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Abstract
In mineral resource evaluation a careful analysis and assessments of the geology, assay data

and structural data is performed. One important question iswhere to position the exploration
boreholes, another is what method to use when analyzing the grade in the collected material. Here,
a challenge of this type is whether one should analyze the collected core samples with accurate
and expensive lab equipment or a simpler hand-held meter.

A dataset of about 2000 oxide observations is available, along with relevant explanatory vari-
ables, from a deposit in Norway. A Gaussian geostatistical model is used to predict the grade
parameter on block support. To improve the predictions, several new boreholes are planned, giv-
ing 265 additinoal samples. The associated uncertainty reduction is evaluated, and a resource
evaluation is performed with and without the planned data. Then the value of information of the
planned data is computed, using assumed costs, recovery rates and revenues. The data acquired
with the hand-held meter has almost the same value as the moreexpensive acquisition strategy;
given that the already established correlation between thetwo datasets is proven valid.

Keywords: geostatistics, Kriging, resource classification, oxide, value of information

1 Introduction

We analyze spatial data from a deposit in Norway. The main oremineral is a particular oxide,
but the resource also contains potentially economic levelsof other minerals. Several exploration
boreholes have been drilled. The currently available data consist of about two thousand observa-
tions of the oxide along the boreholes. The deposit is still under consideration for mining, and the
main purpose with this methodological paper is to evaluate different strategies for collecting more
data.

The oxide has been measured on crushed core samples using either a X-ray fluorescence (XRF)
spectrometer in the laboratory or a portable X-ray meter (XMET). The XRF data are considered to
be exact measurements of the oxide, providing perfect information at the locations where they are
made. The analysis procedure is time consuming. The XMET data are considered to be a noisy
observation of the true oxide level, providing imperfect information. These data are acquired more
time efficiently and at a lower cost than the XRF data.

We incorporate spatial dependence in the oxide by a Gaussiangeostatistical model. We as-
sume that the measurement sites (north, east and depth) are known without uncertainty, and further
assume known covariates in the form of a geological rock class, representing three levels of miner-
alization interpreted by the geologists. As is common in geostatistics, see e.g. Cressie (1993) and
Banerjee et al. (2004), we model the true oxide as a Gaussian random field (GRF) with mean values
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defined by a linear regression in the covariates, and with a covariance defined by a Matern covari-
ance function. We use maximum likelihood estimation (MLE) based on the currently available
oxide data to specify the parameters of the covariance model.

The existing XRF and XMET data, and the planned data, influence the predictions and the
prediction uncertainties in the spatial distribution of oxide. For a GRF the conditional covariance
depends only on the data locations, the covariance model (and the covariates), and not on the actual
data. As a result, it can be computed before the data are acquired. This allows us to evaluate the
gain by the of planned borehole data.

In the mining industry resources are classified into measured, indicated or inferred, depending
on the level of uncertainty. This is formalized through the JORC code (JORC, 2004). Since
every deposit is unique, the assessment includes multiple levels of geological information, assay
data, and structural data (Pilger et al., 2001). From a more methodological viewpoint, we discuss
several evaluation criteria in our context, computed at a set of resource blocks. The criteria are the
reduction of the marginal variances, the increase in slope and correlation, the decrease in weight
of the mean (Rivoirard, 1987) and the reduction of entropy (Le and Zidek, 2006). By todays
standards the final classification is done by competent persons based on these criteria, and several
other case-specific criteria.

We also use the value of information (VOI) to study the potential of the data collection schemes.
The VOI relates the probabilistic model to the decision about mining. The VOI is an information
criterion using monetary units explicitly (Raiffa, 1968).It is defined as the difference between the
prior value (before the planned data is collected) and the pre-posterior value (averaged over the
planned data). The VOI is always positive because more data allows us to make better informed
decisions. In practice the VOI is used to compare different data acquisition strategies over a range
of prices. In our situation we can compare XRF with XMET data acquisition for different mining
costs and price ranges.

The notion of VOI has been used in a number of applications recently, for instance medicine (Willan
and Pinto, 2005), environment (Bouma et al., 2009) and groundwater (Trainor-Guitton et al., 2011).
Similar assessements have also been done in the mining industry, see e.g. Froyland et al. (2004),
Alford et al. (2007), and Phillips et al. (2009). One of our contributions in the current paper is to
integrate VOI with spatial dependence in a mining context. Eidsvik et al. (2008), Bhattacharjya
et al. (2010) and Martinelli et al. (2011) consider the VOI for multivariate dependent models in
petroleum, but they do not use the VOI for block resource evaluation like we do here. Further, our
framework gives analytical closed form solutions for the VOI in this situation.

In Section 2 we provide some background for our case study anda geostatisical model for the
data. Section 3 contains the theory for spatial prediction and the various criteria for quantifying
the uncertainty reduction. Section 4 presents the VOI in ourcase. Section 5 applies the methods
to different data acquisition schemes in the oxide case study.

2 Data analysis and modeling

We first give some background on the oxide case study and perform some exploratory data
analysis. Next, a geostatistical model for the data is presented.
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2.1 Background and oxide data analysis

The deposit is about 2.5 km long, and is an intensively foldedand lens formed body surrounded
by mafic-felsic rocks. The protolith is thought to be a Proterozoic gabbroic intrusion, which has
been metamorphed into the present lithologies during the Caledonian orogeny at about 400 Ma.
The oxide has been formed in this process of high pressure metamorphism.

Geologists have defined three categories with increasing degree of mineralization. The classes
are termed class 1, class 2 and class 3. Class 3 has the highestaverage oxide levels. The class 3
and class 2 categories are dominating in the central parts ofthe ore. The degree of mineralization
is used as covariates in our analysis. The spatial classification has been done using the currently
available data by site geologists.

We observe the oxide by XMET or XRF data acquired in boreholes. The laboratory XRF-
data have been obtained from 10 meter long crushed sections (halves) of the core. The hand-held
XMET data have been collected for every 25 cm of the core before crushing and aggregated into
10 meter long XMET-composites in correspondance with the XRF-analyses. There are 103 sites
of XRF data and 1871 sites of XMET data. The 103 locations withXRF data are also measured
with XMET data. Therefore, this represents a partially heterotopic sampling scheme.

Figure 1 (left) displays histograms of the oxide data collected with XMET (top) and XRF
(bottom), while Figure 1 (right) shows a crossplot of the 103(XRF, XMET) measurement pairs.
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Figure 1: Left: Histogram of XMET (top) and XRF (bottom) observations. The oxide content ranges from0.39 to
7.40 percent for XMET with a mean of2.95. For XRF the range is from0.56 to 5.14, with a mean of3.80.
Right: The XMET data (second axis) plotted against the XRF data (first axis) at 103 common sites.

The degree of mineralization at the measurement location isalso indicated in the figure: class 1
(o), class 2 (.) and class 3 (+). The highest measurements of the oxide are typically collected at
locations with class 3 covariates. For the XRF histogram in Figure 1 (left, bottom) we might notice
modes representing the different classes, but there is muchvariability within each class.

We regress the XRF data on the class covariatesx ∈ {1, 2, 3} and a constant term. Using
standard least squares we get a linear fit for XRF ofŷ = β̃0 + β̃1x, whereβ̃0 = −1.10(0.39) and
β̃1 = 1.76(0.14), with standard errors in parantheses. This indicates a significant relation between
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the mineralization class and the oxide grade. The expected oxide responses are0.7 (class 1),2.4
(class 2) and4.2 (class 3), not dissimilar to the modes visible in Figure 1.

When we treat the XRF data as perfect observations of the oxide grades, and the XMET ob-
servations as noisy measurements of the same oxide grades, it is possible to estimate the standard
error of the XMET data. Using a sum of squares approach to the 103 pairs of (XRF, XMET)
measurements in Figure 1 (right), we get a noise variance of XMET equal toτ̂ 2 = 0.352.

2.2 Geostatistical modeling and parameter estimation

Figure 2 (left) shows the histogram of the residuals of XMET data after subtracting an ordinary
least squares fit to the mineralization covariate. The residuals are close to Gaussian distributed,

−4 −3 −2 −1 0 1 2 3 4
0

100

200

300

400

500

600

700
Histogram of residuals

N
u

m
b

e
rs

 i
n

 b
in

s

Ordinary least squares residuals
0 50 100 150 200 250 300 350 400 450

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Empirical variogram

Distance (m)

V
a

ri
o

g
ra

m

Figure 2: Left: Histogram of fitted residuals using ordinaryleast squares estimation for the regression parameters.
Right: Empirical variogram of ordinary least squares residuals.

showing that the multimodal nature seen in Figure 1 is mainlydriven by the mineralization co-
variate. In Figure 2 (right) we show the empirical variogramcomputed from the residuals. The
variogram starts at about0.25 at zero distance, and flattens out at approximately0.55 (sill) at about
80 (range) meter distance.

We next present a joint geostatistical model for the XRF and XMET data. The XRF response
(y1(s)) and XMET response (y2(s)) at a (north, east, depth) locations are modeled by

y1(s) = x(s), y2(s) = x(s) +N(0, τ 2).

Here, the true oxide at the (north, east, depth) locations is denotedx(s). The XRF data pro-
vides perfect information about oxide at the location, while the XMET data is imperfect infor-
mation of oxide with measurement noise varianceτ 2. The noise terms are assumed to be in-
dependent from one location to another. We model the oxide asa GRF with expected value
µx(s) = ht(s)β, whereht(s) includes a constant term and the mineralization covariate at site
s, andβ = (β1, β2)

t is a regression parameter. We choose a Matern covariance model to describe
the spatial covariance structure of oxide. Setting the smoothness parameter of the Matern to3/2
we haveCov(x(s), x(s′)) = σ2(1 + φh) exp(−φh) for distanceh = ||s− s′||. Then the variance
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is σ2, andφ indicates the strength of spatial correlation (largeφ means faster spatial decay of the
correlation). Many other covariance models could have beenuseful (Banerjee et al, 2004).

The collection of XRF and XMET data is denoted byy = (yt
1
,yt

2
), where

y
1
= (y1(s1,1), . . . , y1(s1,103))

t, y
2
= (y2(s2,1), . . . , y2(s2,1871))

t.

Here,103 of the XMET locations equal the set ofs1,1, . . . , s1,103 XRF measurement locations.
Using the GRF model, the 103 XRF data are represented byy

1
∼ N(Hy1β,Cy1), while the

1871 XMET data are represented byy2 ∼ N(Hy2β,Cy2 + τ 2I). MatricesHy1 andHy2 consist
of the explanatory variables,ht(s), at the XRF and XMET measurement locations. The size
103× 103 covariance matrixCy1 describes the spatial covariance between the XRF data. The size
1871 × 1871 covariance matrixCy2 + τ 2I inherits spatial correlation from the GRF and contains
an additive diagonal term because of the XMET measurement noise. Altogether, we summarize
the model by

y ∼ N(Hyβ,Cy), Hy =

(

Hy1

Hy2

)

, Cy =

(

Cy1 Cy1,2

C t
y1,2

Cy2 + τ 2I

)

, (1)

where the size103×1871 cross-covariance matrix between they1 andy2 data is denoted byCy1,2 .
It contains spatial covariances in the GRF model for oxide.

The currently available datay can be used to specify the unknown parameters of the model.
Here, we use MLE to estimate the covariance and regression parameters. Using (1) the log-
likelihood is

l(y;β, σ, φ, τ) = −1

2
log |Cy| −

1

2
(y −Hyβ)

tC−1

y (y −Hyβ). (2)

For fixed covariance parameters the MLE ofβ is analytically available:

β̂y = SyH
t
yC

−1

y y, Sy = (H t
yC

−1

y Hy)
−1. (3)

In order to compute the MLE of the covariance parameters we use a Fisher-scoring updating
scheme, where thêβy estimate is also updated at every iteration of the procedure, see e.g. Mardia
and Marshall (1984). After some Fisher-scoring iterations, the parameter values converge to the
MLE σ̂, φ̂ and τ̂ . Suitable starting values for the covariance parameters are obtained from the
empirical variogram in Figure 2 (right).

The covariance of the estimatorβ̂y is given bySy in (3), evaluated as a function of the MLEsσ̂,

φ̂ andτ̂ , which are plugged into the covariance matrixCy. The asymptotic covariance of(σ̂, φ̂, τ̂)
is the inverse second derivative of the log-likelihoodl in (2) with respect toσ, φ andτ . For our
dataset the MLEs arêβ0 = −0.18 (0.07) andβ̂1 = 1.32 (0.03), andσ̂ = 0.62 (0.02), φ̂ = 0.095
(0.006), and τ̂ = 0.45 (0.02). The standard errors are in parantheses. Note that the regression
parameter estimates based on both XRF and XMET data, and using the spatial model, differs from
the standard least squares estimates based on XRF data alone.

3 Uncertainty reduction obtained by drilling more boreholes

A mineral resource is a concentration or occurrence of material of intrinsic economic interest
in or on the Earth’s crust in such form, quality and quantity that there are reasonable prospects
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for eventual economic extraction (JORC, 2004). Dependent on the level of confidence in the ge-
ological data, the data density and data configuration, a mineral resource can be categorized as
inferred, indicated and measured (with decreasing uncertainty). An ore reserve is the economi-
cally mineable part of a measured and/or indicated mineral resource. When doing the transition
from a resource to a reserve, a number of modifying factors are applied. Examples of such factors
are mining- and beneficiation methods, legal- and environmental issues, market-, social- and gov-
ernmental factors. The deposit in question can potentiallybe mined in an open pit, possibly going
underground at a later stage. The decisions about opening the mine and choosing mining strategies
depend on all modifying factors. We focus on quantitative approaches based on the geostatistical
modeling.

A resource will be classified into the different categories by a competent person. She or he is a
member of a recognized professional organization and has sufficient relevant experience. The clas-
sification will be done based on a detailed understanding of the mineralization and on uncertainty
indicators. What indicators to use are deposit specific and in practice the choice of the competent
person, and we will not try to draw any conclusions here.

We define3740 resource blocks of size203 m3 inside a possible pit where we predict the oxide
grade. The oxide grade in a block is denotedx = (x(s0,1), . . . , x(s0,nb

))t, wherenb = 64 is the
block discretization in our case. The final grade estimate ina block is the average of thenb in-block
estimates.

Recall that the currently available datay consists of 1871 XMET and 103 XRF observations.
The mining company considers acquiring more XRF or XMET data. About 20 new boreholes have
been planned, giving265 additional measurements of either XRF or XMET data. We denote this
new data byz = (z(sz,1), . . . , z(sz,265))

t.
The design of boreholes should cover the resource adequately. If a block is very close to a

borehole, we expect low uncertainty in this block. When we move away from a borehole, the
uncertainty increase. Without the planned dataz, these distances are obviously larger. In addition
to distances, it is preferable to have data in different directions (azimuths), since these data will
carry more information about small scale trends and the prediction reflects interpolation rather than
extrapolation. When we collect the new dataz, we cover more directions. Note that the locations
of the planned data are already determined. As part of the evaluation, we will remove individual
boreholes from the analysis, but we will not consider the spatial design problem here (Zimmerman,
2006).

3.1 Spatial prediction and prediction variance

Distance or angle criteria do not include geostatistical knowledge, such as the uncertainty level
or degree of spatial correlation. A natural starting point for optimal geostatistical prediction is the
joint distribution ofx, z, andy. Given the parameterβ and the covariance model, this distribution
is the multivariate Gaussian:





x

z

y



 ∼ N









Hx

Hy

Hz



β,





Cx Cx,y Cx,z

C t
x,y Cy Cy,z

C t
x,z C t

y,z Cz







 , (4)

whereCx denotes the covariance matrix for the block grade variables, whileCz is the covariance
matrix of the new dataz. If z represents XMET data, the latter covariance matrix has a spatial part
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and an additive diagonal part with the nugget effectτ 2. If z represents XRF data, this is perfect
information, and there is no nugget effect inCz. The cross-covariance matricesCx,z, Cx,y and
Cy,z are calculated using the spatial covariance model for the oxide grade.

The conditional mean ofx andz given current datay is

µx|y = Hxβ̂y +Cx,yC
−1

y (y −Hyβ̂y), µz|y = Hzβ̂y +Ct
y,zC

−1

y (y −Hyβ̂y),

where we simply plug in the regression parameter estimateβ̂y. We also plug in covariance param-

etersσ̂, φ̂ andτ̂ in all covariance and cross-covariance matrices. When we write out the regression
parameter̂βy as a function of the datay, we get

µx|y =
(

M x,ySyH
t
y +Cx,y

)

C−1

y y, µz|y =
(

M z,ySyH
t
y +Ct

y,z

)

C−1

y y, (5)

whereMx,y = Hx −Cx,yC
−1

y Hy andM z,y = Hz −Ct
y,zC

−1

y Hy.
Under the Gaussian modeling assumptions, the kriging predictor in (5) is optimal, i.e. the

unbiased predictor with minimum variance. In practice predictions based on a search ellipsoid
are commonly used. One reason for constructing search ellipsoids is computational efficiency, but
in our case the data size is not that massive. Another reason could be non-stationarity, but then
there are no clear approaches for consistently making search ellipsoids and assessing parameter
estimates of a non-stationary geostatistical model. We have chosen to use all data in our evaluations
here.

While it is hard to include the uncertainty of the covarianceparameters in (5), we can easily
account for the uncertainty in the regression parametersβ̂y, see e.g. Cressie (1993). The resulting
conditional covariance expressions are

Cx|y = Cx−Cx,yC
−1

y C t
x,y+Mx,ySyM

t
x,y, Cz|y = Cz−C t

y,zC
−1

y Cy,z+M z,ySyM
t
z,y, (6)

where the last terms withM x,y, M z,y andSy compensate for the increased variability caused by
estimatingβ.

Denote the average block grade byx̄ =
∑

i xi/nb. We denote the Gaussian density ofx̄ given
y by π(x̄|y) = N(µx̄|y, Cx̄|y). This is computed for every resource block, and we define Stdy as
the length3740 vector of Kriging standard errors (

√

Cx̄|y), conditional on the current datay.
The procedures can be extended to include both current datay andz. The conditional mean of

x, given both data, is
µx|yz = µx|y +Cx,z|yC

−1

z|y(z − µz|y), (7)

whereCx,z|y is the covariance ofx andz, giveny. This conditional mean is a linear function of the
prospective dataz. Note that the regression parameter estimatorβ̂yz computed from all data and all
covariatesH t

yz = [H t
yH

t
z] is linear inz. The associated covariance isSyz = [H t

yzC
−1

yz Hyz]
−1,

and this can be accounted for in the prediction variance given all data. Just like in the situation with
only current datay, we define Stdyz as the Kriging standard errors of average block grades, now
given bothy andz data. The reduction in prediction variance depends on the locations of the new
observationsz, relative to each other, and to the current datay and the resource blocksx. Col-
lecting XRF data in the planned boreholes provides a larger reduction in prediction variance than
with XMET, but in general the uncertainty reduction is a complicated function of the covariance
parameters.
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3.2 Slope, correlation and weight of the mean

Rivoirard (1987) uses the regression between the predictedand true block grades, called the
slope, to assess the effects of different Kriging neighborhoods. This criterion has also been used
to quantify the degree of measured or indicated resources inmining (Vann et al., 2003). For each
resource block we have

Slopey = Cov(x̄, µx̄|y)/Var(µx̄|y) = (wtGx,yC
−1

y Ct
x,yw)/(wtGx,yC

−1

y Gt
x,yw), (8)

wherewt = 1
t/nb and1 is a vector of ones. Moreover,Gx,y = Mx,ySyH

t
y +Cx,y is recognized

in (5). The correlation is a normalized version of the slope;

Corry = Corr(x̄, µx̄|y) = Slopey ·
√

Var(µx̄|y)/Var(x̄). (9)

The weight of the mean (Rivoirard, 1987) is another useful quality indicator in kriging, see
Vann et al. (2003). Given datay, the weight of the mean is interpreted as the relative impactof the
regression, compared with that of the simple Kriging predictor Cx,yC

−1

y y. From the prediction
formula in (5) we recognize the simple Kriging predictor as the last term, and the regression effect
in the first part. When the deposit is more densely sampled, the second term will dominate over
the first term. We have

Weighty = (wtMx,ySyH
t
yC

−1

y 1)/[(wtM x,ySyH
t
yC

−1

y 1) + (wtCx,yC
−1

y 1)]. (10)

The slope, correlation and weight of the mean are computed for each resource block. In total,
they can be represented as length3740 vectors, with one value for each resource block. They can
be defined similarly conditioning on both current datay and the new dataz. When we get more
accurate predictions of the grade, the slope is closer to1, the correlation is closer to1, while the
weight of the mean is closer to0. The effect is expected to be clearer with perfect information
(XRF) than with imperfect data (XMET).

4 Information criteria

We next discuss criteria treating all blocks jointly, and let x∗ denote the oxide variable at the
center of each of the3740 resource blocks. We compare the information content using the entropy
or the prior or pre-posterior value (and VOI) of current datay and prospective dataz.

4.1 Reduction of entropy

Entropy is a very common measure of information content, seee.g. Cover and Thomas (1991),
Le and Zidek (2006) and Wellmann et al. (2011) for a spatial perspective. The entropy (disorder)
decreases with more information. It is defined as the negative expected value of the log density.
For a Gaussianπ(x∗) = N(µ,Σ) we have entropy

Ent(x∗) = −
∫

π(x∗) log π(x∗)dx =
n

2
log(1 + 2π) +

1

2
log |Σ|. (11)

The entropy reduction when acquiring the new dataz becomesδEnt= Ent(x∗|y)−Ent(x∗|y, z) =
1

2
(log |Cx∗|y| − log |Cx∗|yz|), whereCx∗|y is the covariance at all resource blocks giveny, while
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Cx∗|yz is conditional on bothy andz data. The determinant expressions can be evaluated before
the actual data are collected.

Note that the entropy is a scalar. The reduction in entropy can thus be regarded as a univariate
summary of the information associated with the (updated) distribution. Just like for the other
criteria introduced in Section 3, it is hard to relate the entropy to costs and revenuess, see e.g.
Chapter 11 in Le and Zidek (2006).

4.2 Value of information of drilling more boreholes

The VOI is the maximum monetary amount a decision maker should pay to collect data. By
tying money and the actual decision makin to the statisticalmodel, the VOI goes beyond mere
uncertainty reduction. In our context there are two levels of decisions. The downstream decision
is whether to open the mine or not. This question is incorporated to solve for the second level of
decisions; whether one should collect XMET or XRF data in theplanned boreholes, or no further
data. If the VOI is larger than the price of the XMET or XRF data, we decide to purchase more
data.

Within a decision analytic framework, the VOI is computed before data acquisition, using the
expected revenues and costs from the mine. It is defined as thedifference between prior and pre-
posterior value. The VOI is always positive, since the pre-posterior value computation gives us
the chance to make better informed decisions, on average. When we compute the VOI, we make
certain assumptions about the mining strategy. First, we assume that one either mines the entire set
of resource blocks for oxide, or nothing at all. This would neglect the value of being able to change
the strategy along the way. This is inherent in the real option approach, see e.g. Martinez (2009),
but not taken into account here. Next, we assume there is a fixed cost for mining one ton of oxide
ore, and this is the same for all blocks. In addition, the blocks with a estimated grade above cut-off
are processed after mining, whereas the waste rock (estimated grade below cut-off) is not processed
any further. This means that a fixed fraction of the blocks contain possible revenues, but that there
are costs associated with all blocks.

Let rl be the revenue factor associated with resource blockl = 1, . . . , 3740, which gives the
estimated revenue once it is multiplied with the estimated grade. We setrl to 0 outside the ore,
since these blocks are not processed further. The revenue level rl is the product of the price of
product extracted from the oxide, block volume and certain processing parameters. Let further
kl be the cost of mining and processing a resource block. If block l is waste rock, the cost of
processing is not included inkl. We discuss bothrl andkl further in the examples below. Let
r = (r1, . . . , r3740)

t be the vector of revenue levels, andk = (k1, . . . , k3740)
t the costs in the set of

resource blocks. The prior value is computed based on the currently available datay:

PV = max(py, 0), py = rtµ
x
∗|y − kt

1, (12)

whereµ
x
∗|y is the prediction of the oxide grades given the current datay. Here, the risk neutral

mining company decides to develop the mine when the expectedprofit py is positive.
Consider now what happens when we collect more dataz. The new dataz are either XMET

or XRF in the planned boreholes. The pre-posterior value is

PoV=

∫

z

max(pyz, 0)π(z|y)dz, pyz = rtµ
x
∗|yz − kt

1, (13)

10



whereµ
x
∗|yz is the prediction of the grades given the current datay and planned dataz. We

integrate over all possible prospective data outcomesz. The density of the planned dataz, denoted
π(z|y) = N(µz|y, Cz|y), is defined by (5) and (6). The VOI is

VOI = PoV− PV.

We decide to purchase the dataz if the VOI is larger than the price of data acquisition. The XRF
data is perfect information, and the VOI of XRF is always larger than the VOI of the imperfect
XMET data. However, the XRF data has a higher price than the imperfect XMET data.

The VOI is also commonly used to compare different acquisition schemes. Say we had a
budget forcing us to drill less boreholes. Then VOI can help us decide where to focus, i.e. which
boreholes to drill. Similarly, one could compare the VOI of XMET data at all boreholes with the
VOI of XRF over a subset of boreholes.

With the Gaussian modeling assumptions, the pre-posteriorvalue is analytically available. This
was shown for the univariate situation in Bickel (2008). Here, to get the PoV, we must solve an
integral over the multivariate prospective dataz in (13). However, the only relevant function ofz
is the linear combination defined as the decision variablep = pyz = rtµ

x
∗|yz − kt

1, which enters
in (13). The remaining264 dimensions of thez variable are irrelevant for the decision. Given
the current datay, the decision variablep, being a linear function ofz as in (7), has a univariate
Gaussian distribution

π(p|y) = N(µp, σ
2

p), µp = rtµ
x
∗|y − kt

1, σ2

p = rtCx
∗,z|yC

−1

z|yC
t
x
∗,z|yr,

where the mean and covariances are defined from the joint Gaussian of (x∗t,yt, zt)t similar to
that in (4). For the covariances expressions inσ2

p, we additionally account for uncertainty in the

regression parameter estimatorβ̂yz, similar to what was done in Section 3.
The pre-posterior value becomes

PoV =

∫

Rn

max
(

rtµ
x
∗|yz − kt

1, 0
)

π(z|y)dz =

∫ ∞

−∞

max(p, 0)π(p|y)dp

=

∫

p>0

p
1

√

2πσ2
p

exp

(

−(p− µp)
2

2σ2
p

)

dp =

∫

v>−µp/σp

(µp + vσp)
1√
2π

exp

(

−v2

2

)

dv

= µp[1− Φ(−µp/σp)]− σp

[

1√
2π

exp

(

−v2

2

)]∞

−µp/σp

= µp[1− Φ(−µp/σp)] + σpφ(−µp/σp)

= µpΦ(µp/σp) + σpφ(µp/σp), (14)

whereφ(·) is the probability density function andΦ(·) the cumulative distribution function of the
standard Gaussian. The derivation in (14) uses a transformation of variables,p = µp + vσp,
and symmetry properties of the standard Gaussian distribution for v. Moreover, we use that
∫

v exp(−v2

2
)dv = − exp(−v2

2
) + constant. Using this analytical result and (12), the resulting

VOI in (14) becomes VOI= µpΦ(µp/σp) + σpφ(µp/σp)− max(py, 0).

5 Results and discussion

We now evaluate the planned boreholes using the different criteria for uncertainty reduction
(Section 5.1), resource classification (Section 5.2) and VOI (Section 5.3). In Section 5.4 we study
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the influence of individual boreholes.

5.1 Uncertainty reduction by XRF or XMET information

Figure 3 shows predictions (b) and prediction uncertainty (c) of the oxide grade along a depth
profile along a north-east line (a). The predictions and prediction uncertainties are conditional on
the current datay. In Figure 3 a) we show the current XRF data locations (crossed), the current
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Figure 3: Predictions of the oxide grade in % in (b) and prediction uncertainties in (c) along the vertical profile
illustrated by the NE-SW-trending line shown in (a). Both predictions and the standard errors are based on the
currently available borehole data.

XMET data locations (dots), the planned borehole locations(circles), and the locations of the
resource blocks (square). The prediction in Figure 3 b) shows high levels of oxide in the ore
zone. The prediction variance is naturally smallest in the vicinity of current boreholes. Note that
the planned data are in the selected pit region. With the additional measurements, the prediction
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uncertainty along the selected line, and in the blocks as a whole, would go down. We will next
quantify this uncertainty reduction.

Table 1 shows the values of different evaluation criteria. The XRF data are of course more in-

Table 1: Various evalaution criteria: Distance to nearest borehole, Kriging std, slope, correlation, weight of
mean and entropy, using current data, and with planned XRF and XMET borehole data. The distance, standard
error, slope and weight of the mean are vectors for all resource blocks. Here, we display the averages over all
blocks.

distance std slope corr weight of mean entropy
Current data 55.1 0.59 0.62 0.21 0.73 Ent=-2930
XMET data 48.0 0.57 0.69 0.27 0.63 δEnt=43.0
XRF data 48.0 0.57 0.70 0.29 0.62 δEnt=72.4

formative than XMET data, and for some criteria we clearly gain some by acquiring XRF instead
of XMET data. For instance, the reduction in entropy is almost twice as large when collecting
XRF. Of course, a pure distance criterion does not separate between XRF and XMET in the new
boreholes. For the Kriging std the average difference between XRF and XMET collection is minis-
cule. There is a slight improvement in the slope, correlation and weight of the mean criteria, but
the added value of XRF, compared with XMET, is small considering the reduction from the current
data.

Figure 4 illustrates the variability in the Kriging standard error, slope, correlation and the
weight of mean at the 3740 resource blocks. The histograms show current values (left), with
XMET data (middle) and with XRF data (right). Clearly, more data pushes the histogram of the
standard errors (top) towards smaller values, the slope andcorrelation (middle) to higher values,
and the weight of the mean (bottom) to smaller values. Thus, at many resource blocks there is
clearly added information in the planned borehole data. Theimprovement going from XMET to
XRF is visible for resource blocks close to the planned boreholes, but not far away from these
locations. In fact, the Kriging prediction errors have larger variability after conditioning on more
information. Of course, the planned data acquisition is guided to the spatial domains of most
interest, and the reduction of uncertainty is highest wherewe want to predict the grade accurately.

5.2 Resource classification

A resource classification is based on multiple criteria and experience of the local geology, usu-
ally evaluated by a so-called competent person. Here, we simply compare the presented geostatis-
tical criteria and classify based on thresholding. It is notan attempt to do a resource classification
in compliance with the JORC-code. The categorization limits are obtained from the currently
available data using geometric considerations as follows:For each resource block we compute the
azimuth angles and distances to the five nearest borehole measurement locations. These are used to
group the resource blocks in four categories: Category 1: The fifth closest point is within30m and
the standard deviation of the azimuth angles to data locations within100 m is between80 and130
degrees. Category 2: The fifth closest point is between30m and60m and the standard deviation
of the azimuth angles to data locations within100 m is between80 and130 degrees. Category 3:
The fifth closest point is within60m and200m and the standard deviation of the azimuth angles to
data locations within100 m is between80 and130 degrees. Category 4 is defined by the remaining
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Figure 4: Histogram of evaluation criteria at all resource blocks. Kriging standard errors (top), slope (middle, top),
correlation (middle, bottom) and weight of the mean (bottom). The left displays are based on current data,
middle displays on current data and XMET in planned boreholes and right displays on current data and XRF
in planned boreholes. The vertical dashed lines are the criteria-based separation of measured, indicated and
inferred resources.

resource blocks. The azimuth variability condition ensures that there are proximal measurements
in more directions, not only one borehole. Given this categorization of resource blocks, the75
percentiles of all criteria are computed from the Kriging errors, slopes, correlation and weight of
the mean in resource blocks belonging to each category. These values define the thresholding val-
ues for measured, indicated and inferred. They are displayed by vertical dashed lines in Figure 4.
Recall that this is based on the current boreholes. The same thresholds are next applied for the
planned data as well.

The categorization we have done here is used to study the information content in the new data
and allows us to compare the methodologies. In particular, we aim to study the effects of XMET
and XRF data acquisition in the planned boreholes. The geometric criteria based on distances and
angles is easy to understand, but it is not useful to compare the XRF and XMET data, since they
are equally informative in terms of distances and angles.
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In Table 2 we show the resulting tonnages in the measured, indicated and inferred categories.
Here, the resource blocks falling in the measured, indicated and inferred categories are converted to

Table 2: Resource classification (in million tonnes) based on current data, XMET data in planned boreholes
and XRF data in planned boreholes. The measured, indicated and inferred classification is done from thresholds
in different evaluation criteria: Distances, kriging standard deviations, slope, correlation and weight of mean.

Distance Kriging Std Slope Corr Weight
Current data

Measured 9.0 8.8 8.8 8.8 8.5
Indicated 20.8 21.3 21.9 21.2 21.4
Inferred 10.6 10.4 9.8 10.5 10.6

Current data and XMET in planned boreholes
Measured 13.8 14.2 15.1 14.2 15.2
Indicated 21.6 21.5 21.0 21.4 20.0
Inferred 5.1 4.8 4.5 5.0 5.4

Current data and XRF in planned boreholes
Measured 13.8 15.0 16.0 15.0 16.7
Indicated 21.6 21.0 20.4 20.8 18.7
Inferred 5.1 4.6 4.2 4.8 5.1

tonnes of resource. The block volumes outside the ore are notincluded in the calculation. We use
a cut-off value of2.5 % (based on current data) to separate waste from ore. With thecurrent data,
using the Kriging standard error as criterion, there are about 9 million tonnes of measured resource
and 20 million tonnes indicated. There are only slight variations between the criteria using our
thresholding method. Obviously, with more data, there are more resource blocks in the measured
category. When we collect XMET data in the planned boreholes, the measured category in Table
2 has around 14-15 million tonnes. The indicated category isaround 21 million tonnes. Some
blocks have gone from indicated to measured, while others have gone from inferred to indicated.
The sum of measured and indicated resources is close to 40 million tonnes. Collecting XRF data in
the planned boreholes gives only slightly larger numbers inthe measured category: 15-17 million
tonnes. Note that the pure geometric distance criterion hasthe same number as for XMET (13.8
million tonnes measured), since it uses no uncertainty modeling. The indicated resource blocks
are about 19-21 million tonnes. In summary, there is a clear increase in measured tonnages going
from current to XMET, but not such an improvement when collecting XRF data instead of XMET.

Recall that these numbers are based on our subjective criteria. A real-life resource classification
would have been based performed by a competent person in compliance with the JORC-code or
other similar codes.

5.3 Value of XMET or XRF information

In order to assess the value of XMET and XRF information, we need to specify revenues,
costs, processing parameters and tonnages. In the following we present our assumed levels for
costs, revenues and recovery rates. These would be subject to change based on the market level.
The performance in the mining and processing processes are mainly dependent on three factors.
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These factors are the mining recovery (here set to 95 %), the recovery from the beneficiation, i.e.
separating mineral from gangue in the processing oplant (here set to 55 %), and the dilution in the
pit (here set to 5 %). The density (3.38 ton/m3) of the ore is assumed known and independent of
the grade. The block volume isV = 20 m3 for a full block inside the ore. We play with the market
price for the oxide, setting a low level of $ 720 per ton, intermediate level of $ 770 per ton, and
high $ 820 per ton. These inputs define a revenue factor which gives the estimated income from
a block when it is multiplied with the predicted grade. The block revenue factor for the oxide is
thenrl = 770 · 0.95 · 0.55 · (1− 0.05) · 3.38 · 20 = $ 10.3 million, assuming the intermediate price
level and no void volume outside the final pit. Assuming a block with a oxide-grade of 4 %, the
estimated revenue from the block is0.04 · 10.3 = $ 0.41 million.

The operating costs in the mine (pit) for an ore block are set to $ 3 per ton, whereas the
processing costs in th beneficiation plant are assumed to be $8 per ton. A block of ore will thus
costkl = 11 · 3.38 · V = $ 0.30 million in mining and processing, giving a profit of0.41− 0.30 =
$ 0.11 million per block when the grade of oxide is 4 %. A block of waste will be drilled, blasted,
loaded and transported, but instead of being transported tothe processing plant, it will be deposited.
The operating cost for this treatment is assumed to be $ 3 per ton, i.e the cost per block of waste
rock iskl = 3 · 3 · V = $ 0.07 million, where the density of waste rock is set to 3 ton/m3. Out of
the3740 blocks, there are1676 ore blocks, while the rest is waste rock. Again,2.5 % is used as a
cut-off alue, separating waste from ore.

Below we will study sensitivity to different cost and processing parameters. Using the above
inputs, the intrinsic value of the oxide is estimated to - $38 million when the oxide product price
is low, -$ 2 million when the oxide product price is intermediate, and $35 million when the
oxide product price is high. In the first two situations the associated a priori values become0. The
posterior value is always higher than this, but only significantly larger in the intermediate situation.
Then, the VOI of XMET data in the planned boreholes is $0.74 million, and the VOI of XRF data
is $ 0.84 million. This might make the acquisition of XMET and XRF datauseful, depending on
the actual prices of acquisition.

We next compute the VOIs as a function of the mining recovery rate and the operation costs
in the pit. In Figure 5 we study the VOI of XRF (left) and the difference in VOIs (right), with
operation costs (first axis) and the mining recovery (secondaxis). The results are presented for
the three levels of the oxide product price (top, middle and bottom). In this case with a one-stage
decision about whether to open the mine or not, the VOIs are high only for a narrow band of
mining costs and recovery rates. Parameter settings in thisband correspond to prior values near0,
and there is much added value in acquiring more XRF or XMET data. Outside the band the costs
are either i) too high, meaning that the oxide resource becomes too expensive to produce, with or
without data, or ii) too small, so we would be better off just opening the mine, without collecting
more data. At the highest levels, the VOI of XRF is $ 1.6 million, and the VOI of XMET is just
a little bit smaller. The VOI of XRF data is significantly positive for a relatively broader range of
cost and recovery parameters (Figure 5, right).

The VOI must be compared with the actual data prices. The drilling cost of the new boreholes
is estimated to $0.84 million in this case. The additional price of XRF lab measurements is $0.13
million, and the total price of XRF data is then $0.97 million. Depending on the expected price of
the oxide product and the assumed costs and recoveries, we can decide if the additional boreholes
are worth the effort. With the specified levels (mining cost $3 million per tonn, mining recovery
95 %), it seems the boreholes might just be valuable if the price of the oxide products is near the
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Figure 5: Value of information as a function of the mining costs (first axis) and mining recovery rate (second axis).
The value of XRF information (left) and the added value of XRFinformation compared with XMET informa-
tion (right). Top: the oxide product price is relatively low. Middle: the oxide product price is intermediate.
Bottom: the oxide product price is relatively high.

intermediate range. Only for that oxide price level is the planned XRF or XMET data likely to help
us make better decisions about the oxide resource.

In Figure 6 (left) we show the decision regions as a function of XMET and XRF data acquisition
prices. This is computed for the intermediate price range ofoxide ($ 770 per ton) and for the 95 %
recovery rate and3 million per ton mining cost. The decision regions are computed by selecting
the data type that gives the largest added value, compared with the price of data. This entails a
selection rule of:

Decision= argmax
{

VOIXRF − PriceXRF,VOIXMET − PriceXMET , 0
}

, (15)

where we decide to purchase XRF if VOIXRF − PriceXRF is the highest element in the length
three vector in (15). If none of the first two entries are positive, we decide to purchase no more
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Figure 6: Decision regions. Left: Whether to purchase full XMET or XRF data, or nothing. The first axis represents
the price of XMET data. The second axis is the price of XRF data. Right: Whether to purchase XRF in the
seven top-ranked boreholes or XMET in all boreholes, or nothing. The first axis represents the price of drilling
10 m. The second axis is the price of processing XRF data per10 m.

data. In our situation, with PriceXMET = $ 0.84 million we are just within the ’Nothing’ region,
and would decide not to purchase this data. Recall that the price of XRF is always higher than the
price of XMET, and the relevant price ranges are above the straight line in Figure 6 (left). XRF
data is the most lucrative data type for very small laboratory prices. For more expensive laboratory
analysis, XMET data is preferable.

5.4 The influence of individual boreholes

We now study the effect of individual boreholes among the planned data. We compute the
different evaluation criteria when one borehole is removedfrom the set of planned holes. This
provides a ranking of the individual boreholes in terms of information content.

Table 3 displays the ranking of individual boreholes for allcriteria. For the Kriging std criterion

Table 3: The rank of the seven most valuable boreholes based on different criteria: Kriging std, slope, corre-
lation, weight of mean, entropy and the VOI.

Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Rank 6 Rank 7
Std 7 8 12 5 16 13 14

Slope 21 1 15 9 16 14 11
Corr 7 21 8 1 16 5 12

Weight 7 8 21 1 16 5 12
Entropy 7 8 19 13 5 12 14

VOI 7 8 5 1 16 11 12

the Rank 1 borehole is the one that causes the largest increase in average prediction uncertainty
when it is removed from the set of planned boreholes. For slope the Rank 1 borehole is the one
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that causes the largest decrease in average parameter value. Equivalently for correlation, weight of
mean and entropy. The Rank 1 borehole for VOI is the one that causes the smallest VOI when it is
removed from the set of planned boreholes. Of course, the lengths of the boreholes are important,
but note that the measurements within a borehole tend to be very dependent, so it is probably not
that interesting to evaluate the value per measurement. Thelocation of boreholes, relative to the
current data and the resource blocks is of course relevant.

Borehole7 and8 come out as the most informative using most evaluation criteria. Borehole
7 is the longest borehole with33 observations, borehole8 has21 and is the third longest. There
are slight variations in the rankings, but the one criteria standing out is the slope which ranks
borehole21 on top, and has7 and8 just outside the top seven list. Borehole21 contains only11
observations, and is just outside rank 7 in most of the other criteria. A possible explanation for
the rankings of slope is the skewed distribution of slope in Figure 4. Removing data will push the
slopes away from 1, but the relative effect is not as clear as for the other criteria, especially when
considering the average slope. We note that the correlationand weight of the mean criteria appear
a bit like the slope, while the more commonly used uncertainty reduction criteria; kriging standard
deviation and entropy (and VOI) are different from slope, and quite similar to each other.

We next study the VOI of XRF data in the seven top-ranked boreholes. This is compared with
the VOI of XMET data in all 21 boreholes. Like in Section 5.3, we create decision regions for
various prices of XRF data and XMET data. For any set of acquisition prices, the decision is to
purchase the data with the largest VOI compared with the associated price of data. We compute
this as a function of the price of drilling10m and the (additional) price of XRF processing per10
m. Figure 6 (right) shows the decision regions of the partialXRF acquisition, full XMET data,
or nothing. When the price of XRF processing is small or moderate, compared with the drilling
price, we decide to purchase partial XRF data. When the processing price increases, full XMET
becomes the most lucrative. If both prices are very large, wedecide to purchase no more data.

6 Closing remarks

We have presented a unified geostatistical model for XMET andXRF data used in mining
exploration. Several criteria for uncertainty reduction are discussed, and we demonstrate how to
compute the value of information in this context by assumingsome cost and revenue input. Our
case study is from an oxide mineralization in Norway.

We performed an analysis to understand the value of drillingmore boreholes, and which data
(XRF or XMET) to acquire in these boreholes. Our analysis shows that about40 million tonnes
can be classified as measured or indicated given the planned data. This is a significant increase
from the current level. The ore also contains some other minerals that can help justify opening the
mine, but the existing and the planned boreholes are not informative of these mineral grades.

The slope parameter seems to be less robust than the others (Kriging standard error, correlation,
and weight of the mean), probably because it is very close to 1for many resource blocks.

The value of information is used to compare XMET and XRF acquisition over assumed costs,
recovery factors and price ranges. For the case study the imperfect XMET data is almost as valu-
able as perfect XRF information, and the XMET comes with a smaller cost. However, neither XRF
nor XMET data seem to provide a lot of added value relative to their price ranges and the decision
at stake. On the other hand, the VOI is quite sensitive to input parameters in this situation, and for
intermediate price ranges, the planned boreholes can be valuable.
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The value of information is computed based on the prior and pre-posterior values for a one-
time decision: open the entire mine or not. In practice a morecomplex mining strategy would be
incorporated. For instance, it is important to generate cash flow as early as possible. However,
one should not only take high-quality ore for a long period oftime, because that could lead to
a long periode of mining only waste rock. Moreover, one can decide to go underground or to
stop based on very uncertain drill cutting grade data collected during mining. In this situation the
value of information typically becomes larger, because oneis closer to make decisions with huge
implications. However, the computation is a complicated expression, where actions depend on
the outcomes in a sequential strategy (Miller (1975); Bhattacharjya et al. (2010)). One solution
is to use some kind of approximate dynamic programming, while attempting to incorporate the
important parts of the mining strategy (Boland et al., 2010).

In this work we have assumed that the joint Gaussian geostatistical model for XRF and XMET
is valid. In would be interesting to confirm the imposed correlation in XRF and XMET by analyz-
ing some of the new data both with data types.
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