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1 Introduction

Accelerated failure time (AFT) models are commonly used for modelling a possible relation-
ship between event times and covariates. Applications include a variety of areas, such as
reliability engineering, biostatistics, economics and social sciences. The AFT failure time
model can be written

log Y = f(X) + σW, (1)

where Y is the event time; X = (X1, . . . , Xp) is a vector of covariates; f(·) is some function
determining the influence of the covariates; while σW is an “error” term. The parameter
σ is here considered as a scale parameter, while W is assumed to have a fully specified
“standardized” distribution, such as the standard normal distribution, in which case Y is
lognormal; the standard Gumbel distribution for the smallest extreme (in the following called
the Gumbel distribution), in which case Y is Weibull-distributed; and the standard logistic
distribution, in which case Y is called log-logistically distributed. Our generic notation for
the distribution function of W will be Φ(u) = P (W ≤ u). For short we shall say that W
has distribution Φ.

Although the methods we present in this paper will appear to be nonparametric in nature,
our basic concern will be on fully parametric AFT models. This means that f(·) is basically
assumed to be a parametric function, usually of the linear form

f(X) = β0 + β1X1 + · · ·+ βpXp. (2)

Nice introductions to parametric AFT model can be found in the monographs Collett
(2003, Ch. 6); Meeker and Escobar (1998, Ch. 17).

For proper analysis of survival data it is of course important that a reasonably correct
model is used. In this paper we will focus on methods for checking and suggesting the
functional form for the covariates in the representation (2). By our approach, this may
alternatively be viewed as a search for a “best possible” additive model of the form

log Y = f1(X1) + · · ·+ fp(Xp) + σW (3)

for functions fj(·), j = 1, . . . , p, in the following called covariate functions.
Our first concern regards procedures for checking AFT models in the form of (1) and (2)

by means of residual plots. There are in fact several kinds of residuals appropriate for such
model checking, see for example Collett (2003, Ch. 7). The most natural residual is the so
called standardized residual. This will play a role in the estimation of covariate functions,
but we shall for a large part be concerned with the Cox-Snell residuals, also called generalized
residuals, originally suggested by Cox and Snell (1968), and probably being the most widely
used residuals in survival analysis.

The typical application of Cox-Snell residuals is to do model checking by deciding whether
the full set of Cox-Snell residuals, possibly censored, deviates significantly from what would
be expected if they were exponentially distributed (e.g. Kay, 1977). In the present paper
we are more concerned with the alternative use of the residuals, namely to plot them versus
single covariates. This can in fact be done in several ways, in particular because the data may
include censored values. For continuous covariates we shall consider two basic methods for
residual plotting based on smoothing the residuals as functions of the particular covariates.
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We shall also briefly treat residual plots for discrete covariates. This is first of all of interest
when the covariate takes only a relatively small finite number of values, but can also be used
in connection with stratification of data with respect to covariates (e.g. Arjas, 1988).

The main reason for the interest in Cox-Snell residuals is that their ideal distribution is
the exponential, whatever be the distribution of W . This makes it possible to use similar
methods when models differ in the distribution of W . We shall also see how the special
properties of the exponential distribution simplify and unify the handling of censoring. On
the other hand, standardized residuals will ideally have distribution Φ and should hence be
treated differently in different model types.

It should be mentioned that the behaviour of Cox-Snell residuals for checking overall
goodness of fit of survival models in general has been critizised, particularly in the case of
the semiparametric Cox-model (see e.g. Crowley and Storer, 1983). The possible problems
are due to the nonparametric estimation of the baseline hazard function in Cox-models which
leads to a violation of the approximate exponentiality of the Cox-Snell residuals. On the
other hand, Crowley and Storer (1983) report on more satisfactory behaviour when residuals
are plotted against covariate values. Many of these problems will be less pronounced for
the parametric models considered here, due to a finite number of parameters in the baseline
cases.

Besides the study of residual plots for censored AFT models, the main purpose of the
paper is to show how the, possibly smoothed, residuals can be used to derive appropriate
covariate functions fj(·) in the representation (3). We hence seeks to complement results and
methods for the semiparametric Cox-model as earlier presented in Therneau et al. (1990),
Grambsch et al. (1995), and later described in the monograph Therneau et al. (2000, Ch. 5).
For a general discussion of methods for goodness-of-fit in survival models based on residuals,
we also refer to Andersen et al. (1993, VII.3.4).

The outline of the paper is as follows. In Section 2 we state a set of precise assumptions
for the distribution of the random variables that go into our models, and we also derive
the likelihood function for the observed data. In Section 3 we give the basic definitions
and properties for residuals to be used for AFT models, and discuss how modifications are
made for censored observations. Section 4 is concerned with plotting of residuals, both
for continuous and discrete covariates. Particular emphasis is given to the constructiion
of informative residual plots in cases with censored observations. In Section 5 we then
show how residuals of possibly misspecified models can be used to infer the appropriate
functional form of covariates in an AFT model. This can be viewed as the main section of
the paper, where various methods are presented. Section 6 studies the special case when
lifetimes are Weibull distributed and the results are applied to a real dataset as well as a
simulated one. An adaptation of the approach of Section 5 to cover parametric proportional
hazards models is considered in Section 7. This treatment complements similar studies for
the semiparametric Cox model performed by Therneau et al. (1990) and Grambsch et al.
(1995). A few concluding remarks are given in the final section, Section 8. Some additional
results are given in Appendix A-D, in particular an introduction to the covariate order
method for exponential regression.
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2 Model assumptions

In order for a rigorous treatment, we shall in the following make precise assumptions on the
probability mechanisms that produce our data. It should be noted that to a large extent
the conditions are stated to simplify arguments and make a more transparent theory. Some
of the conditions therefore appear stronger than needed. It is, however, beyond the scope of
this paper to consider weakest possible assumptions.

The observation for an individual is assumed to be a realization of an underlying ran-
dom vector (X,W, C). Here X (the covariate vector) can have both discrete and absolutely
continuous components, and has a distribution given by a density gX (·) with respect to
a product of counting measures and Lebesgue measures, according to the types of covari-
ates. Further, W (“error”) has an absolutely continuous distribution with distribution func-
tion Φ(·) and density function φ(·), where we make the assumption that φ(u) > 0 for all
−∞ < u < ∞. Finally, C (censoring time) is an absolutely continuous non-negative random
variable, which may depend on X, with conditional survival function given X = x denoted
GC(c|x). Furthermore, W is assumed to be independent of (X, C).

The true lifetime defined for the individual is Y with

log Y = f(X) + σW, (4)

for a given function f and a positive (scale) parameter σ. The observed lifetime for the
individual is T = min(Y, C), while ∆ = I(Y < C) is the status defined for this individual.

Under these assumptions it is straightforward to show that the joint density of the ob-
servable vector for the individual, (T,∆,X), at (t, δ,x), is

gX (x) {gY (t|x)GC(t|x)}δ {gC(t|x)GY (t|x)}1−δ (5)

where lower case g means density, while capital G means survival function, for the respec-
tive random variable which is given as index. Note that we have used that T and C are
independent given X, which follows from the above assumptions.

It is clear that for an i.i.d. sample {(ti, δi,xi); i = 1, . . . , n} from this joint distribution,
the likelihood function is given as

n∏

i=1

gX (xi) {gY (ti|xi)GC(ti|xi)}δi {gC(ti|xi)GY (ti|xi)}1−δi .

This likelihood will be the basis for maximum likelihood estimation in the parametric regres-
sion models we shall encounter. However, since we shall assume that the functions fX (·),
FC(·|·), fC(·|·) do not depend on the parameters of interest (which are of course the ones
of gY and GY ), the resulting likelihood used for maximization will be of the following well
known form:

Under the standard assumption that the functions gX (·), and gC(·|·) do not depend on
the parameters of gY (·|·) we obtain the standard likelihood for survival analysis,

n∏

i=1

{gY (ti|xi)}δi {GY (ti|xi)}1−δi (6)
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3 Residuals in AFT models

3.1 Standardized and Cox-Snell residuals

Standardized residuals in AFT models are based on solving equation (1) for W . It is clear
that for an observed lifetime T from model (1), if we let

S =
log Y − f(X)

σ
, (7)

then, conditionally on X, S has the distribution Φ.
Let data (ti, δi,xi), i = 1, . . . , n, as considered in Section 2, be given. These are possibly

right-censored, with the δi being censoring indicators. The standardized residuals are then
defined by (ŝi, δi), i = 1, . . . , n, where

ŝi =
log ti − f̂(xi)

σ̂
, (8)

with f̂(·), σ̂ being appropriate estimators of the underlying f and σ, respectively. The idea is
that if the model used for estimation is correctly specified, then the set (ŝi, δi), i = 1, . . . , n
should behave similar to a censored sample from the distribution Φ. Censoring for the ŝi
here corresponds to the fact that if a ti is a right censored observation (i.e. δi = 0), then ŝi
becomes “too small”.

The Cox-Snell residuals are based on the fact that if Y is a lifetime, with corresponding
survival function G(t) = P (Y > t), then the random variable − logG(Y ) is unit exponen-
tially distributed, i.e. exponentially distributed with mean 1, whatever be G(t).

The Cox-Snell residuals for the model (1) are hence obtained by first noting that

G(t|X) ≡ P (Y > t|X) = 1− Φ

(
log t− f(X)

σ

)

,

which hence implies that

R = − logG(Y |X) = − log

(

1− Φ

(
log Y − f(X)

σ

))

(9)

is, conditionally on X, unit exponentially distributed.
For the data and fitted model as given above, the Cox-Snell residuals are therefore given

as (r̂i, δi), i = 1, . . . , n, where

r̂i = − log

(

1− Φ

(

log ti − f̂(xi)

σ̂

))

. (10)

If the model is correctly specified, then the set (r̂i, δi), i = 1, . . . , n should behave similar to
a censored sample of unit exponentially distributed variables.

Note that we have the following relations between the “theoretical” standardized residuals
and Cox-Snell residuals,

R = − log(1− Φ(S)) (11)

S = Φ−1(1− e−R) (12)
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(and corresponding relations between the r̂i and ŝi). It is shown in Appendix A that under
a certain condition on Φ (which is valid for the lognormal, Weibull and log-logistic cases),
R given in (11) is a strictly convex function of S, while S in (12) is hence a strictly concave
function of R. We shall use these results in the following.

3.2 Censored residuals

When there are censored observations, a frequently used approach is to add the expected
residual value to the censored residuals and then proceed as if one has a complete set of non-
censored observations. For Cox-Snell residuals, the memory-less property of the exponential
distribution implies that one should then add 1 to the censored residuals ((see e.g. Collett,
2003)). We will call these residuals the 1-adjusted Cox-Snell residuals.

It is interesting to note the connection between the 1-adjusted Cox-Snell residuals and
what is known as martingale residuals, see e.g. Therneau et al. (2000) and Collett (2003,
Ch. 4). Martingale residuals are given as

m̂i = δi − r̂i.

Thus, since

1− m̂i = r̂i for non-censored observations

1− m̂i = r̂i + 1 for censored observations,

it is seen that martingale residuals, modulo a linear transformation, correspond to adding 1
to each r̂i for a censored observation, which is exactly what the 1-adjusted Cox-Snell residuals
do.

There is in the literature also an alternative adjusted Cox-Snell residual, which adds the
amount log 2 to the censored Cox-Snell residuals, corresponding to the median residual life of
a unit exponentially distributed random variable. We will call them log 2-adjusted Cox-Snell
residuals. We shall see below that there are certain advantages with this convention when
we deal with standardized residuals and Cox-Snell residuals in the same applications, as we
will do in Section 5.

Consider an AFT model with a given distribution Φ for W . Then for a censored stan-
dardized residual s, all we know is that the “theoretical” standardized S as defined in (7)
exceeds s. The 1-adjusted and log 2-adjusted Cox-Snell residuals defined above, will for
standardized residuals correspond to, respectively, replacing S by the expected value and
the median of the conditional distribution of S given S > s, where S has distribution Φ.

Let now R be the “theoretical” Cox-Snell residual computed from S by (11). Then if
S > s we have

R > − log(1− Φ(s)) ≡ r

The 1-adjusted Cox-Snell residual will now correspond to replacing r by 1 + r, since

E(R|R > r) = 1 + r

But from this we have

1 + r = E[− log(1− Φ(S)) | − log(1− Φ(S)) > r] = E[− log(1− Φ(S))|S > s],
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which by the strict convexity of R as a function of S implies by Jensen’s inequality that

1 + r > − log(1− Φ(E(S|S > s)))

and hence that
Φ−1(1− e1+r) > E(S|S > s).

Now the left hand side of this inequality is the standardized residual corresponding to
the 1-adjusted Cox-Snell residual, while the right hand side is the standardized residual
E(S|S > s). It is hence seen that 1-adjusted Cox-Snell residuals do not correspond to
similar adjustments in the standardized residuals and vice versa.

This will however not be the case for the connection between the log 2-adjusted Cox-
Snell residual and the corresponding standardized residual based on the median. Let s be a
censored standardized residual. Now replace it by the median of the conditional distribution
of S given S > s, i.e. replace s by s′ where

P (S > s′|S > s) =
1

2
.

By the strict monotonicity of R as a function of S this is equivalent to

P (R > − log[1− Φ(s′)] | R > − log[1− Φ(s)]) =
1

2
.

Setting r = − log(1 − Φ(s)) it is clear from this that we can start by either of the censored
residuals r and s and obtain the corresponding adjusted residual.

Most of our residual plotting methods, to be presented in the next sections, are based on
exponential regression techniques, using both the non-adjusted and the adjusted Cox-Snell
residuals, as well as the standardized adjusted residuals. For cases with a high degree of
censoring it turns out that methods based on adjusted residuals may easily break down, so
that the non-adjusted residuals should be preferred in this case. This will be the recommen-
dation from several simulations. As mentioned in the introduction, we shall also consider
residual plotting for discrete covariates.

4 Plots of residuals versus covariates

For each unit we observe a covariate vector X. Let X be a specific component of this vector,
and suppose that we will plot residuals versus this covariate. This corresponds of course
to the standard procedure for residual plotting in ordinary linear regression. However, for
plotting of residuals for censored survival data, it is clear that a plot of residuals versus
covariate values may be misleading due the censored residuals being too small. It is because
of this that the adjusted residuals have been introduced, and these may work well when
there are not too many censored values. Crowley and Storer (1983) suggested, furthermore,
in order to improve the symmetry of the residuals, to plot the logarithm of the Cox-Snell
residuals. The logarithm of Cox-Snell residuals are then supposed to fluctuate around 0.
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4.1 Continuous covariates

We shall adopt the idea of plotting the logarithm of Cox-Snell residuals, but for continuous
covariates we shall impose some additional modeling and perform an exponential regression
smoothing. This way of smoothing residuals will later turn out to be useful for the estimation
of underlying covariate functions.

Let the data and the Cox-Snell residuals r̂i be given as in the previous section. The idea is
to consider a synthetic data set given as (r̂1, δ1, x1), . . . , (r̂n, δn, xn), where x1, . . . , xn are the
values of the specific covariate X for the n observation units, respectively, where we impose
the following model for these data: r̂ given x is exponentially distributed with hazard rate
λ(x), thus possibly depending on the covariate value. Then, based on the synthetic dataset,
we use exponential regression to estimate the function λ(·), with estimate denoted λ̂(·). In
principle, any method for exponential regression can be used.

A residual plot versus x is then a plot of the estimated function log λ̂(x), which may
be revealed by the points (xi, log λ̂(xi)) for i = 1, . . . , n. The idea is of course that if the
assumed model is correct, then λ(x) equals 1 for all x, so the λ̂(xi) should be close to 1 and
hence log(λ̂(xi)) should fluctuate around 0.

There are several ways of performing the exponential regression, and we shall distinguish
between two main classes of such methods. The first is for complete non-censored data, or
for censored data with adjusted residuals for censored observations. For this class we suggest
using local smoothers such as the loess (Cleveland, 1981) or other methods in the literature
(see e.g. Hastie and Tibshirani, 1990).

The second class of methods apply to non-adjusted censored residuals. The so-called
covariate order method (Kvaløy and Lindqvist, 2003, 2004) is tailored for this situation, as
are certain Poisson regression methods (see e.g. Therneau et al., 2000). These methods have
the advantage of working well for heavy censoring, where the methods mentioned above for
adjusted residuals may break down. We will in particular use the covariate order method,
for which there is also connected ways of testing of the null hypothesis of constant λ(x) as
suggested Kvaløy (2002) (see also Kvaløy and Lindqvist, 2003). A brief introduction to the
covariate order method is given in Appendix C.

Example: Residual plots for Nelson’s superalloy data

We consider an example from the book by Meeker and Escobar (1998), concerning the
superalloy data from Nelson (1990).

The data give survival times measured in number of cycles, for 26 units of a superalloy,
subject to different levels of pseudostress in a straincontrolled test. There is hence a single
covariate in the model, and following Meeker and Escobar (1998) we shall consider the
covariate to be x = log(pseudostress).

The following model is fitted in Meeker and Escobar (1998),

log Y = β0 + β1x+ β2x
2 + σW (13)

where W is Gumbel distributed, i.e. Y is Weibull distributed.
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Figure 1: Superalloy data fitted with model (13). Left: Plot of logarithm of smoothed Cox-
Snell residual log λ̂(x) versus x. Circles represent failures, while dots correspond to censored
events. Right: Exponential probability plot of 1-adjusted Cox-Snell residuals.

The left panel of Figure 1 shows the residual plot (xi, log λ̂(xi)), with λ̂(x) computed by the
covariate order method (Kvaløy and Lindqvist, 2003). The plot indicates that the fluctua-
tions from 0 are rather minor, and it is furthermore demonstrated by Aaserud (2011) that
the discrepancy from a constant λ(x) is not significant. On the other hand, the probability
plot of the 1-adjusted Cox-Snell residuals shown in the right panel of Figure 1, which is
supposed to be close to a straight line if the model is correct, indicates a slightly convex
shape which may be due to a deficiency of the model. It is in this connection interesting to
note that Meeker and Escobar (1998) suggest an extended AFT model where σ is allowed
to depend on x.

4.2 Discrete covariates

Consider again the synthetic dataset (r̂i, δi, xi); i = 1, . . . , n, for a specific covariate X .
Assuming that there are finitely many possible values for X , say k, we may divide the
synthetic data into k sets and check each set for possible departures from a unit exponential
distribution. This may be done for example by computing the estimated hazard rate λ(x)
for each possible value of x, under the assumption that residuals under x are exponential
with hazard λ(x). We may then (see example below) make separate probability plots for
each possible value of X .

If the number of possible values for X is large, we may choose to smooth the estimated
λ(x) in a way similar to the continuous case. Alternatively, we may group values of X into
a reasonable number of strata (see e.g. Arjas, 1988).
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Example (Insulation data from Minitab)

The statistical package Minitab 16 (Minitab, Inc.) includes an example using data for
deterioration of an insulation used for electric motors. This concerns an accelerated life
time experiment where one wants to predict failure times for the insulation based on the
temperature at which the motor runs.

The data give failure times for the insulation at four temperatures, 110, 130, 150, and 170
(degrees Celsius). The experiment is designed with 20 observations for each temperature,
and there are altogether 14 right censored observations. Because the motors generally run at
temperatures between 80 and 100 degrees, one wants to predict the insulation’s behavior at
those temperatures. It is thus important to have a good parametric model for the relationship
between the temperature and the failure times.

We thus have a single covariate, temperature x, with four possible values, 110, 130, 150,
170. The following model is fitted in the Minitab application,

log Y = β0 + γx+ σW, (14)

where W has the Gumbel distribution. The fitted model is

log Y = 16.2193− 0.0572729x+ 2.98957W.

from which we computed log 2-adjusted Cox-Snell residuals. We computed Cox-Snell resid-
uals, adding log 2 to the censored ones. (We also tried the addition of 1, but the difference
in final results was minor).

Figure 2: Insulation data fitted with (14). Left: Probability plots of adjusted Cox-Snell
residuals for the four temperature groups. Right: The log of the log 2-adjusted Cox-Snell
residuals plotted against temperature.

The left panel of Figure 2 shows probability plots (with respect to exponential distribution)
for each of the four temperatures (Group 1 = 170, Group 2 = 150 etc.), while the right panel
shows log of the log 2-adjusted Cox-Snell residuals plotted against group number. From the
right diagram it seems that the distribution of the residuals from group 2 deviate from the
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distributions of the residuals from groups 1,3,4, which appear to be closer to each other. The
same effect is seen from the left diagram, where the points corresponding to group 2 form a
curve close to a line, but clearly separated from the other groups. In fact, a Kruskal-Wallis
test performed to compare the four groups of adjusted residuals, resulted in a p-value of
0.045, indicating a difference in the four distributions of residuals.

5 Functional form for a covariate

Suppose we want to conclude whether a specific covariate X , a component of the covariate
vector X of the data, is appropriately represented in our model. This question may for
example be triggered by a bad looking residual plot, obtained by one of the methods of the
previous section. Alternatively, suppose that in the modeling process one starts by fitting a
model with no covariates and then for each covariate X tries to find an appropriate covariate
function f(X) when X appears alone in the model. As yet another approach, one may, in
an iterative manner, update one covariate function at a time, and derive covariate functions
for all the covariates simultaneously, aiming at a representation (3).

In the present section we shall see how the above can be done by using the residuals and
residual plots based on both standardized and Cox-Snell residuals.

5.1 Estimation of covariate functions

The following setup will essentially serve all the above mentioned possible procedures for
derivation of covariate functions.

Assume that the correct model for the lifetime Y is

log Y = β0 + β′Z + f(X) + σW, (15)

where X is a single component of the vector X, while Z is the vector of the remaining
components of X, so that X = (X,Z). Based on data {(ti, δi, xi, zi); i = 1, . . . , n} we want
to derive the appropriate form f(X) for the covariate X .

Suppose we fit the simpler linear model

log Y = β0 + β′Z + γX + σW (16)

by maximum likelihood estimation, using the likelihood function (6) with parameters defined
by (16). Let the estimated model be

log Y = β̂0 + β̂
′

Z + γ̂X + σ̂W.

Computation of standardized residuals using formula (8) then gives

ŝi =
log ti − β̂0 − β̂

′

zi − γ̂xi

σ̂
.

Recall that these will approximately behave like observations with distribution Φ if (16) is
the correct model, that is if f(x) in fact is linear in x; while if this is not the case, the
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residuals may behave quite differently. It is the purpose of the following to show how the ŝi
can be used to infer the true form of f(x).

The clue is a result by White (1982) on maximum likelihood estimation in misspecified
parametric models. It follows from White (1982) that, under appropriate conditions, there
are parameter values (β∗

0 ,β
∗, γ∗, σ∗) of the possibly wrong model (16) which are the limits

(a.s.) of the estimators (β̂0, β̂, γ̂, σ̂) as n → ∞. The (β∗

0 ,β
∗, γ∗, σ∗) are, more precisely, given

as the minimizers of the Kullback-Leibler distance between the true model as defined by (15)
and the possibly misspecified model (16).

Appendix B derives in some special cases the expressions that are minimized in order
to find the starred parameters, and solves the minimization problem analytically in certain
simple cases. An example of how to find the starred parameters by simulation is also given.

In the model defined by (β∗

0 ,β
∗, γ∗, σ∗) we would compute the “theoretical” standardized

residual from (9) as

S∗ =
log Y − β∗

0 − β∗′Z − γ∗X

σ∗
,

which by inserting the true model for log Y , (15), can be written

S∗ =
σ

σ∗
W +

(β − β∗

0) + (β − β∗)′Z + f(X)− γ∗X

σ∗
. (17)

It should be clear that if f(X) really is linear, then S∗, conditional on X = (X,Z) is exactly
distributed as W .

Solving (17) for f(X) gives

f(X) = −σW − (β − β∗

0)− (β − β∗)′Z + γ∗X + σ∗S∗, (18)

Now, take the conditional expectation given X = x, throughout the equation (18), and recall
that X is the first component of X = (X,Z). This gives

f(x) = −σE(W )− (β − β∗

0)− (β − β∗)′E(Z|X = x) + γ∗x+ σ∗E(S∗|X = x). (19)

The rest of the present section is concerned with the practical use of the result (19).
Assume first that X and Z are independent. Then (19) implies that f(x) is of the form

f(x) = constant + γ∗x+ σ∗E(S∗|X = x), (20)

where the constant does not depend on x. Thus, based on our data we obtain that, modulo
an unknown additive constant, we can estimate the function f(x) by

f̂(x) = γ̂x+ σ̂Ĥ(x), (21)

where Ĥ(x) is an estimate of
H(x) ≡ E(S∗|X = x). (22)

If there are no censorings, or if we use adjusted standardized residuals ŝi, then the function
H(x) can be estimated by smoothing the points (xi, ŝi); i = 1, . . . , n. For estimation of H(x)
from non-adjusted residuals, we refer to Section 5.3.
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It follows from (19) that if Z and X are dependent, then the f̂(x) in (21) may be some-
what “blurred”, with a degree of blurring depending on the kind and amount of dependency
between Z and X . On the other hand, if (16) is approximately true, then β − β∗ may be
expected to be close to the zero vector, so the dependency of Z and X may not influence
f̂(x) seriously. Examples of analytical computation of β−β∗ for particular cases is given in
Appendix B.

5.2 Functional form for covariates for non-censored or adjusted
residuals

In this subsection we consider estimation of the function H(x) when either all residuals are
non-censored, or the censored residuals are adjusted as described earlier. Suppose first that
X is a discrete covariate with a finite number of possible values x. Let p(x) = P (X = x),
and let us act as if there are no censored observations.

A natural estimator for H(x), when p(x) > 0, from observations (Yi, Xi,Zi), is

Ĥ(x) =

∑

i:Xi=x Ŝi

n(x)
, (23)

where n(x) = #{i : Xi = x} and

Ŝi =
log Yi − β̂0 − β̂

′

Zi − γ̂Xi

σ̂
.

Now there are underlying variables W1, . . . ,Wn such that log Yi = β0 + β′Zi + f(Xi) + σWi

for i = 1, . . . , n, and hence we can write

Ŝi =
(β0 − β̂0) + (β − β̂)′Zi + f(Xi)− γ̂Xi + σWi

σ̂
.

From this,

Ĥ(x) =
(β0 − β̂0) + (β − β̂)′(

∑

i:Xi=xZi/n(x)) + f(x)− γ̂x+ σ
∑

i:Xi=x Wi/n(x)

σ̂
.

Since the Wi are independent of the Xi, it is clear by SLLN that
∑

i:Xi=xWi/n(x) converges
(a.s.) to E(W ). Further, the Zi for i ∈ {i : Xi = x} is clearly a sample from the conditional
distribution of Z given X = x, and hence by SLLN converges to E(Z|X = x). Since
(β̂0, β̂, σ̂) → (β∗

0 ,β
∗, σ∗) (a.s.) it follows that Ĥ(x) → H(x) for all x with p(x) > 0. This

proves that Ĥ(x) as defined in (23) is a strongly consistent estimator for H(x) to be used
in (21).

If X is a continuous covariate, we may extend the proof by considering partitions of the
range of X and taking appropriate limits as n tends to infinity and partitions become finer
and finer. This may be used to prove convergence of smoothing procedures based on the
points (xi, ŝi) as suggested in the previous subsection. It is, however, beyond the scope of
this paper to do this in detail.

13



It should be remarked that the use of adjusted residuals may be inefficient. This is because
we modify censored residuals by assuming that they have the distribution Φ, while as we
have seen in Section 5.1, it is the deviance of the residuals from their standard distribution
that makes the method work! In the case of many censorings, we may hence get misleading
results. In the case of medium to high censoring, we will advocate methods which treat the
censored residuals more appropriately. We return to this in the next subsection (Section 5.3),
and a simulation example will be given in Section 6.

Example (Insulation data from Minitab, continued)

Based on the insulation data we would like to reconsider the functional form for the covariate
X . We then compute Ĥ(x) for each of the four groups, using formula (23), obtaining
respective values -.9902,.0293,-.7315, -.5263.

Figure 3: The four estimates f̂(x) plotted against temperature. The line is the least squares
line based on the four points.

Using the formula (21) we then get

f̂(170) = −.0572729 · 170− 2.98957 · .9902 = −12.69659

f̂(150) = −.0572729 · 150 + 2.98957 · .0293 = −8.503447

f̂(130) = −.0572729 · 130− 2.98957 · .7315 = −9.632198

f̂(110) = −.0572729 · 110− 2.98957 · .5263 = −7.873295

The f̂ is graphed in Figure 3, together with the least squares line. The model that was
suggested in the first part of this example (Section 4.2) corresponds to a covariate function

14



given by a straight line in this diagram. The resulting f̂ clearly deviates from a line, however,
a fact which is consistent with the result of the residual analysis in Section 4.2. As seen
there, the results from group 2 (150 degrees) cause an apparent deviation from the originally
assumed model.

Noting that the aim of the experiment behind the data, was to extrapolate properties of
the insulation material to temperatures between 80 and 100 degrees, the conclusions obtained
here should presumably lead to further investigation and experimentation.

5.3 Functional form for covariates based on smoothing of residuals

We have already seen (Section 4) how the non-adjusted residuals can be used via censored
exponential regression to estimate nonparametrically the hazard λ(x) of the Cox-Snell resid-
ual corresponding to covariate x. The estimated functions λ̂(x) can now be used in (21) if
we replace Ĥ(x) by the estimate

ˆ̂
H(x) = Φ−1(1− exp(−1/λ̂(x))). (24)

The reason for this is that by (12), (22) can be written in terms of the Cox-Snell residual R∗

as
H(x) ≡ E(Φ−1(1− exp(−R∗))|X = x). (25)

Hence (24) is established by replacing R∗ in (25) for a given x by its estimated expected
value.

It follows from Appendix A that the function r 7→ Φ−1(1 − e−r) is concave for the
commonly considered models, lognormal, Weibull and log-logistic. But then the right hand

side of (24) is convex in λ̂(x), so by Jensen’s inequality, E(
ˆ̂
H(x)) ≥ Φ−1(1−exp(−1/E(λ̂(x)))

which indicates a possibility of overestimation. The practical consequences of this convexity

is, however, not clear. In any case, if λ̂(x) consistently estimates λ(x), then
ˆ̂
H(x) estimates

H(x) consistently under the given assumptions.
In the next section we consider in more detail the Weibull case, which is probably the

most used model in practice.

6 Weibull AFT models

Suppose now that T is Weibull-distributed, and hence that W has the Gumbel distribution,
with

Φ(u) = 1− e−eu for −∞ < u < ∞
The Cox-Snell residuals (10) and the standardized residuals (8) are hence given from

r̂i = exp

(

log ti − f̂(xi)

σ̂

)

= eŝi.

From (17) follows that the theoretical Cox-Snell residual, computed from the misspecified
model (16), can be written as

R∗ = Uσ/σ∗

exp

(
(β − β∗

0) + (β − β∗)′Z + f(X)− γ∗X

σ∗

)

, (26)
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where U = eW is unit exponentially distributed. This shows that R∗ under the true model
is in fact conditionally Weibull-distributed with shape parameter σ∗/σ and scale parameter

exp

(
(β − β∗

0) + (β − β∗)′Z + f(X)− γ∗X

σ∗

)

.

This is an interesting observation, since the exponential regression methods we have sug-
gested in Section 5.3 assume that R∗ is (approximately) exponentially distributed. The
practical problem is of course that while σ∗ is consistently estimable by σ̂ we can not esti-
mate σ since we do not know the true model. Thus we are not able to estimate σ/σ∗ and
essentially we then decide to set it to 1 in our approach.

Note further that for the Weibull case,

Φ−1(x) = log(− log(1− x)) for 0 < x < 1,

so H(x) = E(logR∗|X = x), which when using adjusted residuals can be estimated by
smoothing the points (xi, log r̂i). Recalling that the martingale residuals are given by m̂i =
1−r̂i it follows from this thatH(x) can be estimated by smoothing the points (xi, log(1−m̂i))
or approximately the points (xi,−m̂i)). Thus for the case where we start by fitting a model
without the γx term (see (16)), we obtain the shape of −f(x) by plotting the martingale
residuals versus the x-values. This corresponds to the approach suggested in Therneau et
al. (1990) for Cox-regression.

Furthermore, it follows that
ˆ̂
H(x) in (24) has the simple form

ˆ̂
H(x) = − log λ̂(x). (27)

which by (21) gives the useful formula

f̂(x) = γ̂x− σ̂ log λ̂(x) (28)

(modulo a constant).

Example (Alloy data, continued)

Suppose that we start by fitting the empty Weibull model, i.e. the model

log Y = β0 + σW (29)

where W is Gumbel distributed. It follows that we may use

f̂(x) = β̂0 − log λ̂(x), (30)

where λ̂(x) is the covariate order smoothing of the Cox-Snell residuals resulting from fitting
model (29).

The resulting curve is shown in Figure 4. Examining the plot it seems rather clear that
a linear function for f(x) is not reasonable, and as we have already seen in this example,
a quadratic function gives a satisfactory fit. This might be suggested by Fig 4, and this
demonstrates one possible application of our approach.
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Figure 4: Superalloy data fitted with empty model, i.e. log Y = β0. The plot shows f̂(x)
obtained by (30) using the covariate order method

Example (Simulated data from Weibull-distribution):

We simulated n = 100 observations from the Weibull-distribution using the model

log Y = β0 + β1Z1 + β2Z2 + f(X) + σW,

where β0 = 0, β1 = 5, β2 = 0.2, f(x) = x2, σ = 2; the W were drawn from the Gumbel
distribution, while the Z1, Z2, X were independently drawn from standard normal distribu-
tions. We imposed two different censoring scenarios by drawing independent censoring times
C giving approximately 20% and 50% censoring, respectively.

Figure 5 shows the resulting estimates of the true covariate function f(X) = X2, using
both a loess smoothing on the adjusted residuals, and a censored nonparametric exponential
regression using the nonadjusted residuals. A possible conclusion from this and similar
datasets is that there are no large differences between the two methods for estimation of the
covariate function f(X) for low censoring, while for more heavy censoring the nonparametric
exponential regression method seemingly performs slightly better.

7 Proportional hazards models

Therneau et al. (1990) and Grambsch et al. (1995) considered the derivation of covariate func-
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Figure 5: Simulated Weibull distributed data. Circles are (xi, γ̂xi + σ̂ log r̂i) using the 1-
adjusted Cox-Snell residuals; solid line is loess smooth from these points; dashed line is a
quadratic function fitted to the same points; squares are the f̂(xi) obtained from (28). The
true quadratic curve is given by dash-dots.

tions in Cox’ proportional hazards model. The former paper touched in the last paragraph
the problem of parametric proportional hazards models, but without giving any explicit re-
sults. In the present section we shall briefly consider this type of models and see how the
approach for AFT models can be modified for such cases.

As is well known (see e.g. Cox and Oakes, 1984), the only AFT models which are pro-
portional hazards models are the Weibull models. We shall here more generally consider the
parametric proportional hazards model where the lifetime Y conditional on the covariate
vector X has hazard function

λ(t|X) = g(t, θ) exp{β0 + β′X}. (31)

Here θ is a parameter vector for the baseline hazard function, while β0 and β are unknown
regression coefficients. The difference from a Cox model is hence the parametric form of
the baseline hazard. Note that we include an intercept term β0 in the linear function of the
covariates. By this we avoid the need for a scale factor in the baseline hazard g(t, θ). For
example, a Weibull regression model can be represented by g(t, θ) = θtθ−1 for θ > 0, while a
Gompertz model (see Collett, 2003, p. 191) may have g(t, θ) = eθt for −∞ < θ < ∞.

Now suppose we would like to infer the appropriate covariate function f(X) for a single
covariate X . We will use a similar approach as has been used for the AFT models, so only
the crucial steps are included below. Let X = (X,Z) and assume that the true model has
hazard rate

λ(t|X) = g(t, θ) exp{β0 + β′Z + f(X)}.
By fitting the model

λ(t|X) = g(t, θ) exp{β0 + β′Z + γX}
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by maximum likelihood estimation our estimator (θ̂, β̂0, β̂, γ̂) will be a consistent estimator
for (θ∗, β̂∗

0 ,β
∗, γ∗), say.

The “theoretical” Cox-Snell residuals based on the fitted model are

R∗ = G(Y, θ∗) exp{β∗

0 + β∗
′

Z + γ∗X},

where G(t, θ) =
∫ t

0
g(u, θ)du is the integrated baseline hazard function.

Now we compute

E(logR∗|X) = E[logG(Y, θ∗) + β∗

0 + β∗
′

Z + γ∗X|X ]

= E[logG(Y, θ∗)− logG(Y, θ)

+ logG(Y, θ) + β0 + β′Z + f(X)

−β0 − β′Z − f(X) + β∗

0 + β∗
′

Z + γ∗X|X ]

= E[log
G(Y, θ∗)

G(Y, θ)
|X ]

+E{E[logG(Y, θ) + β0 + β′Z + f(X)|X,Z]}
+β∗

0 − β0 + (β∗ − β)′E[Z|X ] + γ∗X − f(X)

= E[log
G(Y, θ∗)

G(Y, θ)
|X ]− a+ β∗

0 − β0 + (β∗ − β)′E[Z|X ] + γ∗X − f(X),

where a = 0.577215665 . . . is Euler’s constant. Here we have used that

R = G(Y, θ) exp{β0 + β′Z + f(X)}

is unit exponentially distributed, conditionally on X,Z, so that logR is standard Gumbel
distributed, again conditionally on X,Z.

Under the assumption that either Z is independent of X , or β∗ ≈ β, and furthermore

assuming that E[log G(Y,θ
∗

)

G(Y,θ)
|X ] varies slowly with X , the above computation indicates how

the log of Cox-Snell residuals can be used to infer the form of appropriate covariate functions
f(X). The practical use of the result is now much similar to the approach considered in
Section 5 and is not considered further here.

The approximations suggested above correspond to the approximations used by Therneau
et al. (1990) for Cox regression, and these were also used by Kvaløy and Lindqvist (2003).
Note that the approximations essentially amount to assuming that the cumulative baseline
hazard does not change much under models that are close together.

Example: Weibull regression

Now suppose g(t, θ) = θtθ−1, so G(t, θ) = tθ. Then it can be shown that

E[log
G(Y, θ∗)

G(Y, θ)
|X ] = (1− θ∗

θ
)(β0 + β′E(Z|X) + f(X) + a)

so that

E(logR∗|X) = β∗

0 −
θ∗

θ
β0 + (β∗ − θ∗

θ
β)′E[Z|X ] + γ∗X − θ∗

θ
f(X)− θ∗

θ
a
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If Z and X are independent, then this equals a constant plus the term γ∗X − θ∗

θ
f(X).

Similarly to what we have seen for the AFT case, here θ∗ and γ∗ can be consistently estimated
by θ̂ and γ̂, while θ can not be estimated. Thus for practical purposes we assume that
θ∗/θ = 1, which is believed to work well in order to recover the basic shape of f(X).
The result here is consistent with that of Section 6, where the apparent difference caused
by γ∗X − θ∗

θ
f(X) appearing in the present case instead of simply γ∗X − f(X), is due to

the difference in the way the linear function of the covariates is included in the AFT and
proportional hazard models.

Example: Gompertz regression

For this model we have

G(t, θ) =
eθt − 1

θ

From the approximation (valid for small |θ|) G(t, θ) ≈ t+ (1/2)θt2, we get

E[log
G(Y, θ∗)

G(Y, θ)
|X ] ≈ 1

2
(θ∗ − θ)E(Y |X),

which will be small if θ∗ is close to θ.

8 Discussion and conclusion

It has been shown how residuals from AFT models can be obtained and plotted, also in cases
with a large amount of censored observations. For continuous covariates, various smoothing
techniques have been suggested. In cases where the residual plots are not satisfactory, it is
furthermore demonstrated how the computed residuals can be used to improve the model
by suggesting appropriate functions of the residuals to be used in the AFT model. These
techniques can also be used to build an AFT model step by step by introducing one covariate
at a time.

We remark that in the parametric AFT model (1) the “error” is represented by a single
parameter σ, in addition to the W having a known distribution. In the parametric propor-
tional hazards model (31), on the other hand, we allowed a multidimensional parameter θ

of the baseline hazard function (although the two examples had just one parameter in the
baseline). For the AFT approach, the analogue to the multiparameter baseline would be to
include unknown parameters into the distribution of W . The corresponding modifications
of the methods of the present paper appear rather straightforward in a maximum likelihood
approach. Another extension of the considered AFT models would be to let also σ depend
on the covariates. Such a possibility is in fact already mentioned in connection with the data
example of Section 4.1, and was suggested in an example of Meeker and Escobar (1998).
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Appendix

A On the relation between standardized residuals and

Cox-Snell residuals

The following general result, easily proved by differentiation, can be used to determine
convexity and concavity of the functions (11)-(12) for a given distribution Φ.

Lemma 1 The function s 7→ − log(1−Φ(s)) is strictly convex (and hence the inverse func-
tion r 7→ Φ−1(1− e−r) for r > 0 is strictly concave) if and only if

Φ′′(u)(1− Φ(u)) + (Φ′(u))2 > 0

for all −∞ < u < ∞.

It is easy to see that the condition holds for the Weibull and log-logistic cases, for which
we have, respectively, Φ(u) = 1− e−eu and Φ(u) = eu/(1 + eu).

Now we shall see that the lemma holds also when Φ is the standard normal distribution.
Let φ(u) be the density function of the standard normal distribution, so Φ′(u) = φ(u) and
hence Φ′′(u) = −uφ(u). Thus, the condition in the lemma is equivalent to

u(1− Φ(u)) < φ(u)

for all u. This is of course trivial for u ≤ 0. For u > 0 it is equivalent to 1−Φ(u)−φ(u)/u < 0.
That this holds for all u > 0 is seen by showing that the expression is increasing in u and
tends to 0 as u → ∞, which is fairly straightforward.
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B More on parameters of misspecified models

Following White (1982), the starred parameters defined in Section 5 are found by minimizing
the expected value of the log of the ratio between the density for (T,∆,X) under the true
model and under the misspecified model, when the random variables themselves, having the
true distribution, are used in the densities. The densities to be used are hence (5). It is here
natural to assume that the distribution of X and the conditional distribution of C given X

are the same for both models, so we compare in effect the densities

gY (t|x)δGY (t|x)1−δ (32)

corresponding to the two models.
Under the assumptions for AFT models, the general expressions for the functions in (32)

are

gY (t|x) =
1

tσ
φ

(
log t− f(x)

σ

)

GY (t|x) = 1− Φ

(
log t− f(x)

σ

)

From this, and substituting the assumed form of f(x) for the two models, we can write the
criterion to be minimized as

E(D) ≡ E






∆ log

1
σ
φ

(

log T−β0−β
′

Z−f(X)

σ

)

1
σ∗
φ

(

log T−β∗

0
−β

∗′

Z−γ∗X

σ∗

) + (1−∆) log

1− Φ

(

log T−β0−β
′

Z−f(X)

σ

)

1− Φ

(

log T−β∗

0
−β

∗′

Z−γ∗X

σ∗

)







= E




∆ log







σ∗

σ

φ(W )

φ
(

σ
σ∗
W +

(β0−β∗

0
)+(β−β∗

)′z+f(x)−γ∗x

σ∗

)










 (33)

+ E




(1−∆) log

1− Φ(W )

1− Φ
(

σ
σ∗
W +

(β0−β∗

0
)+(β−β∗

)′z+f(x)−γ∗x

σ∗

)






where expectation is taken with respect to the true joint distribution of (X,W, C), where
X = (X,Z). Note also that we can express ∆ in terms of (X,W, C) as ∆ = I(β0 + β′Z +
f(X)+σW < C). The task is to minimize the expression in (33) with respect to the starred
parameters. From the expression it can be seen that the minimizing parameters may depend
on the censoring distribution, which is an interesting observation since it is well known that
for a correctly specified distribution, the maximum likelihood estimators under independent
censoring will always converge to the true model independently of the censoring scheme.

In general the minimization of (33) may be difficult to do analytically. A simple way of
“cheating” to get approximate values for the starred parameters is to simulate from the true
model a (very) large number of observations and then use a statistical package (e.g. R) to
compute the maximum likelihood estimators. This has been done by Aaserud (2011), see
example below. First we shall for illustration go through some examples of how (33) will look
in particular cases, and in some cases we also show how it can be minimized analytically.

23



Example - lognormal distribution

Assume here that W has the standard normal distribution, and that there is no censoring.
Assume for simplicity that Z is one-dimensional and assume without loss of generality that
E(X) = E(Z) = 0.

From (33) with P (∆ = 1) = 1, with φ being the standard normal density and W being
standard normally distributed, we have

E(D) = log
σ∗

σ
− 1

2
+

σ2

2σ∗2
+

E{(β0 − β∗

0 + (β1 − β∗

1)Z + f(X)− γ∗X)2}
2σ∗2

.

By differentiation with respect to all the starred parameters we obtain the solutions

β∗

0 − β0 = Ef(X)

β∗

1 − β1 =
E{Zf(X)} −E{XZ}E{Xf(X)}

1− (E{XZ})2

γ∗ =
E{Xf(X)} − E{XZ}E{Zf(X)}

1− (E{XZ})2
σ∗ =

√
σ2 +M,

where M is the minimized value of E{(β0 − β∗

0 + (β1 − β∗

1)Z + f(X)− γ∗X)2}.
Suppose now that X,Z are independent, and assume (without loss of generality) that

also Ef(X) = 0. Then the solution is

β∗

0 − β0 = 0

β∗

1 − β1 = 0

γ∗ = E{Xf(X)} = Cov(X, f(X))

σ∗ =
√

σ2 + E{(f(X)− γ∗X)2}.

Suppose now instead that Cov(X,Z) ≡ E(XZ) = ρ, but still E(X) = E(Z) = E(f(X)) =
0, while also assuming (without loss of generality) that E(X2) = E(Z2) = 1. Then we get

β∗

0 − β0 = 0

β∗

1 − β1 =
E{(Z − ρX)f(X)}

1− ρ2

γ∗ =
E{(X − ρZ)f(X)}

1− ρ2
.

Note that Cov(Z − ρX,X) = 0, so the numerator of the expression for β∗

1 − β1 is the
expected value of a product of something that is uncorrelated with X times a function of
X . Intuitively this should be a small number. In fact, if we further assume that (X,Z) is
binormal, and that f(X) = X2 −E(X2), then since V ar(X|Z) = 1− ρ2 and E(X|Z) = ρZ,
we get

E(ZX2) = E[ZE(X2|Z)] = E[Z(V ar(X|Z) + (E(X|Z))2] = E[Z(1− ρ2 + ρ2Z2] = 0,

which in fact implies that β∗

1 − β1 = 0 in this case.
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Example - Weibull distribution

Now φ(x) = exe−ex and Φ(x) = 1− e−ex, so log φ(x) = x− ex and log(1−Φ(x) = −ex. Note
also that EeW = 1. If we allow censoring, we get

E(D) = E

[

∆ log
σ∗

σ
+∆W − 1−∆

(
σ

σ∗
W +

β0 − β∗

0 + (β1 − β∗

1)
′Z + f(X)− γ∗X

σ∗

)

+ exp

{
σ

σ∗
W +

β0 − β∗

0 + (β1 − β∗

1)
′Z + f(X)− γ∗X

σ∗

}]

.

The last term equals (26) and is hence conditionally Weibull distributed given Z and X ,
with conditional expectation

Γ
(

1 +
σ

σ∗

)

exp

{
β0 − β∗

0 + (β1 − β∗

1)
′Z + f(X)− γ∗X

σ∗

}

.

The above formula for E(D) furthermore involves E(∆) = P (β0+β1

′Z + f(X) + σW < C)
and also E(∆W ), which may be fairly complicated expressions.

Let us therefore below consider the non-censored case. Note here that E(W ) = −a,
where a = 0.577215665 . . . is Euler’s constant. The expression then becomes

E(D) = log
σ∗

σ
− a(1− σ

σ∗
)− 1− β0 − β∗

0 + (β1 − β1

∗)′E(Z) + E(f(X))− γ∗E(X)

σ∗

+ Γ
(

1 +
σ

σ∗

)

E

[

exp

{
β0 − β∗

0 + (β1 − β∗

1)
′Z + f(X)− γ∗X

σ∗

}

.

]

Now if we assume that X,Z are independent, with Z being multinormally distributed with
covariance matrix given by the identity matrix, while E(X) = E(f(X)) = 0 (but X not
necessarily normal), then E(D) becomes

log
σ∗

σ
− a(1− σ

σ∗
)− 1− β0 − β∗

0

σ∗
+ Γ

(

1 +
σ

σ∗

)

exp

{
β0 − β∗

0

σ∗
+

(β1 − β∗

1)
′(β1 − β∗

1)

2σ∗2

}

×E exp

{
f(X)− γ∗X

σ∗

}

.

It is clear from this expression that the solution for β∗

1 is β∗

1 − β1 = 0, but note that
multinormality of Z is crucial for this result. No explicit solution can be found for the other
parameters, however, so numerical methods are needed. But it can be seen that if (i) X has
a distribution that is symmetric around 0, i.e. X and −X has the same distribution, and
(ii) f(X) = g(X)−E(g(X)) where g(−x) = g(x), then γ∗ = 0. To see this, differentiate the
above expression with respect to γ∗ and check that the result equals 0 if γ∗ is set to 0.

Example - using simulated data for Weibull distribution

Aaserud (2011) gives an example to show how the starred parameters can be found by
simulation. It is clear that the precision of the obtained values can in principle be made as
small as desired by increasing the number of simulations.
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Aaserud (2011) considered the true Weibull regression model

log T = β0 + β1Z1 + β2Z2 +X2 + σW

with β0 = 0, β1 = 5, β2 = 0.2, f(x) = x2, σ = 2; W being Gumbel distributed, independent
of Z1, Z2, X , which were assumed independent and standard normally distributed. 1,000,000
non-censored observations (ti, zi1, zi2, xi) were then drawn from the true model, while the
following misspecified model was fitted by maximum likelihood,

log T = β0 + β1Z1 + β2Z2 + γX + σW

By White (1982) it follows that the estimates of the parameters are approximately equal to
the starred parameters. The following values were obtained, β̂0 = 1.2479, β̂1 = 5.0060, β̂2 =
0.2169, γ̂ = 0.0099, σ̂ = 3.14.

From the theoretical computations in the Weibull example considered above, it follows
that the true values of the starred parameters are β∗

1 = β1 = 5, β∗

2 = β2 = 0.2 and γ∗ = 0.
The theoretical results are thus confirmed by the simulation. In the analytical approach we
did not get simple expressions for the remaining parameters, β0 and σ, and it is seen from
the simulation results that these are changed in the misspecified model. The reason is that
the effect of the X2 term has to be assimilated in the constant term β0 and σW .

C The covariate order method for censored exponen-

tial regression

Exponential regression means to estimate the hazard rate λ(X) as a function of the covariates
X for exponentially distributed data. A possible way of doing this is using the so called
covariate order method, described in more detail in (Kvaløy and Lindqvist, 2003, 2004).

In the case of a single covariate X , the basic idea of the method is to arrange the data
in increasing order of X , and then define a certain point process based on the corresponding
event data. We start by presenting the basic method, indicating how testing procedures
follow from the same idea, and then show how all this can be applied to Cox-Snell residuals
in AFT models.

Thus, assume that we have n independent observations (T1, δ1, X1), . . . , (Tn, δn, Xn),
where Ti = min(Yi, Ci), and Yi given Xi = x is exponentially distributed with hazard rate
λ(x). The method starts by arranging the observations (T1, δ1, X1), . . . , (Tn, δn, Xn) such
that X1 ≤ X2 ≤ · · · ≤ Xn. Next, for convenience, divide the observation times by the num-
ber of observations, n. Then let the scaled observation times T1/n, . . . , Tn/n, irrespectively
if they are censored or not, be subsequent intervals of an artificial point process on a “time”
axis s. For this process, let points which are endpoints of intervals corresponding to non-
censored observations be considered as events, occurring at times denoted S1, . . . , Sr where
r =

∑n
j=1 δj . This is visualised in Figure 6, for an example where the ordered observations

are (T1, δ1 = 1), (T2, δ2 = 0), (T3, δ3 = 1), . . . , (Tn−1, δn−1 = 0), (Tn, δn = 1).
First notice that if there is no covariate effect, i.e. λ(x) = λ, then the process S1, . . . , Sr

is a homogeneous Poisson process. The test presented in Section C.1 is based on this obser-
vation. Further, if λ(x) is reasonably smooth and not varying too much, then the process
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1
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︷ ︸︸ ︷. . .

Figure 6: Construction of the process S1, . . . , Sr.

S1, . . . , Sr could be imagined to be nearly a nonhomogeneous Poisson process for which the
intensity can be estimated by for instance kernel density estimation. Notice that the true
conditional intensity of the process S1, . . . , Sr at a point w is nλ(XI) where I is defined from
∑I−1

i=1 Ti/n < w ≤
∑I

i=1 Ti/n. Thus from the estimated intensity of the process, say ρ̂n(w),

an estimate of λ(XI) is found as λ̂(XI) = ρ̂n(w)/n.

The relationship between covariate values and corresponding points in the process S1, . . . , Sr

can generally be defined for instance by the simple function

s̃(x) =
1

n

j
∑

i=1

Ti, Xj ≤ x < Xj+1, (34)

and the estimator can then be written λ̂(x) = ρ̂(s̃(x))/n.
A number of different estimators ρ̂(·) can be obtained, one simple approach is to use a

kernel estimator giving

λ̂(x) =
1

nhs

r∑

i=1

K

(
s̃(x)− Si

hs

)

(35)

Here K(·) is a positive kernel function which vanishes outside [-1,1] and has integral 1, and
hs is a smoothing parameter. Under certain mild regularity conditions it can be shown that
this is a uniformly consistent estimator of λ(x), see Kvaløy and Lindqvist (2004) for proofs
and further details. The value of the smoothing parameter can for instance be chosen using
a likelihood cross-validation criterion. To avoid the estimate λ̂(x) to be seriously downward
biased near the endpoints, the reflection method for handling boundary problems in density
estimation is used, see for example Silverman (1986).

It may be remarked that for the situation with several covariates, the above method
can be used to fit generalized linear models in an iterative manner (Kvaløy and Lindqvist,
2004). Extensions of the method to Cox-regression is relatively straightforward by using
appropriate time transformations, see e.g. Kvaløy and Lindqvist (2003), but this is not the
focus in the present paper.

C.1 Testing for covariate effect

Recall that if there is no covariate effect, that is λ(x) ≡ λ, then the process S1, . . . , Sr

is a homogeneous Poisson process (HPP). This observation suggests that in principle any
statistical test for the null hypothesis of an HPP versus various non-HPP alternatives can
be applied to test for covariate effect in exponential regression models.
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A detailed account of this approach for testing for covariate effect in event time data is
given in Kvaløy (2002), who studied a number of different tests constructed based on the
covariate order method. The recommendation is to use an Anderson-Darling type test which
turns out to have very good power properties against both monotonic and non-monotonic
alternatives to constant λ(x), and thus is a good omnibus test for covariate effect which can
be used in any event time model. The test can be used both for continuous and discrete
covariates.
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