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Abstract 

In the portfolio problem, the decision maker selects a subset out of a set of candidate projects, 

each yielding an uncertain profit. When the projects in the portfolio are probabilistically 

dependent, further information regarding any particular project also provides information about 

other projects, and therefore there is an opportunity to improve value through prudential 

information gathering. In this paper, we study the value of information in portfolio problems 

with multivariate Gaussian projects, analyzing the effect of parameters such as the expected 

values and standard deviations of profits from each project, the accuracy of the information and 

dependence among projects. We are particularly interested in the role that dependence plays, 

illustrating the results using examples from the Earth sciences where there is spatial dependence 

among physical locations. We also present a real-world case study in oil exploration, based on 

data from the Glitne reservoir in Norway, where we deploy our analytical results to help the 

decision maker address important acquisition issues pertaining to seismic and electromagnetic 

information for the reservoir under consideration. 

 

Keywords: value of information, portfolio problem, dependent projects, probabilistic 

dependence, spatial decision making, portfolio decision analysis 
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1. Introduction 

In the portfolio problem, the decision maker is faced with the challenge of selecting a subset 

from a set of N projects, each yielding an uncertain profit. When the projects in the portfolio are 

probabilistically dependent, further information regarding any of the projects also provides 

information about other projects, and therefore there is an opportunity to improve value through 

prudential and selective information gathering. In this paper, we study portfolio problems where 

the projects are modeled using a multivariate Gaussian distribution, present several insights from 

analytical results regarding the effect of project dependence on information value, and discuss 

potential implications for decision makers. 

 

Ignoring dependence in practical portfolio problems may lead to erroneous results (Killen and 

Kjaer 2012). Consider the following examples of dependent portfolios: A venture capital fund 

evaluating start-ups from the same incubator; a salesperson prioritizing deals from a pool of 

potential deals for the same customer; a bio-technology company choosing among different 

R&D projects for molecules in the same disease category; etc. Our work was primarily 

motivated by applications where dependence among projects is of a spatial nature – this is a 

natural way to model portfolio problems in the Earth sciences, such as selecting wildlife bio-

conservation sites, choosing locations for mining ores, deciding where to drill oil wells, etc. The 

last example mentioned is an extension of a classic problem in decision analysis: the oil 

wildcatter problem (Raiffa 1968). In this paper, we use oil exploration related examples to 

illustrate the concepts. We also present a detailed case study based on data from the Glitne oil 

field in Norway to highlight how our analytical results could be used to support information 

gathering decisions for challenging real-world problems. 
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In Section 2 we briefly review the relevant literature on the decision-theoretic concept of value 

of information (henceforth referred to as VOI). The statistical model is formulated in Section 3, 

where we introduce two motivating examples. In Section 4, we study the VOI for a risk-neutral 

decision maker’s dependent portfolio problem. We make a distinction between situations where 

information is available for all projects versus where information is available only for a strict 

subset. When projects are dependent, exploring partial information opportunities can be 

particularly prudential. A case study on seismic and electro-magnetic testing for reservoir 

exploration is analyzed in Section 5, and finally, we conclude the paper in Section 6. 

 

2. Literature Review  

Although there are many approaches to evaluating the benefits of further information, the 

decision-theoretic notion of VOI is arguably one of the most powerful approaches because it 

assigns a monetary value to the effect of refining the probabilities in the decision analysis. The 

literature is founded upon classic work such as Schlaiffer (1959), Howard (1966) and Raiffa 

(1968), and continues to gain popularity. However, the hunt for analytical closed-form solutions 

has often led to more negative results than positive ones (Hilton 1981), and as a result, many 

researchers have studied canonical problems, i.e. specific classes of decision problems, to 

understand the general effect of the parameters on information value. 

 

VOI and Gaussian Models 

Due to the favorable mathematical properties of the Gaussian distribution, decision problems 

with Gaussian models have served as some of the most popular canonical problems; see for 
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instance Schlaiffer (1959), Clemen and Winkler (1985), Keisler (2004a), Bickel (2008), 

Bhattacharjya and Deleris (2012). Among these, the two-action linear loss (TALL) problem, also 

known as the go/no-go problem, has received particular attention in the literature.  

 

VOI and Portfolio Models 

The portfolio problem is a classic operations research problem (Markowitz 1952), and although 

most of the literature focuses on the case of independent projects, dependence has also been of 

interest (Weingartner 1966). The existing work related to VOI for portfolio and related problems 

assumes independence and focuses on separating the effects pertaining to prioritizing projects as 

opposed to potentially excluding some (Keisler 2004b, Zan and Bickel 2012). Frazier and Powell 

(2010) consider the Bayesian ranking and selection problem; they also assume independent 

projects. Our version is a variation on the typical portfolio formulation: we choose to focus on 

dependent projects where there are no constraints on selection. Although there has been a 

significant amount of work on evaluating and optimizing portfolios with dependent projects, 

particularly with deterministic interdependencies (see for instance Santhanam and Kyparisis 

1996, Dickinson et al. 2001, Verma and Sinha 2002, Blau et al. 2004, Eilat et al. 2006), the 

closest work incorporating dependence for information valuation is that of Clemen and Winkler 

(1985), which studies the value of dependent information sources for a single project. We extend 

the previous literature on information value for Gaussian models as well as portfolio models. 

 

VOI in the Earth Sciences and Spatial Models 

Much of the applied literature on VOI in dependent portfolio problems has occurred in the Earth 

sciences. The literature has recently generated a significant amount of interest in wildlife 
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conservation (Polasky and Solow 2001, Williams et al. 2011), mining (Phillips et al. 2009), 

hydrology (Trainor-Guitton et al. 2011), fishing (Hansen and Jones 2008) and forestry (Kangas 

2010), to name a few areas. Perhaps the most prolific work using spatial models has been 

conducted for oil exploration, see e.g. Bickel et al. (2008), Cunningham and Begg (2008),  

Bratvold et al. (2009) and Martinelli et al. (2011). Eidsvik et al. (2008) and Bhattacharjya et al. 

(2010) integrate models of dependence from spatial statistics with decision theory; the former 

considers a logistic model whereas the latter describes a Markov random field approach to 

valuing information in spatial decision problems. Both these articles solve the computational 

problems using numerical methods and Monte Carlo simulation. In this paper, we extend 

previous work by presenting analytical results for the dependent portfolio problem. 

 

3. Model Formulation and Two Motivating Examples 

We organize this section by first presenting the notation and model for the basic portfolio 

problem, motivating dependence among projects with two examples. Then we introduce the 

notation and likelihood model for information about the projects. 

 

3.1 The Basic Portfolio Problem and Examples  

In the portfolio problem, the decision maker is presented with N projects, whose uncertain profits 

are denoted 1( , , )T

Nx x x . We assume x  is multivariate Gaussian, therefore its probability 

density function (pdf) is ( ) ( , )p N x , where the mean vector is  1,...,
T

N  and the 

positive definite covariance matrix

2

1 1

2

1

N

N N

 

 

 
 

   
 
 

. If the projects have a common prior 
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mean, 0 N 1 , where N1
 
is a vector of ones. The diagonal entries of the covariance matrix   

contain the marginal variances of the projects, while the off-diagonal entries are covariance 

terms. The correlation between project i  and j  is / ( )ij ij i j    . We assume that the problem 

is unconstrained, i.e. the decision maker can choose as many projects as is profitable. When the 

projects are independent, the covariance matrix   is diagonal. In addition, if the projects have a 

common variance 2

0 , the covariance matrix 2

0 NI   . The case of independent projects is an 

important one in portfolio problems. It is a convenient model to apply in practice because it is 

not always easy to assess dependence among projects, and most of the literature deals with the 

independent portfolio problem due to theoretical and computational tractability.  

 

The following two examples are from the domain of oil exploration, illustrating dependence in 

portfolio problems. Using differing forms of covariance matrices, they are presented in order of 

coarser to finer spatial granularity (see Figure 1). 

 

A) Equicorrelated projects 

Consider an oil company bidding among a set of oil fields in the same petroleum system basin, 

where all fields are believed to originate from the same geological mechanism; see Martinelli et 

al. (2011) for a related example. The company chooses to use a simple dependence model – they 

assume projects have identical pairwise correlation 0ij   . This formulation only requires one 

additional parameter as compared to the independent case, and is therefore popular for modeling 

projects that share common attributes. The only restriction on 0  is that the resulting covariance 

matrix should be positive definite, implying that 01/ ( 1) 1N     . If variances are identical, 
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covariance matrix    2 2

0 0 0 01 T

N N NI       1 1 . Figure 1 (left) illustrates this pictorially for 

five projects. The nodes represent potential petroleum prospects, tens of kilometers apart, whose 

profits are dependent via a common geological mechanism.   

 

B) Spatially dependent projects 

Now let us “zoom in” further into an oil company’s spatial decision problem at the field level. 

Suppose the company must decide where to drill oil wells in an oil field. Here, every oil well is a 

project in the portfolio and it is natural to account for spatial dependence. A common technique 

for modeling covariance in spatial applications is to let correlations between projects decay as a 

function of the Euclidean distance between them. There are many functional relations for valid 

correlation decay, see e.g. Le and Zidek (2006). We use an exponential function exp( )ij ijd   , 

where ijd  is the distance between two projects and 0   determines the decay of correlation as 

a function of distance. Distance 3 /ijd   is the effective range, resulting in correlation 

exp( 3) 0.05  . Note that this formulation also requires only one additional parameter as 

compared to the independent case, if project locations are known. However, projects that are 

spatially further apart are less correlated; the dependence formulation is therefore more nuanced. 

 

If the projects have identical variance 2

0 , the covariance matrix 2

0 exp( )D    , where D  is 

the N N  matrix of Euclidean distances between project locations (the exponent operates 

element-wise on the matrix). This model is useful for describing the multivariate Gaussian 

features of spatial projects, such as properties in an oil field that may vary according to the 

heterogeneous rock composition, e.g. Eidsvik et al. (2008). Figure 1 (right) shows the prior mean 
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values for profits in the case study studied in Section 5, where several reservoir units are defined 

on a regular lattice covering an area of about 2.5 x 2.5 square kilometers. 

 

3.2 The Portfolio Problem with Information 

Our focus in this paper is to analyze how much the decision maker should pay for more 

information about some or all of the projects, and we are particularly interested in how 

dependence among projects affects valuation of information sources. 

 

Suppose there is an opportunity to purchase further information about the projects’ profits. 

Examples of information sources include seismic tests for oil exploration, market survey results 

for a new product launch, etc.  Let iy  denote information about the i
th

 project. In many 

applications, it is natural to assume that the information about a project is conditionally 

independent of attributes of other projects, given the profit from that particular project, i.e. 

   1 2 1 1| , , ... , ... |i i i N i iP y y y y y y P y x i   x . For instance, in Earth sciences applications, it may 

sometimes be appropriate to assume that the information about a particular physical location is 

conditionally independent of other locations’ properties, given the properties of the current 

location. We assume information about any particular project has an additive independent 

Gaussian error term, and along with the conditional independence assumption, this implies that

ii iy x   ,  2~ 0,i iN i   . This can be written in vector form:  y x E , 1( , , )T

N  E . 

The likelihood for 1( , , )T

Ny y y conditioned on x  can be written as    ,p N  x xy , where 

  is a diagonal matrix with diagonal terms 2

i . If the error terms have identical variance t
0

2
, 
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2

0 NI  . Regardless of the Gaussian noise term structure, the marginal distribution of the data 

is    ,p N y . Please see Appendix A for some properties of the Gaussian distribution. 

 

When information iy  is gathered for all projects, we refer to this case as total information. 

Alternatively, information may be collected for only a strict subset of the projects, in which case 

we refer to partial information. When there is no measurement noise, i.e. 0 i i    or 

equivalently  i iy x i  , there is perfect information. 

 

An important generalization of the conditionally independent likelihood model occurs when the 

information about a project is some linear combination of the profits from all projects, i.e. 

A y x E ,  ~ ,N T0E , for general matrix A . We use this model for our case study in Section 

5, and all our analytical results extend to this model. Partial information can be handled using 

this framework by appropriately designing matrix A : the matrix should contain a 1 entry in each 

row at columns for projects selected for information gathering, and all other entries should be 0. 

This case is also equivalent to setting some diagonal elements of T  to very large values. For ease 

of exposition, we use A I  to demonstrate the analytical results in the subsequent sections, 

where we analyze the value of different information gathering schemes. Our results have 

implications for decision makers who wish to acquire and utilize information in such problems. 

 

4. The Value of Information in Dependent Portfolio Problems 

In this section, we study the properties of the VOI, where the decision maker can observe 

information about K  projects. We organize this section based on whether all projects ( K N ) 
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or whether only a strict subset ( K N ) are observed. When there is partial information, 

dependence between projects is expected to have a strong impact on information value, because 

information about a subset of the projects would also provide some information about others. We 

use illustrative examples to highlight issues of interest to managers of dependent portfolios. To 

compute the VOI, we compare the value of the decision situation without information to the 

value of the situation if the information were available for free. Without information, a risk 

neutral decision maker would select those projects that are a-priori profitable. If we denote the 

set of a-priori profitable projects as P ,  then prior value  max 0, i i

i i

PV  


  
P

. 

 

4.1 Total Value of Information  

Here we study the case where there is total information, i.e. the decision maker has information 

about all projects. All theorem proofs are summarized in Appendix B. 

 

Theorem 1 (Total Value of Information): For a risk-neutral decision maker, the total value of 

information (TVOI), i.e. information regarding all projects is: 

TVOI i i i i
i i i i

i i i ii i

s s
s s s s

   
   

 

                                     
 

P P
, 

where 2

is  is the i
th

 diagonal element of  
1

S T


    , and   and   are the cumulative 

distribution function (cdf) and pdf of the standard Normal distribution respectively.          □ 

 

When projects are independent, prior covariance matrix   is diagonal and  
1

S T


     

simplifies to a diagonal matrix with 
2

2 2

i
i

i i

s


 



. Moreover, when there is perfect information, 
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there is no noise in the information source 0i  , therefore 
i is  . This happens regardless of 

dependence as 0T   results in  
1

S


      . Since information is perfect and total, 

dependence no longer matters; only the marginal means and standard deviations matter.  

 

When information is imperfect, dependence among projects has a “coupling effect”. We can 

interpret is  in Theorem 1 as the equivalent standard deviation for projects in this information 

gathering scheme. The VOI of such a scheme is equivalent to the VOI from a hypothetical 

equivalent portfolio where the prior uncertainties in the projects of this portfolio are reduced, 

thereby implying that the value is reduced. The effect of the information source and dependence 

is to modify the standard deviation term is  from i  to a function of the matrix  
1

S T


   

incorporating both prior covariance matrix   as well as information noise via  . This may be 

an intuitive way for managers to envision the interplay between information noise and 

dependence, particularly as their intuition around independent projects may be more refined. 

Also, note that the result from Theorem 1 on the total VOI applied to independent projects is a 

direct extension of a result from Bickel (2008), because the independent unconstrained portfolio 

problem is a direct extension of the two-action linear loss (TALL) problem for N projects. 
 

 

4.2 Partial Value of Information (PVOI) 

Suppose the decision maker has information about a strict subset of the projects K  N , with 

cardinality K. The set of profits for these projects and their information are denoted Kx  and Ky . 

The complementary set of projects are denoted Lx
 
and Ly . K  is the K by K covariance matrix 
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for projects 
Kx , iK

 
is the 1 by K vector of the  covariances between the i

th
 project and projects 

in set K , and KT
 
is the K by K covariance matrix in the likelihood model for observed projects.  

 

Theorem 2 (Partial Value of Information): For a risk-neutral decision maker, the partial value 

of information, i.e. information regarding projects in set K is: 

PVOI( ) i i i i
K i i i i

i i i ii i

s s
s s s s

   
   

 

                                     
 y

P P
 

where  
12

i iK K K Kis T


     .                            □ 

 

We observe similarities between Theorems 1 and 2 – the only difference lies in the equivalent 

standard deviation computation. There is a coupling effect provided by the information from the 

subset of surveyed projects, and this effect is less than if total information were available. When 

there is perfect information, 0KT  . Moreover, if the i
th

 project has been surveyed, then 

 
1 T

i iK K Ki K is 


      i ie e , where ie  is a unit vector selecting the i
th

 project in the 

survey set. If the i
th

 project has not been surveyed, then i is  . Using the notion of an equivalent 

standard deviation as we had done previously for Theorem 1, the situation of partial and 

imperfect information can be considered equivalent to a hypothetical situation where there is 

total perfect information but where the prior uncertainties on projects in the portfolio are lower. 

The effect of the information noise is to effectively decrease the prior uncertainty in the 

equivalent portfolio and the effect of dependence is to effectively increase it.  
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4.3 Parameter Sensitivity and Illustrative Examples  

The following theorem indicates how the basic model parameters affect the total and partial VOI:  

 

Theorem 3 (Sensitivity of VOI to Basic Parameters):  

TVOI (Theorem 1) and PVOI  (Theorem 2) vary with the basic model parameters in the 

following fashion: 

(i) i : TVOI  and PVOI  are maximum when 0i  , and they decrease as i  increases or 

decreases from 0. 

(ii) i : TVOI  and PVOI  increase as i  decreases.                                         

(iii) i : TVOI  and PVOI  increase as i  increases.                   □ 

 

Theorem 3(i) specifies that the TVOI is highest when the decision maker is indifferent between 

selecting and not selecting a project, i.e. when 0i  . This is consistent with previous results 

such as Fatti et al. (1987) and Delquié (2008). Information is less valuable as the mean increases 

or decreases from 0 because the decision becomes easier to make. Also, in Theorem 3(ii) and 

3(iii), we verify the intuitive result that the TVOI increases with the accuracy of the information 

as well as with more uncertainty around profits. The theorem proof (please see Appendix B) 

highlights closed-form expressions for the partial derivatives, i.e. the rate at which the VOI 

changes as the parameters are varied.  

 

Note that there are no differences in the main effects of the parameters on the PVOI or TVOI. In 

the examples below and the proof in Appendix B, we discuss the influence of model parameters 

on TVOI and PVOI in more detail. In particular, the effect of partial information is studied 
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through the equivalent standard deviation is , which is always smaller for partial information as 

compared to total information. The derivative of the equivalent standard deviation is also 

different for partial versus total information gathering.  

 

It is difficult to analytically gauge the effect of parameters for general models of correlation on 

the VOI. Based on our experiences through numerical experiments, a “more dependent” structure 

in S  tends to result in higher VOI.  

 

We illustrate the results using the following examples of dependent portfolio problems. 

 

Example A: Equicorrelated projects 

Consider a portfolio of 100N   projects, each with an identical marginal distribution and where 

each pair of projects has the same correlation coefficient. As base case values, we assume each 

project has mean m
0

= 0 and marginal standard deviation s
0

= 2. Also, the information accuracy 

is assumed to be the same for all projects that have been surveyed and equal to 0.8; information 

accuracy is defined as the correlation between the information and a project’s profits, i.e. 

s
0

s
0

2 +t
0

2
= 0.8 , or equivalently t

0
=1.5. The dependence structure is provided by the 

covariance matrix  , which has identical off-diagonal parameters that describe the degree of 

pairwise correlation. We vary this pairwise correlation coefficient and plot information value as a 

function of the coefficient. 
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Suppose that all projects are surveyed. Figure 2 presents sensitivity analyses for the total VOI 

with respect to the basic parameters. We consider three values of mean, standard deviation and 

information accuracy in the three parts of the figure, and observe how the TVOI is affected by 

dependence. We observe that the VOI is maximum at m
0

= 0 
and that the standard deviation has 

a strong effect on information value. We also see that as projects become more dependent, the 

VOI with poorer information accuracy is comparable to that for information with higher 

accuracy due to the information provided by dependence. This has practical ramifications for 

decision makers whenever it is possible to purchase lower quality information at a considerably 

cheaper price that can be as valuable as costlier higher quality information. When information 

accuracy equals 1, we have perfect information, and the TVOI shown in Figure 2 (right) is the 

same regardless of the correlation coefficient. 

 

In Figure 3, we compare TVOI with three partial information gathering schemes, in which every 

5
th

, 10
th

 and 20
th

 project is surveyed, respectively. The VOI is computed for the base case values 

and plotted as a function of correlation coefficient. Information accuracy is assumed to be the 

same for all projects that have been surveyed, fixed at 0.8. When there is total information, 

although more dependence makes information more valuable as there are multiple sources of 

(imperfect) information for every project, the effect is weak. Dependence has a particularly 

strong effect when there is partial information. Even when only 5 out of 100 projects are sampled 

for information, the PVOI is comparable to TVOI at a correlation coefficient of around 0.8. 

 

In Figure 4, we study the effect of dependence on the equivalent standard deviation. Here we 

assume that 20 projects are surveyed (every 5
th

 project out of 100). Due to the identical marginal 
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distribution of projects and identical pairwise correlation between them, there are only two 

unique values of the equivalent standard deviation – one for projects that are selected (denoted 

by triangles in the figure) and one for those that are not (denoted by circles). Projects that are 

selected naturally have a higher equivalent standard deviation, but the effect of dependence is 

more crucial for projects that are not selected. There is a lot of information value to be gained for 

these projects, and this grows significantly as there is more dependence. The figure highlights 

how partial experimentation can be prudential as a practical information acquisition scheme. 

Note that when projects are independent, a project which is not selected has an equivalent 

standard deviation of 0 because there is nothing that can be learnt about it from other projects.  

 

When projects have identical standard deviation and correlation coefficient, there is a closed-

form analytical solution for the equivalent standard deviation is . Using the results in Appendix 

B, we can write:   12 T

i i is T T T T


   e e . Here,    2 2 2

0 0 0 0 01 NT I         T

N N1 1 . 

For a matrix of the form 1 1T

N N NI  , the inverse  
1

1 1T

N N NI 


  is 1 1T

N N NcI d , where  1/c   

and 
2

d
N



 
 


. By inserting we get 

   
2 2 2 4

0 0 0 2 2 4 2

0 0 0 01
i

a
s

a N
  

   
  

  
, where 

 2 2 2

0 0 0 02a N       . The last term in the denominator decreases with the absolute 

pairwise correlation 
0 . Thus, higher correlation increases is  and results in higher VOI. 

 

Example B: Spatially dependent projects 

Now we study the VOI for a spatial model. Here the 100N   projects are located in a two 

dimensional domain, identified by randomly selecting the north and east coordinates from a unit 
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square. We assume that projects have positive spatial correlation, modeled using exponential 

correlation. Again, we assume prior mean 0, standard deviation 2 and information accuracy 0.8. 

We vary the effective range, which is a measure of spatial dependence in the domain, and 

observe the effect on the TVOI and PVOI.  

 

Figure 5 depicts the spatial locations of the 100 sites using dots, and also indicates the different 

partial information schemes, analogous to the previous example. We compare two different types 

of schemes, shown on the left and right respectively. On the left, the partial tests are chosen as 

follows: every 5
th

 site that is surveyed is denoted using a circle, every 10
th

 site also includes a 

plus sign, and when every 20
th

 site is surveyed, a cross sign is also added. The resulting partial 

tests therefore ensure that surveyed projects are randomly distributed on the grid. On the right 

side, partial tests are conducted at the grid corners: the first test involves 5 sites on each corner, 

therefore 20 sites in total (circles), the second involves only the north-east and south-west 

corners (circles + plus sign), and the third test includes 5 from only the north-east corner (circles 

+ plus sign + cross sign). Note that the two schemes have everything in common except for the 

location of the surveyed projects. We compare these two schemes to highlight the effect of 

partial information scheme designs.  

 

Figure 6 plots the TVOI as well as the PVOI for the three partial information tests for the two 

spatial acquisition designs shown in Figure 5. Both pictures show a trend similar to Figure 3; 

with the VOI increasing with increasing spatial correlation quantified by the increasing effective 

range ( 3 / ). The information schemes on the right, with surveys at the corners, are clearly 

dominated by the more well spread out designs on the left. When accessibility to sites is an issue, 



19 

 

well spread out surveys might be costlier (or even impossible) to perform, while spatially biased 

surveys (say along roads or around the periphery) might be cheaper and feasible. Designing good 

spatial experiments is crucial for such problems, and although there is plenty of literature in this 

area, VOI based techniques are nowhere near as common as entropy or variance reduction 

techniques, see e.g. Le and Zidek (2006).  

 

The effect of spatial dependence in this model is very similar to the pairwise correlation case, 

suggesting that the results from these special cases might be applicable for more complex 

dependence models. 

 

5. An Application in Oil Exploration: Valuing Seismic and Electromagnetic Information 

The acquisition and processing of informative data is crucial in oil exploration, due to the 

significant uncertainty and potential profits/losses in the business. Data can be of various types: 

advanced geological modeling, electromagnetic measurements, seismic data, observations in 

wells, and others. We consider seismic data (SD) and electromagnetic data (EM) in this case 

study, and evaluate them based on the analytical results previously described.  

 

5.1. Case Study Description 

The case is based on the Glitne reservoir in the North Sea, also studied in Avseth et al. (2005) 

and Eidsvik et al. (2008). Production from an offshore field like Glitne is usually done from 

seabed installations using many deviated wells to drain different reservoir units. We model the 

reservoir as a two dimensional spatial model of the top reservoir zone and with prior information 

based on expert understanding of the geology and seismic interpretation. We represent the 
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reservoir units on a lattice of size 25 25 625N     covering about 6.25 square kilometers, 

modeling profits x  as a Gaussian prior model with varying mean and variance levels and an 

exponential spatial covariance function (similar to Section 4, Example B). The means for profits 

are shown in Figure 1 (right). The current geological and seismic interpretation provides relevant 

information about the reservoir porosity and thickness, but the profits are also a function of the 

uncertain oil saturation variable. The decision maker has to decide whether to purchase carefully 

processed SD or EM, or both. SD and EM can both provide (imperfect) information about 

saturation (and in turn, the profits) after calibration and interpretation. 

 

We assume conditional independence for SD, EM and between SD and EM. Let 

 
11,1 1,, , My y1y denote the SD, where 1 625M N  , since SD is processed over the entire 

domain of interest (total information). Accuracy level 2

SD
 
is assumed identical for all reservoir 

units. Let  
22,1 2,, , My y2y

 
denote the EM. We assume 2 25M  , since EM is usually 

acquired only along one-dimensional sailing lines (partial information). We have selected the 

center North-South column for EM collection. Accuracy level 2

EM
 
is assumed to be constant. 

The Gaussian likelihood for data  1,
T

 2y y y
 
is denoted    | ,p N A Ty x x , with diagonal A 

and T matrices. Please see Appendix C for further modeling details.  

 

5.2 Value of Information Analysis  

We analyze the VOI of SD and EM to recommend a course of action for information acquisition. 

We study the VOI as a function of the model parameters, using the analytical results from 

previous sections. Note that the posterior value at projects only depends on the posterior mean 
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 |Ez x y
 
and its distribution, which is Gaussian with mean vector 

 
and covariance matrix 

 
1

T TS A A A T A


      in this case.  

 

The base case situation for parameters is specified from geological inputs and by likelihood 

maximization based on prior information regarding the Glitne reservoir. We estimate the 

accuracy of the EM based on geophysical principles. We assign cost of drilling C = 20 million 

USD. The sensitivity studies cover parameter values in a specified range (from low to high) 

around the base case levels. (Please see Appendix C). 

 

In Figure 7, we plot VOI for SD and EM as a function of the cost of drilling, assumed identical 

for all units in the grid. The VOI is highest for intermediate costs of drilling. All curves show a 

peak at around C = 15 million USD, around which a combination of SD or EM information is 

most valuable. For very low drilling costs, there is not much added value in SD or EM since 

drilling is lucrative enough without any further data. For high drilling costs, the reservoir units 

are too costly to develop and added information is unlikely to change this decision. Note that the 

VOI of EM is smaller than the VOI of SD. The total information attained by SD seems more 

valuable here, but in general the difference depends on the noise levels for EM versus SD.  

 

In Figure 8 (left), we plot the VOI as a function of the prior standard deviation. Recall that the 

prior standard deviations for profits vary between the reservoir units. Here the first axis 

represents a constant scaling parameter for the covariate-dependent standard deviation. Figure 8 

(right) shows the VOI as a function of the effective spatial range parameter (1000m is about 10 

cells). Note the difference in second axes numbering for the two displays. This reflects the VOI 
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changes when varying the first axes within the low-high range around the reference case. Both 

displays in Figure 8 show three curves: SD+EM, SD and EM. The total test with SD appears 

very valuable here. The VOI is clearly increasing when the prior standard deviation varies from 

low to high. The dependence in the reservoir basin also has a strong effect on the VOI.  

 

Figure 9 displays the VOI as a function of the measurement accuracy of SD and EM. We treat 

the situations separately: First, VOI is evaluated for SD only (left), as a function of the SD 

accuracy. Second, VOI is evaluated for EM only (right), as a function of the EM accuracy. The 

first axes represent high to low accuracy of measurements, with different scales on the second 

axes. Both displays show that VOI decreases as the information is less reliable. The VOI is 

smaller for less dependent profits (dashed lines).   

 

To determine the optimal acquisition scheme, the decision maker must of course also consider 

the price of the experiments. We construct optimal acquisition decision regions as a function of 

the prices of SD and EM by comparing the four static decision options: i) Purchase both EM and 

SD; ii) Purchase SD only; iii) Purchase EM only; and iv) Purchase neither. Let PSD and PEM  be 

the prices of SD and EM. The decision about information gathering is made according to:  

 argmax VOI P P ,VOI P ,VOI P ,0SD EM SD EM SD SD EM EM     .  

The decision boundaries are computed by equating the values for the different types of data. 

Figure 10 shows four diagrams with decision regions corresponding to two different prior noise 

levels and two different effective correlation range values. The high and low levels of parameters 

are set at (0.9 and 1.1) relative to the base-case specification. Note that the decision regions are 
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very sensitive to the parameter values. For high effective range and high prior uncertainty, the 

alternative of purchasing neither data type is optimal only for very high price ranges of data. 

 

6. Conclusions 

Much of the prior literature on information valuation for portfolio selection assumes independent 

projects. Here we have derived analytical expressions for the value of information in portfolio 

problems where the projects are probabilistically dependent, in which case further information 

regarding any particular project also provides information about others, and therefore there is an 

opportunity to improve value through prudential information gathering. We modeled project 

dependencies as a multivariate Gaussian distribution, allowing us to obtain closed-form 

analytical results. Alternate approaches that do not assume the Gaussian property would in 

general require Monte Carlo simulations and may therefore be computationally demanding for 

large problems (see for instance Keisler 2004b, Eidsvik et al. 2008, Bhattacharjya et al. 2010).  

 

Our results can help a risk-neutral decision maker study how much they should pay for more 

information about some (PVOI) or all (TVOI) of the projects, and how dependence among 

projects affects valuation of information sources. When information is imperfect, dependence 

among projects has a coupling effect, and in general the information is more valuable as a result. 

We studied VOI as a function of the prior uncertainty and noise level in the information, deriving 

new results for the sensitivity of information value to model parameters.  

 

In this paper, we have made some restrictive assumptions, most notably regarding the lack of 

constraints for project selection and the risk-neutrality of the decision maker. There are analytical 
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challenges towards incorporating constraints (such as Keisler 2004b) or risk aversion (such as 

Bickel 2008) for deriving closed-form results for information value in dependent portfolio 

problems, because the project selection methodology can no longer treat the inclusion/exclusion 

of each project separately. Bhattacharjya et al. (2010) study the effect of constraints on project 

selection in spatial decision problems through simulations, noting that the effects appear to be 

non-monotonic in general; we feel there may be potential for further research along these 

directions. 

 

In the examples studied here, dependence among projects was primarily of a spatial nature – this 

is a common aspect of problems in the Earth sciences. We also studied a case study based on 

data from the Glitne oil field in Norway to highlight how our analytical results could be used to 

support information gathering decisions for challenging real-world problems. This case study 

compares the VOI for seismic data versus electromagnetic data, and the spatial dependence of 

the reservoir property is modeled as an exponential spatial covariance function. Our analytical 

results can of course also be applied to other industries involving portfolio problems with 

interdependent projects and uncertain profits.  
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Appendix A: Some properties of multivariate Gaussian distribution 

The multivariate Gaussian probability density function for random vector 1( , , )T

Nx x x  is: 

 
 

   1

/2 1/2

1 1 1
exp
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T

N
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x x x  . 

The marginal distribution of ix  is Gaussian with mean i  and variance equal to the 
thi  diagonal term of 

 , denoted 
2

i .  
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Proofs for the following results can be found in Anderson (2003): 

Result 1: If we split the random variable into two sets ,
 

  
 

L

K

x
x

x
with mean ,

L

K

 
  
 





and covariance 

structure ,
L LK

KL K

  
   

  
we have a Gaussian conditional distribution for 

Lx  given 
Kx . The mean 

and covariance matrix are:  
 1

|

1

| .

L K L LK K K

L K L LK K KL





   

     

Kx  
. 

 

Result 2: For a constant matrix A  and Gaussian vector x , the linear transformation A y x E , 

 ~ ,N T0E , is also Gaussian and the marginal is given by    , Tp N A A T   y  .  

 

Result 3: The conditional distribution of x

 

given A y x E , where  ~ ,N T0E
 
is Gaussian with 

mean and variance: 
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Lemma: A closed form expression for expected maximization for the Gaussian distribution 

For a Gaussian variable z  with mean m  and variance 
2s ,     max ,0 ( )m s mE m sz s      

Proof: The Gaussian pdf is 

2

22

1 ( )
( ) exp
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z m
p z

ss

 
  

 
. The standard normal occurs for 0m   

and 1s  , and is symmetrical for the pdf and cdf. Since 
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A change of variable 
z m

x
s


 , with dz sdx , is used in the integral.                                        □ 

 

Appendix B: Theorem Proofs 

 

Proof of Theorem 1: 

From the Appendix A results, the conditional mean is: 

     
1

||E T


       x yx y y z .  

The value with this information (for free) is: 

        
1 1

max | ,0 max ,0
N N

i i i i

i iy y

E x p d z p z dz
 

  y y y ,  

since the component iz  is the only relevant part of the data or information y  in the integral. We have 

   ,p N S z , where  
1

S T


    , with diagonal entries 
2

is . We use the Lemma from 

Appendix A to compute the value with information. We need to subtract the prior value from the value 

with free information, therefore:  

1

1
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i i
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Since 1 i i

i i

 
 

        
   

, we get the required result.                      □ 

 

Proof of Theorem 2: 

From the Appendix A results, the conditional mean is:  

     
1

|i i iK K K K iE x T z


     K Ky y  . 

This conditional mean has distribution 
2( ) ( , )i i ip z N s , where  

1

i iK K K Kis T


     . The value 

with information (for free) is: 

      
1

1 1

max ,0 ( ) max ,0 ( )

i

N N

i iK K K K i i i

i i z

T p d z p z dz


 

      

K

K K K

y

y y y . 

The remainder of the proof is similar to that of Theorem 1, and we get the required result.                        □ 

 

Preliminaries to Proof of Theorem 3: 

I) For any parameter   in the mean vector or covariance matrix, the derivative of the expression for 

  max ,0E z  in the Lemma from Appendix A is:  
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the derivative simplifies to: 
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 Sensitivity to the mean: If m  ,  
  

 
max ,0dE z

m
sdm

  . 

 Sensitivity to the effective standard dev.: If s  , 
  

 
max ,0dE z

m
sds

 . 

II) Using the result from Theorem 1 and previous result I), the derivative of the information value with 

respect to a covariance matrix parameter   becomes

 

2

1

1

2

N
i i

ii i

ds

ss d






 
 
 

 . We will therefore focus on 

the derivative of the equivalent variance with respect to q , 

2

ids

d
. 

III) The derivative of a diagonal element of the matrix S   is: 

2 T
Ti i i
i i

ds d S dS

d d d  
 

e e
e e , where ie  is a 

unit vector with 1 in the i
th
 entry and 0s elsewhere. 

IV) The derivative of a matrix inverse is 

1
1 1d d

d d 


  

   , where the matrix derivative works for 

every entry of the matrix. 

V) The following matrix identity holds (by Sherman-Woodbury-Morrison): 

   
11 1 1 1 1 1T T
            , and    

1 11 1T T T T T
       .  

Therefore,    
1 1

S T T T T T
 

        . Or equivalently, 

    
1 1

T T T T T
 

      .  

From Appendix A, we see that the matrix of equivalent variances and covariances,  
1

S T


    , 

can be interpreted as the reduction in variance from prior 

 

to the posterior  
1

T
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Proof of Theorem 3: 

(i) Sensitivity to i : 

From I), the derivative with respect to the mean of any project is: 

1

1, , 0

0

N

ii i
ii i i

ii ii i

i i i
i

i

id s
ss sdTVOI

d d
i

s

 
  

  


 

                             
   

     
   

 
. 

Considering PVOI, the only difference for this derivative is the equivalent standard deviation is . When 

we have partial information, is  is smaller, and the absolute derivatives are smaller. 

 

(ii) Sensitivity to i : 

Matrices  and T are both symmetric.  
1

T


  is also symmetric  since matrix inversion retains the 

symmetric property. Based on III) and IV) above, for some parameter   in T ,  
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If q = t
i

2
, 

dT

d
 is a matrix of 0s with i

th
 diagonal element equal to 1. Note that this is right and left 

multiplied with a symmetric expression  
1

iT T


 b e , therefore: 
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In summary, using II) above, we get negative effects and the derivative is: 
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A similar form holds for PVOI, in which case the eqv. standard deviation  
1

i iK K K Kis T


     . 

We can take derivatives with respect to the measurement noise parameters in the survey set.  

 

(iii) Sensitivity to i : 

The derivative of 
2

is  is again the crucial part. Using results I)-V) above:  
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 is a matrix which is nonzero only for the elements in row i and column i. Let 

   
1 1

2

i

d
B T T

d

 
   , which is non-negative definite. Then, the above expression can also be 

written as: 
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e e

e e e e . 

Since both   and T  are positive definite, this derivative will be positive, and the TVOI increases as a 

function of the prior uncertainty. 

  

The case with PVOI can be viewed as a special case of total information where some t
i
s go to infinity. 

The same proof therefore holds. Also, using this argument, the inflation caused by T  in the 

derivative above is more comparable with that of T . Thus, for the case of partial information, the VOI 

tends to increase slower as a function of the prior variance.                         □ 
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Appendix C: Case Study Details 

We describe the modeling assumptions in the case study in more detail.  

 

Prior 

Let x
 
be the profits associated with drilling wells and producing oil from N  reservoir units. The lateral 

top-reservoir domain of interest is represented on a lattice of size 25 25 625N    units. Each unit is 

100m x 100m, and has a reservoir thickness of 20m. The revenues depend on the oil saturation as well as 

several other physical parameters. The porosity is specified in each unit from geological inputs and 

preliminary seismic analysis. In addition, the expected price of oil is assumed to be 400 USD per standard 

cubic meter. The cost of drilling one well is set to a reference value of C=20 million USD, valid for all 

units. The profits are a priori Gaussian. At reservoir unit i , the expected profit i ir C   , where ir  
is 

the revenue. We let  i i ir r H  denote the revenue as a function of explanatory variables iH  (porosity, 

thickness, and prior assumptions about saturation and oil-price). For a-priori level of saturation we use an 

uncertain depth-dependent oil-water contact. 

 

We let the prior marginal variance terms 
2

i  vary across different reservoir units, and use a simple 

parametric form 
2 ,i iH 

 
where explanatory variables iH

 
incorporate the prior uncertainties in the 

local saturation levels based on a binomial assumption. The spatial correlation is defined via an 

exponential correlation function of Euclidean distance.  

 

Likelihood 

The individual terms comprising the SD likelihood are    2

1, , ,| ,i i SD i i i SDp y x N A x  , where the 

expectation term is computed from linearized geophysical relationships between saturation and SD. For 

EM data at grid unit j , we define likelihood    2

2, ( ) , , ( ) ( )| ,j i j EM j i j i j EDp y x N A x  , where ( )i j  is the 
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grid cell of EM observation number 1, ,25j  . Similar to SD, this formula is based on linearizing a 

geophysical model for the EM data. For both SD and EM, the linearization is based on data variables 

regarded as a function of saturation, and then profits are directly related to saturation, which is the main 

uncertainty here. For SD, we mainly use Gassmann’s fluid substitution formula and Zoeppritz’s equation 

to relate saturation and SD, while the relation between saturation and EM is based on Archie’s law, see 

e.g. Eidsvik et al (2008). Figure C1 shows the SD and EM as a function of profits, where the various 

saturation levels and the main covariate porosity are indicated. The linearization is carried out at each 

porosity curve, and at a-priori level of the saturation variable, which depends on the geological 

considerations. Figure C2 shows the predicted SD and observed SD attribute from the current processing 

of data at Glitne. The predicted SD is computed from a-priori expected values in the model for the profits. 

In summary, the likelihood for data  ,
T

 1 2y y y
 
is represented by the following joint model:  

   
2

625

2

25

0
| , , , ,

0

SD SD

EM EM

A I
p N A T A T

A I





  
     

   
y x x   

where the matrix SDA  is diagonal, while EMA
 
picks the reservoir units in the center North-South column 

in the lattice for the partial EM information.  

 

Posterior and marginal likelihood  

Associated with the prior  p x
 
and likelihood model  |p y x

 
, we have marginal likelihood 

  ( , )Tp N A A A T  y 
 
and the following posterior model:

 

        
1 1

| , , .T T T Tp N A A A T A A A A T A
 

         x y z z y 
 

Based on the currently available SD processing at the Glitne field, the marginal likelihood can be used to 

estimate most of the statistical model parameters; see e.g. Kitanidis and Lane (1985). 
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Figures 

 

Figure 1: Two motivating examples; Left: Five oil fields in a petroleum system basin are 

correlated through a common geological mechanism. Right: A reservoir is represented as a 25 by 

25 lattice of reservoir units. 

 

Figure 2: Dependence of TVOI on pairwise project correlation coefficient, and sensitivity to 

parameters in Example A. Left: Mean. Middle: Standard deviation. Right: Information accuracy. 
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Figure 3: Total vs. partial information in Example A. 

 

 

 

Figure 4: Equivalent standard deviation in Example A. 
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Figure 5: Two types of information gathering schemes for the spatial domain in Example B, with 

three partial tests of 5, 10 and 20 projects surveyed. Left: Well spread out partial surveys. Right: 

Partial surveys at corners. 

 

 

Figure 6: Total vs. partial information in Example B, corresponding to the two types of 

information schemes in Figure 5. Left: Well spread out partial surveys; Right: Partial surveys at 

corners. 

 

0 0.1 0.2 0.3 0.4
0

20

40

60

80

100

120

Effective range

V
a

lu
e

 o
f 
in

fo
rm

a
tio

n

 

 

Total

Partial (20 projects)

Partial (10 projects)

Partial (5 projects)

0 0.1 0.2 0.3 0.4
0

20

40

60

80

100

120

Effective range

V
a

lu
e

 o
f 
in

fo
rm

a
tio

n

 

 

Total

Partial (20 projects)

Partial (10 projects)

Partial (5 projects)



39 

 

 

Figure 7: VOI of seismic and electromagnetic data, plotted as a function of drilling cost. 

 

 

Figure 8: VOI as a function of the standard deviation parameter (left) and as a function of the 

spatial effective range parameter (right). The first axes are varied from low to high compared 

with a reference case. 
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Figure 9: VOI as a function of measurement noise standard deviation parameter for seismic data 

(left) and as a function of measurement noise standard deviation parameter for electromagnetic 

data (right). The first axes are varied from low to high compared with a reference case. 

 

 

Figure 10: Decision regions for the SD and/or EM information gathering. The first axis 

represents the price of the SD and the second axis that of EM. The decision maker can purchase 

either SD and EM, only SD, only EM, or neither. 



41 

 

Figures for Appendix C 

 

 

Figure C1: Estimated response values for seismic (left) and electromagnetic data (right) as a 

function of profits (first axis). The curves represent different levels of porosity.  

 

Figure C2: Predicted seismic (first axis) vs. observed seismic data (second axis). The residuals 

are described by a spatially structured model for the revenues (profits) and independent error 

terms for the seismic data. 


