: Comparing different filters for one-sensor one-target case

Values ENKF GMMC RGMMC

α 0.00001
CRPS(STD) 144(1.5) 140(1.4) 144(1.6)
MSE(STD) 281(26) 87(6.5) 282(26)
Coverage(%) 75 87 75
α 0.2
CRPS(STD) - - 143(1.6)
MSE(STD) - - 272(26)
Coverage(%) - - 74
α 0.5
CRPS(STD) - - 140(1.4)
MSE(STD) - - 230(14)
Coverage(%) - - 76
α 0.8
CRPS(STD) - - 131(1.3)
MSE(STD) - - 164(8)
Coverage(%) - - 85
α 0.99
CRPS(STD) - - 140(1.5)
MSE(STD) - - 83(7)
Coverage(%) - - 89
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Figure 6: Ten-sensor ten-target, distribution Coverage for α = 0.15

Ten-sensors ten-targets case

In this case we increase the system dimension by increasing the number of targets and sensors. Now, we are going
to check the proposed method for dealing with sample degeneracy in high dimensional system. We know that the
GMMC suffers from sample degeneracy when the system dimension is high and we predict that it should have
the worst performance for this case. We also know that ENKF tend to work well in high dimensional systems.
In Table 2 and Figures 6-7 we see that the GMMC now has the worst performance as we predicted, while ENKF
works well. We see that the proposed method works well for this case without sample degeneracy.

Figure 6 shows that the percentile coverage for the GMMC is high at the begining because initial samples
are independent and the distributions are close to Gaussian distribution, but after some time steps it goes down
rapidly for the GMMC because of sample collapse (the ESS is low). We have a similar behaviour for MSE. For
small to medium values of α the performance of the RGMMC is as good as the ENKF and, according to Table
2, for some values (such as α = 0.4) RGMMC is the best in the MSE sense. Besides, Table 2 shows that the
RGMMC is close to the ENKF for a wide range of α (0 < α < 0.8) and after that it converges to the GMMC
rapidly. As we said before, RGMMC is some thing between ENKF and GMMC for different values of α. Table
2 confirms this claim.

4.2 Lorenz 40 model

Lorenz40 model is a highly nonlinear model where its state dimension is n = 40 [14]. It consists of 40 ordinary
differential equations with cyclic boundary condition as follows:

ẇi = (wi+1 − wi−2)wi−1 − wi + 8, i = 1, ..., 40;

w0 = w40, w−1 = w39, w41 = w1. (26)

This model is discretized by the standard fourth order Runge-Kutta algorithm and the system states xt relate
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Figure 7: Ten-sensor ten-target, MSE for α = 0.6

Table 2: Comparing different filters for ten-sensors ten-targets case

Values ENKF GMMC RGMMC

α 0
CRPS(STD) 1389(6.9) 2311(12.7) 1389(6.6)
MSE(STD) 257(8.1) 581(28.5) 259(7.3)
Coverage(%) 87 25 87
α 0.1
CRPS(STD) - - 1390(7.3)
MSE(STD) - - 259(8.7)
Coverage(%) - - 86
α 0.4
CRPS(STD) - - 1389(7.2)
MSE(STD) - - 246(6.7)
Coverage(%) - - 87
α 0.7
CRPS(STD) - - 1513(8.8)
MSE(STD) - - 264(13.3)
Coverage(%) - - 83
α 1
CRPS(STD) - - 2319(12)
MSE(STD) - - 594(27.3)
Coverage(%) - - 26
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Figure 8: Lorenz 40, the total MSE versus the ensemble size and tuning parameter α, averaged for the interval
[900 1000]

to the solution of the above system as xt = w0.05t, t = 1, 2, ... where wt = [w1(t), w2(t), ..., w40(t)]
′

. The system
dynamics are perturbed with a Gaussian noise with mean 0 and standard deviation 0.05. The output of this
model is the system state which is cropped by a measurement noise with mean 0 and standard deviation 1, thus
the observation yt is of dimension m = 40 and we have:

yt = xt +N(0, I40). (27)

The initial ensemble members are selected randomly from a set of 10000 model states which obtained from
one continuous integration at t = 1000, 1001, ..., 11000 [14].

In this simulation we evaluate the proposed method on this famous test in data assimilation. We are going to
compare filter performance by changing the ensemble size and the tuning parameter α. We know that for α = 0,
the RGMMC is the ENKF and when α = 1 we have the GMMC. Thus, we can compare the filter results with
ENKF and GMMC by choosing 0 ≤ α ≤ 1 in our simulations. Besides, we compare different cost functions and
evaluation criteria such as the total MSE, percentile posterior distribution coverage and variance of the weights.

In Figure 8 we display a three dimensional plot of total MSE versus ensemble size and the tuning parameter
α, averaged for the time interval [900 1000] of the Lorenz model. We note that the MSE tend to decrease with
larger ensemble size. According to Figure 8, for small sample size, the smallest MSE occurs for the ENKF
(α = 0). The GMMCs result (α = 1) is the worst because the sample size B must be very high for the GMMC to
obtain the best result. It is not surprising because we know that GMMC filter diverges when system dimension
is proportionally high (40 for this case), since it suffers from sample degeneracy.

In some cases when we increase the number of samples, the number of collinear samples increases too and
results in poorer estimation accuracy. For instance, when α = 0 (ENKF) by changing the number of ensembles
from 90 to 100 the total MSE increases, also for GMMC case (i.e. α = 1). Similarly, MSE increases by changing
the number of samples from 150 to 200.

According to Figure 8, the best result in total MSE sense is when α = 0.15 and the number of samples is 200
and we see that the RGMMC filter result (in total MSE sense) is better than the ENKF and GMMC, also by
increasing α from 0 to 0.15 the total MSE decreases but after that it increases.
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Figure 9: Lorenz 40, the percentile posterior coverage distribution versus the ensemble size and tuning parameter
α, averaged for the interval [900 1000]

Finally, choosing the optimal value for the tuning parameter α is highly dependent on sample size and its
optimal value depends on both system complexity and number of samples.

Figure 9 shows the filter results in the percentile posterior distribution coverage sense. The distribution
coverage are too small but increases as a function of sample size B. Based on this figure we have the best
coverage for 0.15 ≤ α ≤ 0.3, thus the RGMMC results for this range is the best in comparison to the ENKF and
GMMC. For constant sample size, the coverage distribution is like a convex polynomial function of the tuning
parameter α (such as second order polynomial function) where its maximum value is around α = 0.15. Also,
increasing the number of ensembles does not always lead to increase distribution coverage because of sample
collinearity. For instance, when α = 0.45, and we increase the number of samples from 70 to 80 or when α = 0
(ENKF) and the number of samples is changed from 90 to 100 the posterior distribution coverage decreases.

The coverage is so low because of small process noise covariance. We see that it increases rapidly by increasing
the process noise covariance, for instance when we increase the process noise standard deviation from 0.05 to 0.1
the percentile coverage distribution increases to 80 percent and more. The parameters used in [14] describe a
hard case.

We know that the variance of the weights is 0 for the ENKF because all weights are equal. For high α the
variance of the weights is much higher. When the ensemble size is high, the variance of the weights does not
change so much for different αs.

4.3 Saturation estimation based on seismic and electromagnetic data

In this example we check the performance of the proposed method for dealing with very high dimensional systems.
Besides, for this case we use the proposed adaptive method for choosing α.

The example is a reservoir simulation model, where we consider just one injection well and one production
well [11]. The injection well is located at lower left corner of Figure 10 and water is pumped in to this well for
replacing oil and moving oil to the production well, which is located at the upper right corner. Based on the fluid
dynamics, the flow is faster where the permeability (porosity) is high. Figure 10 shows the saturation profile
after 400 days. According to Figure 11 some days after injecting water the production well starts producing oil
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Figure 10: Saturation for one run at fourth time step (400 days)

(the curve at 0 starts to go up).
A fluid flow simulator describes the dynamics of the system. This simulator works on fluid dynamics laws

and it contains some parameters such as porosity, permeability and saturation. The values of these parameters
depend on the geophysical characteristics of the reservoir. Assuming the whole reservoir as a combination of
cells in a lattice, we are interested in estimating porosity, permeability and saturation for each cell. We use a
45 × 45 lattice in our example. The system state vector consists of porosity, permeability and saturation for
each cell. For this example, assume that porosity and permeability are known and constant and we just consider
saturation in the state vector. The noise covariance in the dynamic model is P = P t = P (xt,xt−1), where xt

is the state vector which consists of logistic saturation at all 45× 45 = 2025 cells. Logistic saturation transform
the variables on the real line. The dynamic model gt is the numerical solution of the PDE for fluid flow and
t = 1, 2, 3, 4 where are descretized into 100 day step,i.e. t = 1 means 100 days, t = 2 means 200 days, etc [11].
You can find more details about the simulator at www.sintef.no/Projectweb/MRST/.

The data consists of seismic and electromagnetic observations, Figure 12, and these are repeated over time.
We imagine that at time 0 a baseline survey is performed. Then, monitoring survey are performed at 100,
200, 300 and 400 days (time 1, 2, 3, 4). Two seismic attributes and electromagnetic resistivity are acquired
and interpreted along the top reservoir described by a (north, east) cordinate lattice informative of porosity
and saturation. Seismic attributes are more informative about reservoir parameters such as porosity and partly
saturation, while the electromagnetic data caries coarse scale information about saturation. We assume that
we have observations at 4 time steps during 400 days. The likelihood is a function of saturation [12] and the
expected response is shown in Figure 12. The observations are made at all lattice cells and its dimension is
m = 3× 452. The likelihood is nonlinear, but we linearize it using first order Taylor series expansion.

The simulation is run 50 times in order to reduce the Monte-Carlo error. The number of ensemble member
is B = 100 which is typically used for ensemble assimilation problems of this size. A comparison between ENKF
and RGMMC is done over MSE, CRPS and percentile coverage distribution when we apply these filters in an
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Figure 11: Production rate at well in upper right seismic and electromagnetic data

Figure 12: Seismic (first two left plot) and electromagnetic (last right plot) data
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Table 3: Filter performance for estimating saturation with adaptive α

Values ENKF RGMMC

CRPS(STD) 1.9e5(37) 1.9e5(39)
MSE(STD) 1.3e-3(5e-5) 1.3e-3(5e-5)
Coverage(%) 54.4 54.6

Figure 13: Estimated saturation at different time steps using ENKF

estimation problem.
Table 3 shows the MSE, CRPS and coverage based on proposed adaptive α selection method. We see that

RGMMC and ENKF are very similar (the coverage distribution of RGMMC is a little bit better). When we plot
the total MSE evaluation sense for these four time steps (400 days), they are very similar. Figure 13 and 14
present similar results. It is very hard to find a difference between the ENKF and RGMMC. These figures shows
that RGMMC works as well as ENKF in the high dimensional prediction problems. The value of α̂t is near 0 for
all four time points, and this explains the similar performance. By increasing B, we expect α to grow.

Note the small artifacts caused by the truncation and noise level in the dynamical model. This is a common
challange when merging numerical solution of PDEs and statistical Monte-Carlo sampling

5 Closing remarks

We have studied a filtering method going between the ENKF and the particle filter. Our modeling setup
allows us to phrase the sample approximation of the particle filter as a Gaussian mixture. Nevertheless, the
Gaussian mixture Monte Carlo filtering resulting from this approach will degenerate because of the sampling
approximation. The robustified procedure we outline in this paper shrinks particles towards the ensemble mean,
while maintaining some flexibility in the distribution.

We tested the robustified filter on a simulation study for target tracking, on the Lorenz 40 model, and on
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Figure 14: Estimated saturation at different time steps using RGMMC

a reservoir simulation example. Results indicate that the robustified filter works better or as well as Gaussian
mixture particle filter and ensemble Kalman filter for systems with different dimensions and complexities.
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