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The number of 2× c tables with given margins

Øyvind Bakke Mette Langaas

Abstract

We provide an elementary proof of a formula for the number of possible
2× c contingency tables with given row and column sums. Further, we
show that the number of r×c contingency tables with given row sums is
maximal as a function of column sums when column sums are as equal
as possible. If only the sum of all table entries is given, the number of
tables is maximal when also row sums are as equal as possible. The
knowledge of those numbers is useful for determining which method
to use for statistical testing of association in a contingency table.

1 Introduction

Contingency tables are used in statistics to summarize data that are simul-
taneously classified according to two categorical variables. For example, a
2× 3 contingency table may display frequencies of subjects of a case–contol
study, classified into three genotypes (columns) and into diseased or healthy
(rows).

There are numerous methods of performing statistical tests of whether the
two variables are associated. One method proposed for testing association
in genome-wide association studies is exact permutation testing (also called
conditional testing) (Tian et al., in prep.). In such tests, probabilities of all
contingency tables having the same row and column margins as the given
table, and a test statistic not less than that of the given table, are added to
get a p-value.

To choose between an exact permutation test and other tests, the number
of tables with given margins (Theorem 1) is of interest, as is the worst-
case number of such tables when only row sums are known (Theorem 2).
For example, the number of cases (diseased) and controls (healthy) may be
known ahead of a study, but not genotypes. The number of tables with
given margins is often surprisingly low. For a study of 1000 cases and 1000
controls, the number is at most 334,334 for 2× 3 tables.
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Gail and Mantel (1977) gave approximate formulas for the number of
contingency tables of any size with given margins, as well as exact recursive
formulas requiring summation of a large number of terms. There are also
algorithms to find approximate numbers of contingency tables with given
margins (see Barvinok et al., 2010; Dyer et al., 1997). Diaconis and Gangolli
(1995) gave a review of literature on counting tables with given margins, and
many newer references were given by Greselin (2003).

2 The number of tables

Note. The binomial coefficient
(
t
s

)
is taken to be 0 when t < s.

Theorem 1. Let r and c be positive integers. We consider r × c tables of
nonnegative integers.

(a) The number of tables having total sum of entries N is
(
N+rc−1
rc−1

)
.

(b) The number of tables having row sums (n1, . . . , nr) is
∏r

i=1

(
ni+c−1
c−1

)
.

(c) For r = 2, the number of tables having row sums (n1, n2) and column
sums (m1, . . . ,mc) is∑

S⊂{1,...,c}

(−1)|S|
(
n1 + c− 1− |S| −

∑
j∈S mj

c− 1

)
,

where the sum is over all proper subsets (including the empty set) of
{1, . . . , c}, and |S| denotes the cardinality of S. For 2 × 2 tables (c = 2),
this number becomes n1 + 1 − max(0, n1 − m1) − max(0, n1 − m2) =
min(m1, n1)−max(0, n1 −m2) + 1, and for 2× 3 tables (c = 3), it becomes(
n1+2
2

)
−
(
n1−m1+1

2

)
−
(
n1−m2+1

2

)
−
(
n1−m3+1

2

)
+
(
n1−m1−m2

2

)
+
(
n1−m1−m3

2

)
+(

n1−m2−m3

2

)
.

Proof. The statements of (a) and (b) follow from a well-known counting
result: The number of ways to select, with repetition, n of k distinct objects
is
(
n+k−1
k−1

)
, which is the number of ways to fill nonnegative integers having

sum n in k cells.
The result of (c) is attributed to Mann (1994) by Diaconis and Gangolli

(1995). The original proof is unknown to us, but the result follows readily
by the inclusion–exclusion principle. Let T be the set of all 1 × c tables
(x1, . . . , xc) having row sum n1. For j = 1, . . . , c, let Aj be the subset of T
consisting of all such tables with xj ≥ mj + 1. Then the set of possible first
rows of a 2×c table having the given margins is T ∩A1∩· · ·∩Ac. The second
row is determined by the first row, so by the inclusion–exclusion principle the
number of tables is

∣∣T ∩A1∩· · ·∩Ac

∣∣ = |T |+
∑

∅⊂S⊆{1,...,c}(−1)|S|
∣∣⋂

j∈S Aj

∣∣.
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By (b) with r = 1, |T | =
(
n1+c−1
c−1

)
. For S ⊆ {1, . . . , c},

⋂
j∈S Aj consists

of all 1 × c tables (x1, . . . , xj) having row sum n1 and with xj ≥ mj + 1
for all j ∈ S. But the number of such tables is the same as the number of
1 × c tables (x′1, . . . , x

′
c) having row sum n1 −

∑
j∈S mj − |S|, by the one-

to-one correspondence x′j = xj − mj − 1 for j ∈ S and x′j = xj otherwise,
which gives the terms stated in the Theorem. It only remains to observe
that

⋂c
j=1Aj = ∅, which explains why we need only consider proper subsets

S ⊂ {1, . . . , c} in the sum (and even fewer subsets if the lesser of the row
sums n1 and n2 is substituted for n1).

Although we only provide a formula for r = 2 rows when both row and
column sums are given, the formula can still be of use to find the num-
ber t(n;m) of r × c tables having row sums n = (n1, . . . , nr) and col-
umn sums m = (m1, . . . ,mc) when r > 2. Choose a k, 1 < k < r.
Then t(n;m) =

∑
m′ t(n1, . . . , nk;m′) t(nk+1, . . . , nr;m−m′), where m′ runs

through all vectors such that m′ and m−m′ are possible column sum vectors
for two tables having row sums (n1, . . . , nk) and (nk+1, . . . , nr), respectively
(or, equivalently, the possible rows of a 2×c table having row sums n1+· · ·+nk

and nk+1 + · · ·+ nr, respectively). This way, if necessary recurring into even
smaller tables, the counting is broken down to tables having one or two rows.
Of course, the table may be transposed if convenient.

This algorithm is due to David des Jardin and to John Mount (Diaconis
and Gangolli, 1995, p. 27). We used the algorithm in combination with
Theorem 1(c) on what was called “the hardest problem to date”, a 5 × 3
table having a total sum of entries of 135 (Diaconis and Gangolli, 1995, pp.
26, 28). It took a few lines of R (R Development Core Team, 2012) code 25
minutes to arrive at the correct number of 1.225914 · 1015 with the default
precision of R on a standard desktop PC.

Theorem 2. Let r and c be positive integers. We consider r × c tables of
nonnegative integers having total sum of entries N .

(a) The number of tables, as a function of row and column sums, is max-
imal when the sums of any two rows differ by at most one and the sums of
any two columns differ by at most one. For 2×c tables, this maximal number
is given by Theorem 1(c).

(b) The number of tables having given row sums, as a function of column
sums, is maximal when the sums of any two columns differ by at most one.
For 2× c tables, this maximum number is given by Theorem 1(c), and if n is
the lesser of the two row sums, then the maximum number is n+ 1 for 2× 2
tables and

(
n+2
2

)
− 3
(
n−m+1

2

)
+ r max(n−m, 0) for 2× 3 tables, where m and

r are the unique integers such that N = 3m + r and 0 ≤ r < 3.
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Proof. Let T (n;m) denote the set of tables having row sums n = (n1, . . . , nr)
and column sums m = (m1, . . . ,mc), and let t(n;m) = |T (n;m)| denote the
number of tables in T (n;m).

If c = 1, the statement is trivial, so assume c ≥ 2. We start by proving
(b). The main part of the proof is to prove the following claim: If mi < mj,
then t(n;m′) ≥ t(n;m), where m′ is obtained from m by replacing mi by
mi+1 and mj by mj−1. We assume without loss of generality that m1 < m2

and prove the claim for i = 1, j = 2.
First assume c = 2. For r = 1 the claim is trivial, so assume r ≥ 2. There

is a one-to-one correspondence between the subset of tables in T (n,m) having
its upper left entry less than n1 and the the subset of T (n,m′) having its
upper right entry less than n1. If the two upper entries are denoted (x, y),
then the correspondence is given by (x, y) → (x + 1, y − 1) and leaving the
rest of the table unchanged.

There are tables in T (n;m) having (x, y) = (n1, 0) if and only if n1 ≤ m1.
The number of such tables is t(n2, . . . , nr;m1 − n1,m2). Similarly, there are
tables in T (n;m′) having upper entries (0, n1) if and only if n1 < m2. The
number of such tables is t(n2, . . . , nr;m1 + 1,m2 − 1 − n1). Note that if
tables are “lost” (there are tables having upper entries (n1, 0) in T (n;m)),
then also tables are “gained” (there are tables having upper entries (0, n1)
in T (n;m′)), since in that case n1 ≤ m1 < m2. Then the net gain is
t(n2, . . . , nr;m1 + 1,m2 − 1− n1)− t(n2, . . . , nr;m1 − n1,m2).

The absolute value of the difference of column sums corresponding to the
first term is |m2 − m1 − n1 − 2| and to the second m2 − m1 + n1. Since
m2−m1 > 0, the first absolute value is less than or equal to the second (it is
equal if m2−m1 = 1 and less if m2−m1 ≥ 2). By repeatedly adjusting column
sums (m1−n1,m2) by adding 1 to the first and subtracting 1 from the second,
eventually column sums m1+1 and m2−1−n1 will be reached, in either order.
By induction on the number of rows, t(n2, . . . , nr;m1 + 1,m2 − 1 − n1) ≥
t(n2, . . . , nr;m1 − n1,m2), proving the claim for c = 2.

Next, consider c > 2. Then t(n;m1, . . . ,mc) =
∑

n′ t(n′;m1,m2) t(n− n′;
m3, . . . ,mc), where n′ runs through all vectors such that n′ and n − n′ are
possible row sum vectors for two tables having column sums (m1,m2) and
(m3, . . . ,mc), respectively, that is, the possible columns of a r×2 table having
column sums m1 + m2 and m3 + · · ·+ mc, respectively.

If m1 < m2, t(n′;m1 + 1,m2 − 1) ≥ t(n′;m1,m2) for all n′ by
the case c = 2. So, by comparing terms in the above sum, t(n;
m1 + 1,m2 − 1,m3, . . . ,mc) ≥ t(n;m1,m2,m3, . . . ,mc), and the claim is
proved.

By repeatedly replacing pairs mi, mj of column sums, where mi < mj,
with new column sums mi+1, mj−1 until the sums of any two columns differ
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by at most one, we eventually arrive at a maximum value of t(n,m) over all
possible column sums m. Note that this number is indeed a global maximum,
since we would reach the same vector of column sums, up to permutation of
vector entries, regardless of how the column sums were initially given. This
concludes the proof of the main statement of (b).

By Theorem 1(c), the number of 2 × 2 tables having row sums (n1, n2)
and column sums (m1,m2) is n1+1−max(0, n1−m1)−max(0, n1−m2). We
can assume without loss of generality that n1 ≤ n2. Then 2n1 ≤ n1 + n2 =
m1 + m2. If |m1 − m2| ≤ 1, both n1 ≤ m1 and n1 ≤ m2, so that both
subtracted terms vanish.

For the 2 × 3 case, writing N = 3m + r with 0 ≤ r < 3, the maximum
is attained when at least one column sum is m and the remaining r column
sums are m + 1. Then 2n ≤ 3m + r ≤ 4m + 2, so that n − 2m ≤ 1, and
the three last terms of the formula given in Theorem 1(c) vanish, assuming
without loss generality that n = n1. It is easily verified that the remaining
terms are equal to

(
n+2
2

)
− 3
(
n−m+1

2

)
+ r max(n−m, 0).

Part (a) is proven by applying (b) to any chosen vector of row sums,
choosing column sums that differ by at most one. Then (b) is applied again
to the transposed table, adjusting the row sums of the original table to ob-
tain the maximum number of tables. Again, this number is indeed a global
maximum, since we would reach the same vectors of row and column sums,
up to permutation of vector entries, regardless of how the row sums were
initially chosen.
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