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Prediction of Extreme Values by the Average

Conditional Exceedance Rate Method

Arvid Naess∗ , Oleg Gaidai†

Abstract

This paper details a new method for extreme value prediction on the

basis of a sampled time series. The method is specifically designed to

account for statistical dependence between the sampled data points in a

precise manner. In fact, if properly used, the new method will provide

estimates of the exact extreme value distribution provided by the data. It

avoids the problem of having to decluster the data to ensure independence,

which is a requisite component in the application of e.g. the standard

peaks-over-threshold method. The proposed method also targets the use

of sub-asymptotic data to improve prediction accuracy. The method will

be demonstrated by application to both synthetic and real data. From a

practical point of view, it seems to perform better than the POT and block

extremes methods, and, with an appropriate modification, it is directly

applicable to nonstationary time series.

Keywords: Extreme value estimation, Sampled time series, Approximation by

conditioning, Mean exceedance rate, Monte Carlo simulation.

1 Introduction

Extreme value statistics, even in applications, is generally based on asymptotic

results. This is done either by assuming that the epochal extremes, for example

yearly extreme wind speeds at a given location, are distributed according to

the generalized (asymptotic) extreme value distribution with unknown param-

eters to be estimated on the basis of the observed data (Coles, 2001; Beirlant

et al., 2004). Or it is assumed that the exceedances above high thresholds fol-

low a generalized (asymptotic) Pareto distribution with parameters that are

estimated from the data (Coles, 2001; Beirlant et al., 2004; Davison and Smith,

1990; Reiss and Thomas, 2007). The major problem with both of these ap-

proaches is that the asymptotic extreme value theory itself cannot be used in

practice to decide to what extent it is applicable for the observed data. And
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since statistical tests to decide this issue are rarely precise enough to completely

settle this problem, the assumption that a specific asymptotic extreme value

distribution is the appropriate distribution for the observed data is based more

or less on faith or convenience.

On the other hand, one can reasonably assume that in most cases long

time series obtained from practical measurements do contain values that are

large enough to provide useful information about extreme events that are truly

asymptotic. This cannot be strictly proved in general, of course, but the accu-

mulated experience indicates that asymptotic extreme value distributions pro-

vide reasonable, if not always very accurate, predictions when based on mea-

sured data. This is amply documented in the vast literature on the subject, and

good references to this literature are (Beirlant et al., 2004; Embrechts et al.,

1997; Falk et al., 2004). In an effort to improve on the current situation, we

have tried to develop an approach to the extreme value prediction problem that

is less restrictive and more flexible than the ones based on asymptotic theory.

In particular, it is designed to improve on two important aspects of extreme

value prediction based on observed data. Firstly, it has the capability to accu-

rately capture the effect of statistical dependence in the data, which opens for

the possibility to use all the available data in the analysis. Secondly, it makes

it possible to incorporate to a certain extent also the sub-asymptotic part of

the data into the extreme value prediction, which is of some importance for

accurate prediction. We have used the proposed methods on a wide variety of

prediction problems, and our experience is that they represent a viable addition

to the toolbox of methods for extreme value prediction.

2 Cascade of Conditioning Approximations

Consider a stochastic process Z(t), which has been observed over a time interval,

(0, T ) say. Assume that values X1, . . . , XN , which have been derived from the

observed process, are allocated to the discrete times t1, . . . , tN in (0, T ). This

could be simply the observed values of Z(t) at each tj , j = 1, . . . , N , or it could

be average values or peak values over smaller time intervals centered at the tj ’s.

Our goal in this paper is to accurately determine the distribution function of the

extreme value MN = max{Xj ; j = 1, . . . , N}. Specifically, we want to estimate

P (η) = Prob(MN ≤ η) accurately for large values of η. An underlying premise

for the development in this paper is that a rational approach to the study

of the extreme values of the sampled time series is to consider exceedances

of the individual random variables Xj above given thresholds, as in classical

extreme value theory. The alternative approach of considering the exceedances

by upcrossing of given thresholds by a continuous stochastic process has been

developed in (Naess and Gaidai, 2008; Naess et al., 2007) along lines similar to

that adopted here. The approach taken in the present paper seems to be the



appropriate way to deal with the recorded data time series of, for example, the

hourly or daily largest wind speeds observed at a given location.

From the definition of P (η) it follows that

P (η) = Prob(MN ≤ η) = Prob{X1 ≤ η, . . . , XN ≤ η}
= Prob{XN ≤ η|X1 ≤ η, . . . , XN−1 ≤ η} · Prob{X1 ≤ η, . . . , XN−1 ≤ η}

=
N
∏

j=2

Prob{Xj ≤ η|X1 ≤ η, . . . , Xj−1 ≤ η} · Prob(X1 ≤ η) (1)

In general, the variables Xj are statistically dependent. Hence, instead

of assuming that all the Xj are statistically independent, which leads to the

classical approximation

P (η) ≈
N
∏

j=1

Prob(Xj ≤ η), (2)

the following one-step memory approximation will to a certain extent account

for the dependence between the Xj ’s,

Prob{Xj ≤ η|X1 ≤ η, . . . , Xj−1 ≤ η} ≈ Prob{Xj ≤ η|Xj−1 ≤ η}, (3)

for 2 ≤ j ≤ N . This approximation can be extended to

Prob{Xj ≤ η|X1 ≤ η, . . . , Xj−1 ≤ η} ≈ Prob{Xj ≤ η|Xj−2 ≤ η,Xj−1 ≤ η} ,
(4)

where 3 ≤ j ≤ N , and so on. It should be noted that the one-step memory

approximation adopted above is not a Markov chain approximation (Smith,

1992; Coles, 1994), nor do the k-step memory approximations lead to kth-order

Markov chains (Yun, 1998).

Eqs. (3) and (4) represent refinements of the independence assumption. One

would expect that such approximations would be able to capture the effect of

statistical dependence between neighboring data in the time series with increas-

ing accuracy. As will be seen in sections 8 and 9, P (η) computed using Eq. (4)

is often quite close to the value obtained using Eq. (3). This indicates that in

practice, Eq. (3) is oftentimes able to capture the effect of statistical depen-

dence in e.g. wind speed data with good accuracy. This approximation was

introduced in (Naess, 1985, 1990). However, there is no noticeable increase of

numerical effort by using Eq. (4), or its further refinements by including three

or more preceding data. And, as demonstrated below, this cascade of refine-

ments will provide a very useful diagnostic tool to highlight the importance of

statistical dependence on the extreme value predictions.

Combining Eq. (1) with Eq. (3), the following relation is obtained

P (η) ≈
∏N

j=2 p2j(η)
∏N−1

j=2 p1j(η)
(5)



where we have introduced the notation pkj(η) = Prob{Xj−k+1 ≤ η, . . . , Xj ≤ η}
for j ≥ k.

It is of interest to have a closer look at the values for P (η) obtained by using

Eq. (5) as compared to Eq. (2). Now, Eq. (2) can be rewritten in the form

P (η) ≈
N
∏

j=1

(

1− α1j(η)
)

, (6)

where

α1j(η) = Prob{Xj > η} = 1− p1j(η). (7)

Then

P (η) ≈ P1(η) = exp
(

−
N
∑

j=1

α1j(η)
)

, (8)

where P1(η) is defined by the last equality in Eq. (8).

Alternatively, Eq. (5) gives

P (η) ≈
N
∏

j=2

(

1− α2j(η)
)

p11(η), (9)

where αkj(η) = 1− pkj(η)/pk−1,j−1(η), for j ≥ k ≥ 2. That is

αkj(η) = Prob{Xj > η |Xj−k+1 ≤ η, . . . , Xj−1 ≤ η} (10)

denotes the exceedance probability conditional on k−1 previous non-exceedances.

From Eq. (9) it is obtained that,

P (η) ≈ P2(η) = exp
(

−
N
∑

j=2

α2j(η)− α11(η)
)

, (11)

since p11(η) ≈ exp(−α11(η)).

Conditioning on the two previous observations Xj−2, Xj−1 preceding Xj

gives

P (η) ≈ P3(η) = exp
(

−
N
∑

j=3

α3j(η)− α22(η)− α11(η)
)

, (12)

while conditioning on three prior observations leads to the equation

P (η) ≈ P4(η) = exp
(

−
N
∑

j=4

α4j(η)− α33(η)− α22(η)− α11(η)
)

, (13)

and so on. Therefore, extreme value prediction by the conditioning approach

described above reduces to estimation of (combinations) of the αkj(η) functions.

For most practical applications N >> k, so that
∑k−1

j=1 αjj(η) is effectively



negligible compared to
∑N

j=k αkj(η). Hence, for simplicity, we shall adopt the

approximation,

Pk(η) = exp
(

−
N
∑

j=k

αkj(η)
)

, k ≥ 1 . (14)

Going back to Eq. (8), and the definition of α1j(η), it follows that
∑N

j=1 α1j(η)

is equal to the expected number of exceedances of the threshold η during

the time interval (0, T ). Eq. (8) therefore expresses the approximation that

the stream of exceedance events constitute a (non-stationary) Poisson process.

This opens for an understanding of Eq. (11) and subsequent approximations

by interpreting the expressions
∑N

j=k αkj(η) as the expected effective number

of independent exceedance events provided by conditioning on k − 1 previous

observations.

3 Empirical Estimation of the Average Conditional

Exceedance Rates

It is expedient to introduce the concept of average conditional exceedance rate

(ACER) of order k as follows,

εk(η) =
1

N − k + 1

N
∑

j=k

αkj(η) , k = 1, 2, . . . (15)

In general, this ACER function also depends on the number of data points N .

In practice there are typically two scenarios for the underlying process Z(t).

Either we may consider it to be a stationary process, or, in fact, even an ergodic

process. The alternative is to view Z(t) as a process that depends on certain

parameters whose variation in time may be modelled as an ergodic process in

its own right. For each set of values of the parameters, the premise is that Z(t)

can then be modelled as an ergodic process. This would be the scenario that

can be used to model long-term statistics (Naess, 1984; Schall et al., 1991).

For both these scenarios, the empirical estimation of the ACER function

εk(η) proceeds in a completely analogous way by counting the total number of

favourable incidents, that is, exceedances combined with the requisite number

of preceding non-exceedances, for the total data time series and then finally

dividing by N − k + 1 ≈ N . This can be shown to apply for the long-term

situation.

A few more details on the numerical estimation of εk(η) for k ≥ 2 may be

appropriate. We start by introducing the following random functions,

Akj(η) = 1{Xj > η,Xj−1 ≤ η, . . . , Xj−k+1 ≤ η} , j = k, . . . , N, k = 2, 3, . . .

(16)



and

Bkj(η) = 1{Xj−1 ≤ η, . . . , Xj−k+1 ≤ η} , j = k, . . . , N, k = 2, . . . , (17)

where 1{A} denotes the indicator function of some event A. Then

αkj(η) =
E[Akj(η)]

E[Bkj(η)]
, j = k, . . . , N, k = 2, . . . , (18)

where E[·] denotes the expectation operator. Assuming an ergodic process, then

obviously εk(η) = αkk(η) = . . . = αkN (η), and by replacing ensemble means

with corresponding time averages, it may be assumed that for the time series

at hand

εk(η) = lim
N→∞

∑N
j=k akj(η)

∑N
j=k bkj(η)

, (19)

where akj(η) and bkj(η) are the realized values of Akj(η) and Bkj(η), respec-

tively, for the observed time series.

For multiple recorded stationary time series, the sample estimate of εk(η)

would be,

ε̂k(η) =
1

R

R
∑

r=1

ε̂
(r)
k (η) , (20)

where R is the number of realizations (samples), and

ε̂
(r)
k (η) =

∑N
j=k a

(r)
kj (η)

∑N
j=k b

(r)
kj (η)

, (21)

where the index (r) refers to realization no. r.

Clearly, limη→∞ E[Bkj(η)] = 1. Hence, limη→∞ ε̃k(η)/εk(η) = 1, where

ε̃k(η) =

∑N
j=k E[Akj(η)]

N − k + 1
. (22)

The advantage of using the modified ACER function ε̃k(η) for k ≥ 2 is that

it is easier to use for non-stationary or long-term statistics than εk(η). Since

our focus is on the values of the ACER functions at the extreme levels, we may

use any function that provides correct predictions of the appropriate ACER

function at these extreme levels.

To see why Eq. (22) may be applicable for nonstationary time series, it is

recognized that

P (η) ≈ exp
(

−
N
∑

j=k

αkj(η)
)

= exp
(

−
N
∑

j=k

E[Akj(η)]

E[Bkj(η)]

)

≃
η→∞

exp
(

−
N
∑

j=k

E[Akj(η)]
)

. (23)



If the time series can be segmented into K blocks such that E[Akj(η)] remains

approximately constant within each block and such that
∑

j∈Ci
E[Akj(η)] ≈

∑

j∈Ci
akj(η) for a sufficient range of η-values, where Ci denotes the set of

indices for block no. i, i = 1, . . . ,K, then
∑N

j=k E[Akj(η)] ≈ ∑N
j=k akj(η).

Hence,

P (η) ≈ exp
(

− (N − k + 1)ε̂k(η)
)

, (24)

where

ε̂k(η) =
1

N − k + 1

N
∑

j=k

akj(η) . (25)

It is of interest to note what events are actually counted for the estimation

of the various εk(η), k ≥ 2. Let us start with ε2(η). It follows from the defi-

nition of ε2(η) that ε2(η) (N − 1) can be interpreted as the expected number

of exceedances above the level η satisfying the condition that an exceedance

is counted only if it is immediately preceded by a non-exceedance. A reinter-

pretation of this is that ε2(η) (N − 1) equals the average number of clumps

of exceedances above η for the realizations considered, where a clump of ex-

ceedances is defined as a maximum number of consecutive exceedances above

η. In general, εk(η) (N − k + 1) then equals the average number of clumps of

exceedances above η separated by at least k − 1 non-exceedances. If the time

series analysed is obtained by extracting local peak values from a narrow band

response process, it is interesting to note the similarity between the ACER

approximations and the envelope approximations for extreme value prediction

(Naess and Gaidai, 2008; Vanmarcke, 1975).

Now, let us look at the problem of estimating a confidence interval for εk(η),

assuming a stationary time series. The sample standard deviation ŝk(η) can be

estimated by the standard formula,

ŝk(η)
2 =

1

R− 1

R
∑

r=1

(

ε̂
(r)
k (η)− ε̂k(η)

)2
. (26)

Assuming that realizations are independent, for a suitable number R, e.g. R ≥
20, Eq. (26) leads to a good approximation of the 95 % confidence interval CI

=
(

CI−(η),CI+(η)
)

for the value εk(η), where

CI±(η) = ε̂k(η)± 1.96 ŝk(η)/
√
R . (27)

Alternatively, and which also applies to the non-stationary case, it is con-

sistent with the adopted approach to assume that the stream of conditional

exceedances over a threshold η constitute a Poisson process, possibly non-

homogeneous. Hence, the variance of the estimator Êk(η) of ε̃k(η), where

Êk(η) =

∑N
j=k Akj(η)

N − k + 1
, (28)



is Var[Êk(η)] = ε̃k(η). Therefore, for high levels η, the approximate limits of a

95 % confidence interval of ε̃k(η), and also εk(η), can be written as,

CI±(η) = ε̂k(η)
(

1± 1.96
√

(N − k + 1)ε̂k(η)

)

. (29)

4 Prediction of Extremes for the Asymptotic Gum-

bel Case

Part of the approach to extreme value prediction presented in this paper was

originally derived for a time series with an asymptotic extreme value distribu-

tion which could be assumed to be of the Gumbel type, cf. (Naess and Gaidai,

2009). The implication of this assumption on the possible sub-asymptotic func-

tional forms of εk(η) cannot easily be decided in any detail. However, using the

asymptotic form as a guide, it is assumed that the behaviour of the mean ex-

ceedance rate in the tail is dominated by a function of the form exp{−a(η−b)c}
(η ≥ η1 ≥ b) where a, b and c are suitable constants, and η1 is an appropriately

chosen tail marker. Hence, it will be assumed that,

εk(η) = qk(η) exp{−ak(η − bk)
ck} , η ≥ η1, (30)

where the function qk(η) is slowly varying compared with the exponential func-

tion exp{−ak(η−bk)
ck} and ak, bk, and ck are suitable constants, that in general

will be dependent on k. Note that the value ck = 1 and qk(η) = constant cor-

responds to the asymptotic Gumbel case.

From Eq. (30) it follows that,

− log
∣

∣ log
(

εk(η)/qk(η)
)
∣

∣ = − ck log(η − bk)− log(ak). (31)

Therefore, under the assumptions made, a plot of − log
∣

∣ log
(

εk(η)/qk(η)
)∣

∣ ver-

sus log(η − bk) will exhibit a perfectly linear tail behaviour.

It is realized that if the function qk(η) could be replaced by a constant value,

qk say, one would immediately be in a position to apply a linear extrapolation

strategy for deep tail prediction problems. In general, qk(η) is not constant, but

its variation in the tail region is often sufficiently slow to allow for its replace-

ment by a constant, possibly by adjusting the tail marker η1. The proposed

statistical approach to the prediction of extreme values is therefore based on

the assumption that we can write,

εk(η) = qk exp{−ak(η − bk)
ck} , η ≥ η1, (32)

where ak, bk, ck and qk are appropriately chosen constants. In a certain sense

this is a minimal class of parametric functions that can be used for this pur-

pose which makes it possible to achieve three important goals. Firstly, the



parametric class contains the asymptotic form given by ck = qk = 1 as a spe-

cial case. Secondly, the class is flexible enough to capture to a certain extent

sub-asymptotic behaviour of any extreme value distribution that is asymptot-

ically Gumbel. Thirdly, the parametric functions agree with a wide range of

known special cases, of which a very important example is the extreme value

distribution for a stationary Gaussian process, which has ck = 2.

The viability of this approach has been successfully demonstrated by the

authors for mean up-crossing rate estimation for extreme value statistics of the

response processes related to a wide range of different dynamical systems, cf.

(Naess and Gaidai, 2008; Naess et al., 2007).

Since the linearity in the plotting procedure described above is dependent

on an appropriate choice of the parameters (bk, qk), it is of interest to discuss

this issue in some detail.

To avoid problems with our definition of weight factors to be introduced

below, we cut from consideration the very tail of the data, where uncertainty

is too high according to the following criterion. As a practical procedure we

suggest to neglect data points, where the relative confidence band width is

greater than some constant δ, that is,

1.96ŝk(ξ)/
√
R

εk(η)
> δ (33)

where the value chosen for δ is dependent on the actual ’roughness’ of the data

tail, but its value would typically be in the interval (0.5, 1). Next, we come to

the estimation of the predicted response level and its 95% confidence interval.

First, the tail marker η1 is identified from visual inspection of the log plot

(η, log εk(η)). The value chosen for η1 corresponds to the beginning of regular

tail behaviour in a sense to be discussed below. Next, initial estimates for b

and q are found by the procedure to linearize the tail on the transformed scale.

Assuming that initial values of (b, q) have been identified, the initial value of

the parameters a and c would then generally be determined from the initial

’optimal’ straight line −cx− log a (x = log(η − b)) approximating the data tail

on the transformed plot (31).

Instead of doing the optimization directly from the loglog-log plot, which

is appealing in the sense that it directly involves only two parameters, a more

robust optimization may in fact be obtained by doing it on the log level even

if the optimization has to be carried out with respect to all four parameters

a, b, c, q. The optimal choice of parameters would then be obtained by minimiz-

ing the following mean square error function with respect to all four arguments

(the subscript k, if it applies, is suppressed),

F (a, b, c, q) =
J
∑

j=1

wj

∣

∣ log ε̂(ηj)− log q + a(ηj − b)c
∣

∣

2
, (34)



where η1 < . . . < ηJ denotes the levels where the ACER function has been

estimated, wj denotes a weight factor that puts more emphasis on the more

reliably estimated ε̂(ηj). The choice of weight factor is to some extent arbitrary.

We have previously used wj =
(

logC+(ηj) − logC−(ηj)
)−θ

with θ = 1 and 2,

combined with a Levenberg-Marquardt least squares optimization method (Gill

et al., 1981). This has usually worked well provided reasonable, initial values

for the parameters were chosen. Note that the form of wj puts some restriction

on the use of the data. Usually, there is a level ηj beyond which wj is no longer

defined, that is, C−(ηj) becomes negative. Hence, the summation in Eq. (34)

has to stop before that happens. Also, the data should be preconditioned by

establishing the tail marker η1 in a sensible way.

A note of caution: When the parameter c is equal to 1.0 or close to it, the

optimization problem becomes ill-defined or close to ill-defined. It is seen that

when c = 1.0, there is an infinity of (b, q) values that gives exactly the same

value of F (a, b, c, q). Hence, there is no well defined optimum in parameter

space. There are simply too many parameters. This problem is alleviated by

fixing the q-value, and the obvious choice is q = 1.

Although the Levenberg-Marquardt method generally works well with four

or, when appropriate, three parameters, we have also developed a more direct

and transparent optimization method for the problem at hand. It is realized

by scrutinizing Eq. (34) that if b and c are fixed, the optimization problem

reduces to a standard weighted linear regression problem. That is, with both

b and c fixed, the optimal values of a and log q are found using closed form

weighted linear regression formulas in terms of wj , yj = log ε(ηj) and xj =

(ηj − b)c. In that light, it can also be concluded that the best linear unbiased

estimators (BLUE) are obtained for wj = σ−2
yj , where σ2

yj = Var[yj ] (empirical)

(Draper and Smith, 1998; Montgomery et al., 2002). Unfortunately, this is not

a very practical weight factor for the kind of problem we have here because the

summation in Eq. (34) then typically would have to stop at undesirably small

values of ηj .

It is obtained that the optimal values of a and q are given by the relations,

a∗(b, c) = −
∑N

j=1wj(xj − x)(yj − y)
∑N

j=1wj(xj − x)2
, (35)

and

log q∗(b, c) = y + a∗(b, c)x , (36)

where x =
∑N

j=1wjxj/
∑N

j=1wj , with a similar definition of y.

To calculate the final optimal set of parameters, one may use the Levenberg-

Marquardt method on the function F̃ (b, c) = F (a∗(b, c), b, c, q∗(b, c)) to find the

optimal values b∗ and c∗, and then use Eqs. (35) and (36) to calculate the

corresponding a∗ and q∗.



A practical approach that could be adopted is to get a first idea of the values

of the parameters a, b, c, q by having a look at the loglog-log plot. These values

may then be used as starting values for the Levenberg-Marquardt algorithm.

For construction of a confidence interval for the predicted, deep tail extreme

value given by a particular ACER function as provided by the fitted parametric

curve, the empirical confidence band is reanchored to the fitted curve by cen-

tering the individual confidence intervals for the point estimates of the ACER

function on the fitted curve. Under the premise that the specified class of

parametric curves fully describes the behaviour of the ACER functions in the

tail, parametric curves are fitted as described above to the boundaries of the

reanchored confidence band. These curves are used to determine a confidence

interval of the predicted extreme value. As a final point, it has been observed

that the predicted value is not very sensitive to the choice of η1, provided it is

chosen with some care.

5 Prediction of Extremes for the General Case

For independent data in the general case, the ACER function ε1(η) can be

expressed asymptotically as,

ε1(η) ≃
η→∞

[

1 + ξ
(

a(η − b)
)]− 1

ξ , (37)

where a > 0, b, ξ are constants.

Again, the implication of this assumption on the possible sub-asymptotic

functional forms of εk(η) in the general case is not a trivial matter. The ap-

proach we have chosen is to assume that the class of parametric functions needed

for the prediction of extreme values for the general case can be modelled on the

relation between the Gumbel distribution and the general extreme value dis-

tribution. The behaviour of the mean exceedance rate in the sub-asymptotic

part of the tail is therefore assumed to follow a function largely of the form
[

1 + ξ
(

a(η − b)c
)]− 1

ξ (η ≥ η1 ≥ b) where a > 0, b, c > 0 and ξ > 0 are suit-

able constants, and η1 is an appropriately chosen tail level. Hence, it will be

assumed that (Naess, 2010),

εk(η) = qk(η)
[

1 + ξk
(

ak(η − bk)
ck
)]− 1

ξk , η ≥ η1, (38)

where the function qk(η) is weakly varying compared with the function
[

1 + ξk
(

ak(η − bk)
ck
)]− 1

ξk and ak > 0, bk, ck > 0 and ξk > 0 are suitable

constants, that in general will be dependent on k. Note that the values ck = 1

and qk(η) = 1 corresponds to the asymptotic limit, which is then a special case

of the general expression given in Eq. (30).

An alternative form to Eq. (38) would be to assume that

εk(η) =
[

1 + ξk
(

ak(η − bk)
ck + dk(η)

)]− 1

ξk , η ≥ η1, (39)



where the function dk(η) is weakly varying compared with the function ak(η −
bk)

ck . However, for estimation purposes, it turns out that the form given by

Eq. (30) is preferrable as it leads to simpler estimation procedures. This aspect

will be discussed later in the paper.

For practical identification of the ACER functions given by Eq. (38), it

expedient to assume that the unknown function qk(η) varies sufficiently slowly

to be replaced by a constant. In general, qk(η) is not constant, but its variation

in the tail region is assumed to be sufficiently slow to allow for its replacement

by a constant. Hence, as in the Gumbel case, it is in effect assumed that qk(η)

can be replaced by a constant for η ≥ η1, for an appropriate choice of tail

marker η1. For simplicity of notation, in the following we shall suppress the

index k on the ACER functions, which will then be written as,

ε(η) = q [1 + ã (η − b)c]−γ , η ≥ η1, (40)

where γ = 1/ξ, ã = aξ.

For the analysis of data, first the tail marker η1 is provisionally identified

from visual inspection of the log plot (η, ln ε̂k(η)). The value chosen for η1
corresponds to the beginning of regular tail behaviour in a sense to be discussed

below.

The optimization process to estimate the parameters is done relative to

the log plot, as for the Gumbel case. The mean square error function to be

minimized is in the general case written as

F (ã, b, c, q, γ) =
N
∑

j=1

wj

∣

∣ log ε̂(ηj)− log q + γ [1 + ã(ηj − b)c]
∣

∣

2
, (41)

where wj is a weight factor as previously defined.

An option for estimating the five parameters ã, b, c, q, γ is again to use the

Levenberg-Marquardt least squares optimization method, which can be simpli-

fied also in this case by observing that if ã, b and c are fixed in Eq. (34), the

optimization problem reduces to a standard weighted linear regression problem.

That is, with ã, b and c fixed, the optimal values of γ and log q are found using

closed form weighted linear regression formulas in terms of wj , yj = log ε̂(ηj)

and xj = 1 + ã(ηj − b)c.

It is obtained that the optimal values of γ and log q are given by relations

similar to Eqs. (35) and (36). To calculate the final optimal set of parameters,

the Levenberg-Marquardt method may then be used on the function F̃ (ã, b, c) =

F (ã, b, c, q∗(ã, b, c), γ∗(ã, b, c)) to find the optimal values ã∗, b∗ and c∗, and then

the corresponding γ∗ and q∗ can be calculated. The optimal values of the

parameters may e.g also be found by a sequential quadratic programming (SQP)

method (Numerical Algorithms Group, 2010).



6 The Gumbel Method

To offer a comparison of the predictions obtained by the method proposed in

this paper with those obtained by other methods, we shall use the predictions

given by the two methods that seem to be most favored by practitioners, the

Gumbel method and the peaks-over-threshold method.

The Gumbel method is based on recording epochal extreme values and fit-

ting these values to a corresponding Gumbel distribution (Gumbel, 1958). By

assuming that the recorded extreme value data are Gumbel distributed, then

representing the obtained data set of extreme values as a Gumbel probability

plot should ideally result in a straight line. In practice, one cannot expect this

to happen, but on the premise that the data follow a Gumbel distribution, a

straight line can be fitted to the data. Due to its simplicity, a popular method

for fitting this straight line is the method of moments, which is also reasonably

stable for limited sets of data. That is, writing the Gumbel distribution of the

extreme value MN as

Prob(MN ≤ η) = exp
{

− exp
(

− a(η − b)
)}

, (42)

it is known that the parameters a and b are related to the mean value mM

and standard deviation σM of M(T ) as follows: b = mM − 0.57722 a−1 and

a = 1.28255/σM (Bury, 1975). The estimates of mM and σM obtained from

the available sample therefore provides estimates of a and b, which leads to the

fitted Gumbel distribution by the moment method.

Typically, a specified quantile value of the fitted Gumbel distribution is then

extracted and used in a design consideration. To be specific, let us assume that

the requested quantile value is the 100(1 − α)% fractile, where α is usually a

small number, for example α = 0.1. To quantify the uncertainty associated

with the obtained 100(1 − α)% fractile value based on a sample of size Ñ ,

the 95% confidence interval of this value is often used. A good estimate of

this confidence interval can be obtained by using a parametric bootstrapping

method (Efron and Tibshirani, 1993; Davison and Hinkley, 1997). Note that

the assumption that the initial Ñ extreme values are actually generated with

good approximation from a Gumbel distribution cannot easily be verified with

any accuracy in general, which is a drawback of this method. Compared with

the POT method, the Gumbel method would also seem to use much less of the

information available in the data. This may explain why the POT method has

become increasingly popular over the past years, but the Gumbel method is

still widely used in practice.



7 The Peaks-Over-Threshold Method

The Generalized Pareto Distribution

The POT method is based on what is called the generalized Pareto (GP) distri-

bution (defined below) in the following manner: It has been shown (Pickands,

1975) that asymptotically, the excess values above a high level will follow a GP

distribution if and only if the parent distribution belongs to the domain of at-

traction of one of the extreme value distributions. The assumption of a Poisson

process model for the exceedance times combined with GP distributed excesses

can be shown to lead to the generalized extreme value (GEV) distribution for

corresponding extremes, see below. The expression for the GP distribution is

G(y) = G(y; a, c) = Prob(Y ≤ y) = 1−
(

1 + c
y

a

)−1/c

+
. (43)

Here a > 0 is a scale parameter and c (−∞ < c < ∞) determines the shape of

the distribution. (z)+ = max(0, z).

The asymptotic result referred to above implies that Eq. (43) can be used

to represent the conditional cumulative distribution function of the excess Y =

X − u of the observed variate X over the threshold u, given that X > u for u

sufficiently large (Pickands, 1975). The cases c > 0, c = 0 and c < 0 correspond

to Fréchet (Type II), Gumbel (Type I), and reverse Weibull (Type III) domains

of attraction, respectively, cf. section below.

For c = 0, which corresponds to the Gumbel extreme value distribution,

the expression between the parentheses in Eq. (43) is understood in a limiting

sense as the exponential distribution,

G(y) = G(y; a, 0) = exp(−y/a) . (44)

Return Periods

The return period R of a given wind speed, in years, is defined as the inverse

of the probability that the specified wind speed will be exceeded in any one

year. If λ denotes the mean exceedance rate of the threshold u per year (i.e.,

the average number of data points above the threshold u per year), then the

return period R of the value of X corresponding to the level xR = u+y is given

by the relation

R =
1

λProb(X > xR)
=

1

λProb(Y > y)
(45)

Hence, it follows that

Prob(Y ≤ y) = 1− 1/(λR) . (46)

Invoking equation (1) for c 6= 0 leads to the result

xR = u− a[1− (λR)c]/c . (47)



Similarly, for c = 0, it is found that,

xR = u+ a ln(λR) , (48)

where u is the threshold used in the estimation of c and a.

8 Extreme Value Prediction for Synthetic Data

In this section we illustrate the performance of the ACER method and also the

95% CI estimation. We consider 20 years of synthetic wind speed data, amount-

ing to 2000 data points, which is not much for detailed statistics. However, this

case may represent a real situation when nothing but a limited data sample is

available. In this case it is crucial to provide extreme value estimates utilizing

all data available. As we shall see, the tail extrapolation technique proposed in

this paper performs better than asymptotic methods such as POT or Gumbel.

The extreme value statistics will first be analyzed by application to synthetic

data for which the exact extreme values can be calculated (Naess and Clausen,

2001). In particular, it is assumed that the underlying (normalized) stochastic

process Z(t) is stationary and Gaussian with mean value zero and standard

deviation equal to one. It is also assumed that the mean zero up-crossing rate

ν+(0) is such that the product ν+(0)T = 103 where T = 1 year, which seems

to be typical for the wind speed process. Using the Poisson assumption, the

distribution of the yearly extreme value of Z(t) is then calculated by the formula

F 1yr(η) = exp
{

−ν+(η)T
}

= exp

{

−103 exp

(

−η2

2

)}

, (49)

where T = 1 year and ν+(η) is the mean up-crossing rate per year, η is the

scaled wind speed. The 100-year return period value η100yr is then calculated

from the relation F 1yr(η100yr) = 1− 1/100, which gives η100yr = 4.80.

The Monte Carlo simulated data to be used for the synthetic example are

generated based on the observation that the peak events extracted from mea-

surements of the wind speed process, are usually separated by 3-4 days. This

is done to obtain approximately independent data, cf. (Naess, 1998b). In

accordance with this, peak event data are generated from the extreme value

distribution

F 3d(η) = exp

{

−q exp

(

−η2

2

)}

, (50)

where q = ν+(0)T = 10, which corresponds to T = 3.65 days, and F 1yr(η) =
(

F 3d(η)
)100

.

Since the data points (i.e. T = 3.65 days maxima) are independent, εk(η)

is independent of k. Therefore we put k = 1. Since we have 100 data from one

year, the data amounts to 2000 data points. For estimation of a 95% confidence

interval for each estimated value of the ACER function ε1(η) for the chosen



range of η-values, the required standard deviation in Eq. (27) was based on 20

estimates of the ACER function using the yearly data. This provided a 95%

confidence band on the optimaly fitted curve based on 2000 data. From these

data the predicted 100 year return level is obtained from ε̂1(η
100yr) = 10−4.

The POT prediction of the 100 year return level was based on using maxi-

mum likelihood estimates (MLE) of parameters for a specific choice of threshold.

The 95% confidence interval was obtained from the parametrically bootstrapped

PDF of the POT prediction for the given threshold. A sample of 100,000 data

sets was used. One of the unfortunate features of the POT method is that the

predicted 100 year value may vary significantly with the choice of threshold.

So also for the synthetic data. We have followed the standard recommended

procedures for identifying a suitable threshold (Coles, 2001).

Similarly, the 100 year return level predicted by the Gumbel method was

based on using the moment method for parameter estimation on the sample

of 20 yearly extremes. The 95% confidence interval was obtained from the

parametrically bootstrapped PDF of the Gumbel prediction. This was based

on a sample of size 100,000 data sets of 20 yearly extremes .

In order to get an idea about the performance of the ACER, POT and

Gumbel methods, 10 independent 20 yr MC simulations as discussed above

were done. Table 1 compares predicted values and confidence intervals. It is

seen that the average of the 10 predicted 100 year return levels is slightly better

for the ACER method than for both the POT and the Gumbel methods. But

more significantly, the range of predicted 100 year return levels by the ACER

method is 4.43 - 5.12, while the same for the POT method is 4.05 - 5.89, and

for the Gumbel method 4.63 - 5.69. Hence, in this case the ACER method

performs consistently better than both these methods. It is also observed that

the estimated 95% confidence intervals are generally quite consistent between

the three methods.

An example of the ACER plot and results obtained for one set of data is

presented in Fig. 1. The predicted 100 year value is 5.12 with a predicted

95% confidence interval (4.57, 5.75). Fig. 2 presents POT predictions based on

MLE for different thresholds in terms of the number n of data points above the

threshold. The predicted value is 4.23 at n = 140, while the 95% confidence

interval is (3.95, 4.41). The same data set as in Fig. 1 was used. This was also

used for the Gumbel plot shown in Fig. 3. In this case the predicted value is

4.34 with a 95% confidence interval of (4.12, 4.59).

9 Measured wind speed data

In this section we analyze real wind speed data, measured at the weather station

at Sula off the coast of Norway. Extreme wind speed prediction is an important

issue for design of structures exposed to the weather variations. Significant



Table 1: Return level estimates and 95% CI comparison for A=ACER, P=POT

and G=Gumbel

No. A η̂100 A CI P η̂100 P CI G η̂100 G CI

1 4.48 (4.15, 4.76) 4.05 (3.85, 4.18) 4.63 (4.21, 5.09)

2 4.71 (4.25, 5.18) 4.73 (4.16, 5.20) 4.88 (4.36, 5.44)

3 4.82 (4.38, 5.29) 5.89 (4.58, 7.54) 5.69 (4.84, 6.61)

4 5.05 (4.47, 5.65) 4.55 (4.11, 4.85) 4.85 (4.36, 5.38)

5 4.64 (4.27, 5.11) 4.53 (4.09, 4.83) 4.70 (4.26, 5.18)

6 5.00 (4.35, 5.60) 5.24 (4.43, 6.05) 5.39 (4.69, 6.16)

7 4.82 (4.40, 5.40) 4.51 (4.10, 4.78) 4.74 (4.31, 5.21)

8 5.12 (4.57, 5.75) 4.23 (3.95, 4.41) 4.34 (4.12, 4.59)

9 4.43 (4.14, 4.82) 4.60 (4.08, 5.05) 4.74 (4.26, 5.25)

10 4.86 (4.38, 5.35) 4.60 (4.13, 4.93) 4.68 (4.31, 5.09)

Average 4.79 4.70 4.86
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Figure 1: Synthetic data ACER ε̂1, Monte Carlo simulation (*); optimized

curve fit (—); empirical 95% confidence band (- -); optimized confidence band

(· · ··). Tail marker η1 = 2.5

efforts have been devoted to the problem of predicting extreme wind speeds

on the basis of measured data by various authors over several decades, see

e.g. (Cook, 1982; Naess, 1998a; Palutikof et al., 1999; Perrin et al., 2006) for
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Figure 2: The point estimate η̃100yr of the 100-year return period value based

on 20 years synthetic data as a function of the number n of data points above

threshold. The return level estimate = 4.23 at n = 140.
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Figure 3: The point estimate η̃100yr of the 100-year return period value based

on 20 years synthetic data. The return level estimate = 4.34.

extensive references to previous work.

Hourly maximum gust wind was recorded during 12 years 1998-2010. The

objective is to estimate a 100 year return wind speed. Variation in the wind

speed caused by seasonal variations in the wind climate during the year makes

the wind speed a non-stationary process on the scale of months. Moreover, due

to global climate change, yearly statistics may vary on the scale of years. The



latter is, however, a slow process and for the purpose of long-term prediction

we assume here that within a time span of 100 years a quasi-stationary model

of the wind speeds applies. However, this may not be entirely true.

Fig. 4 highlights the cascade of ACER estimates ε̂1 . . . ε̂6 for the case of

12 years of hourly data. Here ε̂6 is considered to represent the final converged

results. By ’converged’ we mean that ε̂6 ≈ ε̂k for k > 6 in the tail, so that

there is no need to consider conditioning of an even higher order than 6. Fig. 4

reveals a rather strong statistical dependence between consecutive data, which

is clearly reflected in the effect of conditioning on previous data values. It is also

interesting to observe that this effect is to some extent captured already by ε̂2,

that is, by conditioning only on the value of the previous data point. Subsequent

conditioning on more than one previous data point does not lead to substantial

changes in ACER values, especially for tail values. On the other hand, to bring

out fully the dependence structure of these data, it was necessary to carry the

conditioning process to (at least) the 6th ACER function, as discussed above.

However, from a practical point of view, the most important information

provided by the ACER plot of Fig. 4 is that for the prediction of a 100 year

value, one may use the first ACER function. The reason for this is that Fig. 4

shows that all the ACER functions coalesce in the far tail. Hence, we may use

any of the ACER functions for the prediction. Then, the obvious choice is to

use the first ACER function, which allows us to use all the data in its estimation

and thereby increase accuracy.
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Figure 4: Sula wind speed statistics, 12 years hourly data. Comparison between

ACER estimates for different degrees of conditioning. σ = 5.9 m/s.



In Fig. 5 is shown the results of parametric estimation of the return value and

its 95% CI for 12 years of hourly maxima. The predicted 100 year return speed

is η100yr = 46.14 m/s with 95% confidence interval (44.44, 48.01). R = 12 years

of data may not be enough to guarantee Eq. (27), since we required R ≥ 20.

Nevertheless, for simplicity, we use it here even with R = 12, accepting that it

may not be very accurate.
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Figure 5: Sula wind speed statistics, 12 years hourly data. ε̂1(η) (*); Optimized

curve fit (—); Empirical 95% confidence band (- -); Optimized confidence band

(· · ··). Tail marker η1 = 20 m/s. σ = 5.9 m/s

Fig. 6 presents POT predictions for different threshold numbers based on

MLE. The POT prediction is η100yr = 43.07 m/s at threshold n = 80, while

the bootstrapped 95% confidence interval is found to be (40.79, 45.72) m/s

based on 100,000 generated samples. It is interesting to observe the unstable

characteristics of the predictions over a range of threshold values, while they

are quite stable on either side of this range giving predictions that are more in

line with the results from the other two methods.

Fig. 7 presents a Gumbel plot based on the 12 yearly extremes extracted

from the 12 years of hourly data. The Gumbel prediction η100yr = 48.14 m/s,

with a parametric bootstrapped 95% confidence interval equal to (40.98, 55.96) m/s.
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Figure 6: The point estimate η100yr of the 100-year return level based on 12

years hourly data as a function of the number n of data points above threshold.

σ = 5.9 m/s.

4.5 5 5.5 6 6.5 7 7.5 8 8.5 9
−2

−1

0

1

2

3

4

5

6

M
k
/σ

−
ln

(ln
(N

+
1)

/k
))

Figure 7: Sula wind speed statistics, 12 years of hourly data. Gumbel plot of

yearly extremes. σ = 5.9 m/s.

10 Extreme value prediction for a narrow band pro-

cess

In engineering mechanics a classical extreme response prediction problem is

the case of a lightly damped mechanical oscillator subjected to random forces.



To illustrate this prediction problem we shall investigate the response process

of a linear mechanical oscillator driven by a Gaussian white noise. Let X(t)

denote the displacement response; the dynamic model can then be expressed

as, Ẍ(t) + 2ζωeẊ(t) + ω2
eX(t) = W (t), where ζ = relative damping, ωe =

undamped eigenfrequency, and W (t) = a stationary Gaussian white noise (of

suitable intensity). By choosing a small value for ζ the response time series

will exhibit narrow band characteristics, that is, the spectral density of the

response process X(t) will assume significant values only over a narrow range

of frequencies. This manifests itself by producing a strong beating of the re-

sponse time series, which means that the size of the response peaks will change

slowly in time, see Fig. 8. A consequence of this is that neighbouring peaks

are strongly correlated. Hence the problem with accurate prediction, since the

usual assumption of independent peak values is then violated.
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Figure 8: Part of the narrow-band response time series of the linear oscillator.

Many approximations have been proposed to deal with this correlation prob-

lem, but no completely satisfactory solution has been presented. In this section

we will show that the ACER method solves this problem efficiently and ele-

gantly in a statistical sense. In Fig. 9 are shown some of the ACER functions

for the example time series. It may be verified from Fig. 8 that there are approx-

imately 32 sample points between two neighbouring peaks in the time series.

To illustrate a point, we have chosen to analyze the time series consisting of

all sample points. Usually, in practice, only the time series obtained by ex-

tracting the peak values would be used for the ACER analysis. In the present

case, the first ACER function is then based on assuming that all the sampled

data points are independent, which is obviously completely wrong. The second



ACER function, which is based on counting each exceedance with an immedi-

ately preceding non-exceedance, is nothing but an upcrossing rate. Using this

ACER function is largely equivalent to assuming independent peak values. It is

now interesting to observe that the 25th ACER function can hardly be distin-

guished from the second ACER function. In fact, the ACER functions after the

second do not change appreciably until one starts to approach the 32nd, which

corresponds to hitting the previous peak value in the conditioning process. So

the important information concerning the dependence structure in the present

time series seems to reside in the peak values, which may not be very surpris-

ing. It is seen that the ACER functions show a significant change in value as

a result of accounting for the correlation effects in the time series. To verify

the full dependence structure in the time series it is necessary to continue the

conditioning process down to at least the 64th ACER function. In the present

case there is virtually no difference between the 32nd and the 64th, which shows

that the dependence structure in this particular time series is captured almost

completely by conditioning on the previous peak value. It is interesting to con-

trast the method of dealing with the effect of sampling frequency discussed here

with that of (Robinson and Tawn, 2000).
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Figure 9: Comparison between ACER estimates for different degrees of condi-

tioning for the narrow-band time series.



11 Extreme tether tension

In this section we shall study data obtained from model tests of an offshore

platform for oil production. The Heidrun tension leg platform (TLP) is a large

concrete platform installed in 347 m depth in the Norwegian Sea. It is designed

with four circular columns forming a square, with a square ring pontoon. Ex-

tensive model tests at scale 1:55 were carried out in MARINTEK’s 50 m ×
80 m Ocean Basin in Trondheim in 1993. The mass of the TLP in ultimate

limit state (ULS) conditions was 257888 tonnes, and the draft was 79.3 m. All

data given here are in prototype scale. A sketch depicting the TLP from the

side is shown in Fig. 10. The column diameter was 31 m, except in a small

section in the wave zone where it was 31.6 m. The centre-to-centre distance

between columns was 80.0 m. The pontoon has a rectangular cross-section,

with a height 13.0 m and width 16.0 m.

The actual prototype tether group of four tethers at each column was mod-

elled by a single equivalent tether, designed to correspond to the prototype with

respect to stiffness, drag and weight properties.

The original test program included a number of different irregular wave test

conditions, and a large number of measuring channels, cf. (Naess et al., 2009).

In this study, we concentrate on one severe ULS condition. It is specified in

terms of the following sea state, which is a unidirectional (long crested) sea:

significant wave height Hs = 15.7 m, and spectral peak period Tp = 17.8 s.

The platform had a 45 degrees heading relative to the waves. The most

heavily loaded tether is designated T10, and it is positioned towards the waves.

Six different random realizations of duration 3 hours each were run. Thus the

resulting statistics correspond to 18 hours duration for the given sea state.

A particular observation from the model tests was the strongly non-Gaussian

behaviour of the measured tensions, especially in these high sea states. Thus,

resonant high-frequency oscillations occurred, known as “ringing”, which are ex-

cited by higher-order wave forces on columns in high and steep individual waves

(Faltinsen et al., 1995; Stansberg, 1997). This comes in addition to the more

commonly known “springing”, excited by second-order sum-frequency forces.

The extraordinary statistical behaviour was a main reason why these sea states

were run with 6 realizations each. A time series sample from the measurements

is shown in Fig. 11, which clearly displays the ringing phenomenon caused by

a steep wave.

A basic statistical analysis of the 18 hours of time series for tension T10

shows that the dynamical mean of T10 is 97537.5 kN, while the standard devi-

ation equals 6234.22 kN. In Fig. 12 are plotted the ACER functions εk(η) for

k = 1, . . . , 5. It is seen that there is a significant effect of dependence in the

time series, which is reflected in the fact that the εk(η), for k = 2, . . . , 5, are

noticeably smaller than ε1(η) over the whole range of response values. There is

no tendency for ε1(η) to merge with εk(η) for k = 2, . . . , 5. However, it is seen



Figure 10: Heidrun TLP as seen from the side.

that already for k = 2 a good approximation is obtained, and further, that con-

vergence is certainly achieved for k = 4. To emphasize this point, the predicted

value of the 90% fractile of the 3 hour extreme value distribution by the ACER

method is found to be η0.90 = 115965 kN, with 95% confidence interval (86379,

168745) kN based on ε1(η), while η0.90 = 93723 kN, with 95% confidence inter-

val (63923, 139448) kN based on ε4(η). The tail marker is η1 = 20000 kN in

both cases. It is noticeable that the predicted 90% fractile value by the ACER

method based on ε4(η) is significantly lower (19%) than the corresponding value

based on ε1(η). Hence, the effect of statistical dependence in the response time

series on the predicted extremes is of some importance. It is also noted that

the predicted statistical uncertainty is approximately the same in both cases.

To highlight the predictions based on the ACER, POT and Gumbel meth-

ods, we have estimated the 10 year return period values provided by the three

methods. The obtained results can be summarized briefly as follows (all num-

bers in kN, 95% confidence interval in parenthesis). ACER: 153515, (86122,

204423); POT (at the number n of data points above the threshold = 140):



Figure 11: Short time series samples of wave elevation and tether tension T10,

with a ringing event caused by a steep wave.

310864, (79414.5, 1.05446e+006) ; Gumbel: 161479, (108723, 219878). Corre-

sponding figures are given in Figs. 13 - 15. Notice the large variability of the

POT estimates depending on the choice of threshold.

12 Concluding remarks

This paper studies a new method for extreme value prediction for sampled

time series. The method is based on the introduction of a conditional average

exceedance rate, which allows dependence in the time series to be properly

accounted for. Declustering of the data is therefore avoided, and all the data are

used in the analysis. Significantly, the proposed method also aims at capturing

to some extent the sub-asymptotic form of the extreme value distribution.

Results for wind speeds, both synthetic and measured, are used to illustrate
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Figure 13: Log plot of empirical ACER ε̂4(η)(—-) with extrapolation by op-

timally fitted curve (− −). − · −: optimized 95% confidence band; · · ··:
reanchored empirical 95% confidence band.

the method. Two prediction problems related to applications in mechanics are

also presented. The validation of the method is done by comparison with exact

results (when available), or other widely used methods for extreme value statis-

tics, such as the Gumbel and peaks-over-threshold (POT) methods. Compari-

son of the various predictions indicate that the proposed method may provide
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Figure 14: Point estimates of the 10 year value by the POT method as function

of number n of data above threshold.
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Figure 15: Point estimate of the 10 year value by the Gumbel method.

more accurate results than the Gumbel and POT methods.

Subject to certain restrictions, the proposed method also applies to non-

stationary time series, but it cannot directly predict e.g. the effect of climate

change in the form of long-term trends in the average exceedance rates extend-

ing beyond the data. This must be incorporated into the analysis by explicit

modelling techniques.

As a final remark, it may be noted that the ACER method as described

in this paper has a natural extension to higher dimensional distributions. The

implication is that it is then possible to provide estimates of e.g. the exact



bivariate extreme value distribution for a suitable set of data (Naess, 2011).

However, as is easily recognized, the extrapolation problem is not as simply

dealt with as for the univariate case studied in this paper.
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