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Abstract

In mineral resource evaluation a careful analysis and assads of the geology, assay data
and structural data is performed. One important questiomhisre to position the exploration
boreholes, another is what method to use when analyzing #uegn the collected material. Here,
a challenge of this type is whether one should analyze thHeatetl core samples with accurate
and expensive lab equipment or a simpler hand-held meter.

A dataset of about 2000 oxide observations is availablegaaith relevant explanatory vari-
ables, from a deposit in Norway. A Gaussian geostatistiaadehis used to predict the grade
parameter on block support. To improve the predictionsgisgt\new boreholes are planned, giv-
ing 265 additinoal samples. The associated uncertaintyctaxh is evaluated, and a resource
evaluation is performed with and without the planned dataenrthe value of information of the
planned data is computed, using assumed costs, recovesyaatl revenues. The data acquired
with the hand-held meter has almost the same value as theerpensive acquisition strategy;
given that the already established correlation betweetwbelatasets is proven valid.

Keywords: geostatistics, Kriging, resource classificatioxide, value of information

1 Introduction

We analyze spatial data from a deposit in Norway. The maimoneral is a particular oxide,
but the resource also contains potentially economic levetéher minerals. Several exploration
boreholes have been drilled. The currently available dateist of about two thousand observa-
tions of the oxide along the boreholes. The deposit is gtllar consideration for mining, and the
main purpose with this methodological paper is to evaludterdnt strategies for collecting more
data.

The oxide has been measured on crushed core samples ubirgeXt-ray fluorescence (XRF)
spectrometer in the laboratory or a portable X-ray meter EAlYl The XRF data are considered to
be exact measurements of the oxide, providing perfectnmétion at the locations where they are
made. The analysis procedure is time consuming. The XMEA& a@a considered to be a noisy
observation of the true oxide level, providing imperfedoinmation. These data are acquired more
time efficiently and at a lower cost than the XRF data.

We incorporate spatial dependence in the oxide by a Gaugsestatistical model. We as-
sume that the measurement sites (north, east and depthmasa kvithout uncertainty, and further
assume known covariates in the form of a geological roclksclapresenting three levels of miner-
alization interpreted by the geologists. As is common insgtistics, see e.g. Cressie (1993) and
Banerjee et al. (2004), we model the true oxide as a Gaussigom field (GRF) with mean values



defined by a linear regression in the covariates, and witlvar@nce defined by a Matern covari-
ance function. We use maximum likelihood estimation (MLEséd on the currently available
oxide data to specify the parameters of the covariance model

The existing XRF and XMET data, and the planned data, infleehe predictions and the
prediction uncertainties in the spatial distribution ofdex For a GRF the conditional covariance
depends only on the data locations, the covariance modgti@covariates), and not on the actual
data. As a result, it can be computed before the data areradquihis allows us to evaluate the
gain by the of planned borehole data.

In the mining industry resources are classified into meassumedicated or inferred, depending
on the level of uncertainty. This is formalized through tl@@RC code (JORC, 2004). Since
every deposit is unique, the assessment includes mulapédd of geological information, assay
data, and structural data (Pilger et al., 2001). From a mathodological viewpoint, we discuss
several evaluation criteria in our context, computed at @fsesource blocks. The criteria are the
reduction of the marginal variances, the increase in sloecarrelation, the decrease in weight
of the mean (Rivoirard, 1987) and the reduction of entropy dnd Zidek, 2006). By todays
standards the final classification is done by competent peiisased on these criteria, and several
other case-specific criteria.

We also use the value of information (VOI) to study the patdioff the data collection schemes.
The VOI relates the probabilistic model to the decision d@lmiming. The VOI is an information
criterion using monetary units explicitly (Raiffa, 196&)is defined as the difference between the
prior value (before the planned data is collected) and tleeppsterior value (averaged over the
planned data). The VOI is always positive because more dlatasaus to make better informed
decisions. In practice the VOI is used to compare differeth @cquisition strategies over a range
of prices. In our situation we can compare XRF with XMET datguasition for different mining
costs and price ranges.

The notion of VOI has been used in a number of applicatiorsidy; for instance medicine (Willan
and Pinto, 2005), environment (Bouma et al., 2009) and gitaarter (Trainor-Guitton et al., 2011).
Similar assessements have also been done in the miningipdeee e.g. Froyland et al. (2004),
Alford et al. (2007), and Phillips et al. (2009). One of ountrdbutions in the current paper is to
integrate VOI with spatial dependence in a mining contexts¥k et al. (2008), Bhattacharjya
et al. (2010) and Martinelli et al. (2011) consider the VO foultivariate dependent models in
petroleum, but they do not use the VOI for block resourceuatan like we do here. Further, our
framework gives analytical closed form solutions for thel\®this situation.

In Section 2 we provide some background for our case studyayabstatisical model for the
data. Section 3 contains the theory for spatial predictimh the various criteria for quantifying
the uncertainty reduction. Section 4 presents the VOI incase. Section 5 applies the methods
to different data acquisition schemes in the oxide caseystud

2 Data analysis and modeling

We first give some background on the oxide case study andrpegome exploratory data
analysis. Next, a geostatistical model for the data is prteske



2.1 Background and oxide data analysis

The depositis about 2.5 km long, and is an intensively follsdllens formed body surrounded
by mafic-felsic rocks. The protolith is thought to be a Proteic gabbroic intrusion, which has
been metamorphed into the present lithologies during tHedBaian orogeny at about 400 Ma.
The oxide has been formed in this process of high pressur@moephism.

Geologists have defined three categories with increasiggedef mineralization. The classes
are termed class 1, class 2 and class 3. Class 3 has the hagbesge oxide levels. The class 3
and class 2 categories are dominating in the central patteaire. The degree of mineralization
is used as covariates in our analysis. The spatial clagsifichas been done using the currently
available data by site geologists.

We observe the oxide by XMET or XRF data acquired in boreholHse laboratory XRF-
data have been obtained from 10 meter long crushed sechah&§) of the core. The hand-held
XMET data have been collected for every 25 cm of the core lkefanshing and aggregated into
10 meter long XMET-composites in correspondance with thé&>dRalyses. There are 103 sites
of XRF data and 1871 sites of XMET data. The 103 locations Wit data are also measured
with XMET data. Therefore, this represents a partially rattgpic sampling scheme.

Figure 1 (left) displays histograms of the oxide data coddowith XMET (top) and XRF
(bottom), while Figure 1 (right) shows a crossplot of the ITB&F, XMET) measurement pairs.

Variance of XMET- XRF is 0.35
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Figure 1: Left: Histogram of XMET (top) and XRF (bottom) obbgations. The oxide content ranges from9 to
7.40 percent for XMET with a mean df.95. For XRF the range is fromM.56 to 5.14, with a mean 0f3.80.
Right: The XMET data (second axis) plotted against the XRfa (first axis) at 103 common sites.

The degree of mineralization at the measurement locatiafss indicated in the figure: class 1
(0), class 2 (.) and class 3 (+). The highest measurementeaixide are typically collected at
locations with class 3 covariates. For the XRF histogramgufe 1 (left, bottom) we might notice
modes representing the different classes, but there is rarability within each class.

We regress the XRF data on the class covariates {1,2,3} and a constant term. Using
standard least squares we get a linear fit for XRE ef §, + 1z, whereS, = —1.10(0.39) and
B = 1.76(0.14), with standard errors in parantheses. This indicates éfisignt relation between



the mineralization class and the oxide grade. The expectiel® oesponses ale7 (class 1),2.4
(class 2) and.2 (class 3), not dissimilar to the modes visible in Figure 1.

When we treat the XRF data as perfect observations of theeaqades, and the XMET ob-
servations as noisy measurements of the same oxide gragegossible to estimate the standard
error of the XMET data. Using a sum of squares approach to @3ephirs of (XRF, XMET)
measurements in Figure 1 (right), we get a noise varianceMEK equal tor? = 0.352.

2.2 Geostatistical modeling and parameter estimation

Figure 2 (left) shows the histogram of the residuals of XMEfadafter subtracting an ordinary
least squares fit to the mineralization covariate. The ued&dare close to Gaussian distributed,
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Figure 2: Left: Histogram of fitted residuals using ordinkegst squares estimation for the regression parameters.
Right: Empirical variogram of ordinary least squares reald.

showing that the multimodal nature seen in Figure 1 is maiiniyen by the mineralization co-
variate. In Figure 2 (right) we show the empirical variogreaamputed from the residuals. The
variogram starts at aboQf25 at zero distance, and flattens out at approximaigély (sill) at about
80 (range) meter distance.

We next present a joint geostatistical model for the XRF aMEX data. The XRF response
(y1(s)) and XMET responsey(s)) at a (north, east, depth) locatisrare modeled by

yi(s) = x(s), yals) = z(s) + N(0,7%).

Here, the true oxide at the (north, east, depth) locasias denotedr(s). The XRF data pro-
vides perfect information about oxide at the location, ehtie XMET data is imperfect infor-
mation of oxide with measurement noise varianée The noise terms are assumed to be in-
dependent from one location to another. We model the oxidae &RF with expected value
u.(s) = h'(s)B3, whereh'(s) includes a constant term and the mineralization covariagite

s, andB = (01, B2)" is a regression parameter. We choose a Matern covariancel toadescribe
the spatial covariance structure of oxide. Setting the $shmmss parameter of the Matern3@

we haveCov(z(s), z(s")) = o*(1 + ¢h) exp(—¢h) for distanceh = ||s — s'||. Then the variance
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is 02, and¢ indicates the strength of spatial correlation (laggeeans faster spatial decay of the
correlation). Many other covariance models could have lbseful (Banerjee et al, 2004).
The collection of XRF and XMET data is denoted ®y= (y¢, y%), where

Y, = (91(31,1), ceey y1(81,103))t, Yy = (92(32,1), cee 7?/2(32,1871))t-

Here, 103 of the XMET locations equal the set &f 4, ..., s1103 XRF measurement locations.
Using the GRF model, the 103 XRF data are representeg,byw N(H, 3,C,, ), while the
1871 XMET data are represented 9y~ N(H,,8,C,, + 7°I). MatricesH ,, and H,, consist

of the explanatory variables’(s), at the XRF and XMET measurement locations. The size
103 x 103 covariance matriC',, describes the spatial covariance between the XRF data.iZée s
1871 x 1871 covariance matrixC,, + 721 inherits spatial correlation from the GRF and contains
an additive diagonal term because of the XMET measuremasénéltogether, we summarize
the model by

~ _ Hy1 _ Cyl Cyl,Z
Yy N(Hyﬁa Cy)v H, ( H, ) , Cy ( CZl,z C,, + 72T ) ) (1)
where the siz&03 x 1871 cross-covariance matrix between theandy, data is denoted b’ ,.
It contains spatial covariances in the GRF model for oxide.

The currently available data can be used to specify the unknown parameters of the model.
Here, we use MLE to estimate the covariance and regressi@mgers. Using (1) the log-
likelihood is

1 1 _
(y; B,0,¢,7) = =5 log|Cy| — 5(y — H,3)'C,'(y — H,8). 2)
For fixed covariance parameters the MLE®Is analytically available:
3@/ = SyHZC;ly, Sy = (HZC;1Hy>_1- 3)

In order to compute the MLE of the covariance parameters veeausisher-scoring updating
scheme, where théy estimate is also updated at every iteration of the procederee.g. Mardia
and Marshall (1984). After some Fisher-scoring iteratjadhe parameter values converge to the
MLE &, ¢ and#. Suitable starting values for the covariance parameterohfained from the
empirical variogram in Figure 2 (right).

The covariance of the estimat,é_;; is given byS,, in (3), evaluated as a function of the MLES
¢ and7, which are plugged into the covariance maittfy. The asymptotic covariance 0f, &, 7)
is the inverse second derivative of the log-likelihdad (2) with respect tar, ¢ andr. For our
dataset the MLEs arg, = —0.18 (0.07) and3; = 1.32 (0.03), andé = 0.62 (0.02), ¢ = 0.095
(0.006), and7 = 0.45 (0.02). The standard errors are in parantheses. Note that thességme
parameter estimates based on both XRF and XMET data, angl th&rspatial model, differs from
the standard least squares estimates based on XRF data alone

3 Uncertainty reduction obtained by drilling more boreholes

A mineral resource is a concentration or occurrence of natef intrinsic economic interest
in or on the Earth’s crust in such form, quality and quantitgttthere are reasonable prospects
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for eventual economic extraction (JORC, 2004). Dependerihe level of confidence in the ge-
ological data, the data density and data configuration, a@&rainmesource can be categorized as
inferred, indicated and measured (with decreasing uriogfja An ore reserve is the economi-
cally mineable part of a measured and/or indicated minesdurce. When doing the transition
from a resource to a reserve, a number of modifying fact@spplied. Examples of such factors
are mining- and beneficiation methods, legal- and envirantadéssues, market-, social- and gov-
ernmental factors. The deposit in question can potentieiynined in an open pit, possibly going
underground at a later stage. The decisions about operengitie and choosing mining strategies
depend on all modifying factors. We focus on quantitativerapches based on the geostatistical
modeling.

A resource will be classified into the different categorigaltompetent person. She or he is a
member of a recognized professional organization and Hasient relevant experience. The clas-
sification will be done based on a detailed understandingehtineralization and on uncertainty
indicators. What indicators to use are deposit specific anptactice the choice of the competent
person, and we will not try to draw any conclusions here.

We define3740 resource blocks of siz&H? m? inside a possible pit where we predict the oxide
grade. The oxide grade in a block is denoted- (z(so1),...,2z(S0.,))", Wheren, = 64 is the
block discretization in our case. The final grade estimasgilock is the average of thg in-block
estimates.

Recall that the currently available dajeconsists of 1871 XMET and 103 XRF observations.
The mining company considers acquiring more XRF or XMET dAataout 20 new boreholes have
been planned, givin@65 additional measurements of either XRF or XMET data. We detius
new data b)Z = (2(8271), RN 2(327265))t.

The design of boreholes should cover the resource adegudtel block is very close to a
borehole, we expect low uncertainty in this block. When wevenaway from a borehole, the
uncertainty increase. Without the planned datthese distances are obviously larger. In addition
to distances, it is preferable to have data in differentdatioes (azimuths), since these data will
carry more information about small scale trends and thegired reflects interpolation rather than
extrapolation. When we collect the new datave cover more directions. Note that the locations
of the planned data are already determined. As part of thHeaan, we will remove individual
boreholes from the analysis, but we will not consider theiapaesign problem here (Zimmerman,
2006).

3.1 Spatial prediction and prediction variance

Distance or angle criteria do not include geostatisticabdedge, such as the uncertainty level
or degree of spatial correlation. A natural starting poamtdptimal geostatistical prediction is the
joint distribution ofx, z, andy. Given the parametg? and the covariance model, this distribution
is the multivariate Gaussian:

xXr H;p Cm Cm,y Ca:,z
z | ~N H, |3, C’i,y c, C,. , (4)
y H, c.. C,., C.

whereC',, denotes the covariance matrix for the block grade variallbge C'. is the covariance
matrix of the new data. If z represents XMET data, the latter covariance matrix hastespart
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and an additive diagonal part with the nugget effect If z represents XRF data, this is perfect
information, and there is no nugget effect@. The cross-covariance matric€s, ., C, , and
C, . are calculated using the spatial covariance model for tideayxade.

The conditional mean of andz given current datg is

l‘l’x‘y = HZ‘By + C$,yC;1(y - HyBy)a l‘l’z|y - HZBy + CZ’ZC;l(y - Hy/éy)a

where we simply plug in the regression parameter estiuﬁgté’Ne also plug in covariance param-

eterss, gb andr in all covariance and cross-covariance matrices. When wte out the regression
parameteg, as a function of the datg, we get

/J’m|y = (MxvySyHZ + C:v,y) Cy_1y7 /'l’z|y = (szySyHZ + Cz,z) C;1y7 (5)

whereM, , = H, - C,,C,'H,andM_.,=H.—-C, .C,'H,.

Under the Gaussian modeling assumptions, the kriging gi@din (5) is optimal, i.e. the
unbiased predictor with minimum variance. In practice preohs based on a search ellipsoid
are commonly used. One reason for constructing searcls@itip is computational efficiency, but
in our case the data size is not that massive. Another reamdd be non-stationarity, but then
there are no clear approaches for consistently making lsedlipsoids and assessing parameter
estimates of a non-stationary geostatistical model. We bhawsen to use all data in our evaluations
here.

While it is hard to include the uncertainty of the covariapegameters in (5), we can easily
account for the uncertainty in the regression paramégrsee e.g. Cressie (1993). The resulting
conditional covariance expressions are

c,,=c6,-c,,c,/'c, +M,,SM., C.,,=C.-C, C'C,.+M.,S,M. . (6)
where the last terms with1, ,, M . , and .S, compensate for the increased variability caused by
estimatings.

Denote the average block gradeby= > . x;/n,. We denote the Gaussian densityzafiven
y by 7(Z|y) = N(pay, Czy). This is computed for every resource block, and we defing &id
the length3740 vector of Kriging standard errorg(C3/,), conditional on the current daa

The procedures can be extended to include both currenydatdz. The conditional mean of
x, given both data, is

-1

Hajy> = Hajy + CLZ\yCZ\y(Z — Hayy)s (7)
whereC, ., is the covariance af andz, giveny. This conditional mean is a linear function of the
prospective data. Note that the regression parameter estim,égglcomputed from all data and all
covariatesH|,, = [H| H'] is linear inz. The associated covarianceSs. = [H|.C,. H,.]",
and this can be accounted for in the prediction variancengallelata. Just like in the situation with
only current datay, we define Stg, as the Kriging standard errors of average block grades, now
given bothy andz data. The reduction in prediction variance depends on ttagitins of the new
observationg, relative to each other, and to the current datand the resource blocks Col-
lecting XRF data in the planned boreholes provides a laguation in prediction variance than
with XMET, but in general the uncertainty reduction is a cdicgied function of the covariance
parameters.



3.2 Slope, correlation and weight of the mean

Rivoirard (1987) uses the regression between the predartddrue block grades, called the
slope, to assess the effects of different Kriging neighbods. This criterion has also been used
to quantify the degree of measured or indicated resourcesnimg (Vann et al., 2003). For each
resource block we have

Slope, = Cov(Z, pi),)/Var(pz,) = (w'G,,C,'C, w)/(w'G,,C,'G, w), (8)

wherew'’ = 1'/n;, and1 is a vector of ones. Moreove, , = Mx,ySyHZ +C,, is recognized
in (5). The correlation is a normalized version of the slope;

Corr, = Corn(z, piz,,) = Slopg, - \/Var(uﬂy)/Var(f). 9)

The weight of the mean (Rivoirard, 1987) is another usefaliguindicator in kriging, see
Vann et al. (2003). Given datp the weight of the mean is interpreted as the relative impéitte
regression, compared with that of the simple Kriging pr&ﬂiCI7yC;1y. From the prediction
formulain (5) we recognize the simple Kriging predictor las kast term, and the regression effect
in the first part. When the deposit is more densely sampledséicond term will dominate over
the first term. We have

Weight, = (w'M, ,S,H,C,'1)/[(w'M, ,S,H,C,'1) + (w'C,,C,'1)].  (10)

The slope, correlation and weight of the mean are computeglaith resource block. In total,
they can be represented as lengiH0 vectors, with one value for each resource block. They can
be defined similarly conditioning on both current dgtand the new data. When we get more
accurate predictions of the grade, the slope is closér the correlation is closer to, while the
weight of the mean is closer to The effect is expected to be clearer with perfect infororati
(XRF) than with imperfect data (XMET).

4 Information criteria

We next discuss criteria treating all blocks jointly, antla¢ denote the oxide variable at the
center of each of th&740 resource blocks. We compare the information content usiagihtropy
or the prior or pre-posterior value (and VOI) of current datand prospective data

4.1 Reduction of entropy

Entropy is a very common measure of information contentesgeCover and Thomas (1991),
Le and Zidek (2006) and Wellmann et al. (2011) for a spatiatpective. The entropy (disorder)
decreases with more information. It is defined as the negatyected value of the log density.
For a Gaussian(x*) = N(u,X) we have entropy

1
Entlx*) = —/71'(:13*) log m(x*)dx = glog(l +27) + 5 log |X]. (11)

The entropy reduction when acquiring the new dabeecomesEnt = Ent(z*|y) —Ent(z*|y, z) =
+(log |Cy+y| — log |C sy |), WhereC,-, is the covariance at all resource blocks giygrwhile
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C.-,- is conditional on bothy andz data. The determinant expressions can be evaluated before
the actual data are collected.

Note that the entropy is a scalar. The reduction in entropyticas be regarded as a univariate
summary of the information associated with the (updatediribution. Just like for the other
criteria introduced in Section 3, it is hard to relate ther@py to costs and revenuess, see e.g.
Chapter 11 in Le and Zidek (2006).

4.2 Value of information of drilling more boreholes

The VOI is the maximum monetary amount a decision maker shpay to collect data. By
tying money and the actual decision makin to the statisiiwadlel, the VOI goes beyond mere
uncertainty reduction. In our context there are two levéldexisions. The downstream decision
is whether to open the mine or not. This question is incorgar#o solve for the second level of
decisions; whether one should collect XMET or XRF data inglamned boreholes, or no further
data. If the VOI is larger than the price of the XMET or XRF datee decide to purchase more
data.

Within a decision analytic framework, the VOI is computeddoe data acquisition, using the
expected revenues and costs from the mine. It is defined abfteeence between prior and pre-
posterior value. The VOI is always positive, since the posterior value computation gives us
the chance to make better informed decisions, on averagen\Whk compute the VOI, we make
certain assumptions about the mining strategy. First, werae that one either mines the entire set
of resource blocks for oxide, or nothing at all. This wouldleet the value of being able to change
the strategy along the way. This is inherent in the real opgioproach, see e.g. Martinez (2009),
but not taken into account here. Next, we assume there isé@dos for mining one ton of oxide
ore, and this is the same for all blocks. In addition, the kdowith a estimated grade above cut-off
are processed after mining, whereas the waste rock (estirgedide below cut-off) is not processed
any further. This means that a fixed fraction of the blockga@orpossible revenues, but that there
are costs associated with all blocks.

Let r;, be the revenue factor associated with resource bloekl, . . ., 3740, which gives the
estimated revenue once it is multiplied with the estimatexdig. We set; to 0 outside the ore,
since these blocks are not processed further. The reveuelker|es the product of the price of
product extracted from the oxide, block volume and certaoc@ssing parameters. Let further
k; be the cost of mining and processing a resource block. Ifkolas waste rock, the cost of
processing is not included iky. We discuss both, and k; further in the examples below. Let
r = (r1,...,7r3740)" be the vector of revenue levels, akd= (k1, . .., k3740)" the costs in the set of
resource blocks. The prior value is computed based on therdiy available datg:

PV = max(p,,0), py = 7'tz — k'l (12)

wherep,., is the prediction of the oxide grades given the current gatéiere, the risk neutral
mining company decides to develop the mine when the exp@ctéd p, is positive.

Consider now what happens when we collect more datéhe new datea are either XMET
or XRF in the planned boreholes. The pre-posterior value is

PoV = /max(pyz, O)m(zly)dz, py. = 7'ty ,. — K1, (13)
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wherep,.,.. is the prediction of the grades given the current datand planned data. We
integrate over all possible prospective data outcoemddhe density of the planned datadenoted
m(zly) = N(p,,, Czpy), is defined by (5) and (6). The VOI is

VOI = PoV — PV.

We decide to purchase the dataf the VOI is larger than the price of data acquisition. TheFXR
data is perfect information, and the VOI of XRF is always &rthan the VOI of the imperfect
XMET data. However, the XRF data has a higher price than tiperfect XMET data.

The VOI is also commonly used to compare different acquoisischemes. Say we had a
budget forcing us to drill less boreholes. Then VOI can halgecide where to focus, i.e. which
boreholes to drill. Similarly, one could compare the VOI d¥IKT data at all boreholes with the
VOI of XRF over a subset of boreholes.

With the Gaussian modeling assumptions, the pre-postaloe is analytically available. This
was shown for the univariate situation in Bickel (2008). ¢Jeo get the PoV, we must solve an
integral over the multivariate prospective datan (13). However, the only relevant function of
is the linear combination defined as the decision varigbtep,. = ., — k1, which enters
in (13). The remainin@64 dimensions of thex variable are irrelevant for the decision. Given
the current data, the decision variable, being a linear function of as in (7), has a univariate
Gaussian distribution

ﬂ-(p|y) = N(Mpa 0-13)7 Hp = ’rtl‘l’a:*\y - kt]—a O}% = Tth*,Z\ycilct

2y a2y
where the mean and covariances are defined from the joints@awusf (x*, ¢, z")" similar to
that in (4). For the covariances expressionsjnwe additionally account for uncertainty in the

regression parameter estimaﬁyz, similar to what was done in Section 3.
The pre-posterior value becomes

PoV = / max (7' phg.,. — k'1,0) 7(z|y)dz :/ max(p, 0)7(p|y)dp
1

(p - up)Q) / 1 ( UZ)
= D exp | —————— | dp = (tp +vop)——exp | —— | dv
/P>0 V 27T012) ( 20}27 v>—pp/op g ’ V21 2

= iyl = P(=pp/0y)] = 0 [\/%_ﬁ P <_%)} i/
Mp[l — (I)(_:up/gp)] + UPQS(_MP/UP)
= p®(pp/0p) + 0pd(11p/p), -

where(-) is the probability density function and(-) the cumulative distribution function of the
standard Gaussian. The derivation in (14) uses a transfanmaf variables,p = p, + vo,,
and symmetry properties of the standard Gaussian disoibdior v. Moreover, we use that
fvexp(—%)dv = —exp(—%) + constant. Using this analytical result and (12), the rasylt
VOI in (14) becomes VO 1, ®(p1,,/0p) + 0,0/ 0,) — MaxX(py, 0).

5 Results and discussion

We now evaluate the planned boreholes using the differaterier for uncertainty reduction
(Section 5.1), resource classification (Section 5.2) andl(8@ction 5.3). In Section 5.4 we study
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the influence of individual boreholes.

5.1 Uncertainty reduction by XRF or XMET information

Figure 3 shows predictions (b) and prediction uncertaio}yof the oxide grade along a depth
profile along a north-east line (a). The predictions and iptech uncertainties are conditional on
the current datg. In Figure 3 a) we show the current XRF data locations (ci)ssbe current

Map view of all sites

Prediction line

Nor t hi ng

Easting

(@)

Prediction Prediction standard error
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L 055
250 9
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200 9
0.45
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Depth
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200 300 400 160 260 360 460 560
Line Distance Line Distance

(b) ()

Figure 3: Predictions of the oxide grade in % in (b) and préalicuncertainties in (c) along the vertical profile
illustrated by the NE-SW-trending line shown in (a). Botlegictions and the standard errors are based on the
currently available borehole data.

XMET data locations (dots), the planned borehole locati@ngles), and the locations of the
resource blocks (square). The prediction in Figure 3 b) shioigh levels of oxide in the ore

zone. The prediction variance is naturally smallest in ticenity of current boreholes. Note that
the planned data are in the selected pit region. With thetiaddi measurements, the prediction
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uncertainty along the selected line, and in the blocks as@eykvould go down. We will next
guantify this uncertainty reduction.
Table 1 shows the values of different evaluation criteriae KRF data are of course more in-

Table 1: Various evalaution criteria: Distance to nearesehole, Kriging std, slope, correlation, weight of
mean and entropy, using current data, and with planned XREXMET borehole data. The distance, standard
error, slope and weight of the mean are vectors for all resoblocks. Here, we display the averages over all

blocks.
distance std slope corr weightof mean  entropy
Currentdata 55.1 059 0.62 0.21 0.73 Ent=-2930
XMET data| 48.0 057 0.69 0.27 0.63 0ENnt=43.0
XRF data 48.0 0.57 0.70 0.29 0.62 0ENt=72.4

formative than XMET data, and for some criteria we clearlingame by acquiring XRF instead
of XMET data. For instance, the reduction in entropy is alimagce as large when collecting
XRF. Of course, a pure distance criterion does not sepaettecen XRF and XMET in the new
boreholes. For the Kriging std the average difference betveRF and XMET collection is minis-
cule. There is a slight improvement in the slope, corretatind weight of the mean criteria, but
the added value of XRF, compared with XMET, is small consiagthe reduction from the current
data.

Figure 4 illustrates the variability in the Kriging standagrror, slope, correlation and the
weight of mean at the 3740 resource blocks. The histograms slrrent values (left), with
XMET data (middle) and with XRF data (right). Clearly, morata pushes the histogram of the
standard errors (top) towards smaller values, the slopecamndlation (middle) to higher values,
and the weight of the mean (bottom) to smaller values. Thus)aamy resource blocks there is
clearly added information in the planned borehole data. ififprovement going from XMET to
XRF is visible for resource blocks close to the planned bole) but not far away from these
locations. In fact, the Kriging prediction errors have Ergariability after conditioning on more
information. Of course, the planned data acquisition iglgdito the spatial domains of most
interest, and the reduction of uncertainty is highest winerevant to predict the grade accurately.

5.2 Resource classification

A resource classification is based on multiple criteria afpkeence of the local geology, usu-
ally evaluated by a so-called competent person. Here, welgicompare the presented geostatis-
tical criteria and classify based on thresholding. It isaattempt to do a resource classification
in compliance with the JORC-code. The categorization Bnaite obtained from the currently
available data using geometric considerations as foll&v@seach resource block we compute the
azimuth angles and distances to the five nearest borehokuneeaent locations. These are used to
group the resource blocks in four categories: Category &:fifthh closest point is withisOm and
the standard deviation of the azimuth angles to data lagstathin 100 m is betweers80 and130
degrees. Category 2: The fifth closest point is betw#sn and60m and the standard deviation
of the azimuth angles to data locations withiio m is betweer80 and130 degrees. Category 3:
The fifth closest point is withibOm and200m and the standard deviation of the azimuth angles to
data locations within00 m is betweers0 and130 degrees. Category 4 is defined by the remaining
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Figure 4: Histogram of evaluation criteria at all resourtmeks. Kriging standard errors (top), slope (middle, top),
correlation (middle, bottom) and weight of the mean (boftoifhe left displays are based on current data,
middle displays on current data and XMET in planned borehate right displays on current data and XRF
in planned boreholes. The vertical dashed lines are therieribased separation of measured, indicated and
inferred resources.

resource blocks. The azimuth variability condition ensubat there are proximal measurements
in more directions, not only one borehole. Given this catiegtion of resource blocks, th&
percentiles of all criteria are computed from the Krigingoes, slopes, correlation and weight of
the mean in resource blocks belonging to each categoryeNages define the thresholding val-
ues for measured, indicated and inferred. They are dispglayevertical dashed lines in Figure 4.
Recall that this is based on the current boreholes. The sareshiolds are next applied for the
planned data as well.

The categorization we have done here is used to study thematmon content in the new data
and allows us to compare the methodologies. In particularaim to study the effects of XMET
and XRF data acquisition in the planned boreholes. The geaneeiteria based on distances and
angles is easy to understand, but it is not useful to compar&RF and XMET data, since they
are equally informative in terms of distances and angles.
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In Table 2 we show the resulting tonnages in the measurettaitedi and inferred categories.
Here, the resource blocks falling in the measured, inditatel inferred categories are converted to

Table 2: Resource classification (in million tonnes) basedwrent data, XMET data in planned boreholes
and XRF data in planned boreholes. The measured, indicateidferred classification is done from thresholds
in different evaluation criteria: Distances, kriging sland deviations, slope, correlation and weight of mean.

Distance Kriging Std Slope Corr Weight
Current data
Measured 9.0 8.8 8.8 8.8 8.5
Indicated| 20.8 21.3 219 212 214
Inferred 10.6 10.4 98 105 106
Current data and XMET in planned boreholes
Measured 13.8 14.2 151 142 152
Indicated| 21.6 21.5 21.0 214 200
Inferred 51 4.8 4.5 5.0 54
Current data and XRF in planned boreholes
Measured 13.8 15.0 16.0 15.0 16.7
Indicated| 21.6 21.0 20.4 20.8 187
Inferred 5.1 4.6 4.2 4.8 5.1

tonnes of resource. The block volumes outside the ore aracladed in the calculation. We use
a cut-off value of2.5 % (based on current data) to separate waste from ore. Wittutinent data,
using the Kriging standard error as criterion, there araig®anillion tonnes of measured resource
and 20 million tonnes indicated. There are only slight \eoies between the criteria using our
thresholding method. Obviously, with more data, there aneemnesource blocks in the measured
category. When we collect XMET data in the planned borehalessmeasured category in Table
2 has around 14-15 million tonnes. The indicated categograsind 21 million tonnes. Some
blocks have gone from indicated to measured, while others gane from inferred to indicated.
The sum of measured and indicated resources is close to H@mtdnnes. Collecting XRF data in
the planned boreholes gives only slightly larger numbete@measured category: 15-17 million
tonnes. Note that the pure geometric distance criteriorthteasame number as for XMET (13.8
million tonnes measured), since it uses no uncertainty tragleThe indicated resource blocks
are about 19-21 million tonnes. In summary, there is a cleaease in measured tonnages going
from current to XMET, but not such an improvement when cdifecXRF data instead of XMET.

Recall that these numbers are based on our subjectivaarifereal-life resource classification
would have been based performed by a competent person inliemcgwith the JORC-code or
other similar codes.

5.3 Value of XMET or XRF information

In order to assess the value of XMET and XRF information, wedn® specify revenues,
costs, processing parameters and tonnages. In the fojowenpresent our assumed levels for
costs, revenues and recovery rates. These would be subjelchihge based on the market level.
The performance in the mining and processing processes ardyndependent on three factors.

15



These factors are the mining recovery (here set to 95 %) gitm/ery from the beneficiation, i.e.
separating mineral from gangue in the processing oplan¢ @&t to 55 %), and the dilution in the
pit (here set to 5 %). The density (3.38 torijrof the ore is assumed known and independent of
the grade. The block volume 1§ = 20 m? for a full block inside the ore. We play with the market
price for the oxide, setting a low level of $ 720 per ton, imediate level of $ 770 per ton, and
high $ 820 per ton. These inputs define a revenue factor whigs ghe estimated income from
a block when it is multiplied with the predicted grade. Thedi revenue factor for the oxide is
thenr; = 770-0.95-0.55- (1 — 0.05) - 3.38 - 20 = $ 10.3 million, assuming the intermediate price
level and no void volume outside the final pit. Assuming a blaith a oxide-grade of 4 %, the
estimated revenue from the blockli$)4 - 10.3 = $ 0.41 million.

The operating costs in the mine (pit) for an ore block are seb 8 per ton, whereas the
processing costs in th beneficiation plant are assumed to8oee$ ton. A block of ore will thus
costk; = 11-3.38 - V' = $0.30 million in mining and processing, giving a profit 6f41 — 0.30 =
$0.11 million per block when the grade of oxide is 4 %. A block of weastill be drilled, blasted,
loaded and transported, but instead of being transportie farocessing plant, it will be deposited.
The operating cost for this treatment is assumed to be $ Dpei.e the cost per block of waste
rockisk; = 3-3 -V = $0.07 million, where the density of waste rock is set to 3 toh/i@ut of
the 3740 blocks, there aré676 ore blocks, while the rest is waste rock. Agair % is used as a
cut-off alue, separating waste from ore.

Below we will study sensitivity to different cost and prosegy parameters. Using the above
inputs, the intrinsic value of the oxide is estimated to383nillion when the oxide product price
is low, -$ 2 million when the oxide product price is intermediate, and5$million when the
oxide product price is high. In the first two situations theaxsated a priori values becorieThe
posterior value is always higher than this, but only sigaiiity larger in the intermediate situation.
Then, the VOI of XMET data in the planned boreholes it million, and the VOI of XRF data
is $0.84 million. This might make the acquisition of XMET and XRF datseful, depending on
the actual prices of acquisition.

We next compute the VOIs as a function of the mining recovatg and the operation costs
in the pit. In Figure 5 we study the VOI of XRF (left) and thefdience in VOIs (right), with
operation costs (first axis) and the mining recovery (seais)). The results are presented for
the three levels of the oxide product price (top, middle aoidm). In this case with a one-stage
decision about whether to open the mine or not, the VOIs ah bnly for a narrow band of
mining costs and recovery rates. Parameter settings ibamd correspond to prior values néar
and there is much added value in acquiring more XRF or XME&a.da@utside the band the costs
are either i) too high, meaning that the oxide resource besdoo expensive to produce, with or
without data, or ii) too small, so we would be better off jupeaing the mine, without collecting
more data. At the highest levels, the VOI of XRF is $ 1.6 miiliand the VOI of XMET is just
a little bit smaller. The VOI of XRF data is significantly ptige for a relatively broader range of
cost and recovery parameters (Figure 5, right).

The VOI must be compared with the actual data prices. Thidyitost of the new boreholes
is estimated to $.84 million in this case. The additional price of XRF lab measoeats is $.13
million, and the total price of XRF data is therd®7 million. Depending on the expected price of
the oxide product and the assumed costs and recoveries wecale if the additional boreholes
are worth the effort. With the specified levels (mining co& &illion per tonn, mining recovery
95 %), it seems the boreholes might just be valuable if theepof the oxide products is near the
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Figure 5: Value of information as a function of the mining tso@irst axis) and mining recovery rate (second axis).
The value of XRF information (left) and the added value of XRférmation compared with XMET informa-
tion (right). Top: the oxide product price is relatively loMiddle: the oxide product price is intermediate.
Bottom: the oxide product price is relatively high.

intermediate range. Only for that oxide price level is thenpled XRF or XMET data likely to help
us make better decisions about the oxide resource.

In Figure 6 (left) we show the decision regions as a functiodMET and XRF data acquisition
prices. This is computed for the intermediate price rangexafe ($ 770 per ton) and for the 95 %
recovery rate and million per ton mining cost. The decision regions are coragduiy selecting
the data type that gives the largest added value, compatediva price of data. This entails a
selection rule of:

Decision= argmax{VOIxrg — Pricexrp, VOIxMET — PricexmeT- 0} (15)

where we decide to purchase XRF if Wb — PricexrE is the highest element in the length
three vector in (15). If none of the first two entries are pesjtwe decide to purchase no more
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Figure 6: Decision regions. Left: Whether to purchase flMIXT or XRF data, or nothing. The first axis represents
the price of XMET data. The second axis is the price of XRF d&ight: Whether to purchase XRF in the
seven top-ranked boreholes or XMET in all boreholes, oringthThe first axis represents the price of drilling
10 m. The second axis is the price of processing XRF datd per.

data. In our situation, with Prisgse1 = $ 0.84 million we are just within the 'Nothing’ region,
and would decide not to purchase this data. Recall that ibe pf XRF is always higher than the
price of XMET, and the relevant price ranges are above tlagséir line in Figure 6 (left). XRF
data is the most lucrative data type for very small labogapoices. For more expensive laboratory
analysis, XMET data is preferable.

5.4 The influence of individual boreholes

We now study the effect of individual boreholes among thenpéal data. We compute the
different evaluation criteria when one borehole is remofredh the set of planned holes. This
provides a ranking of the individual boreholes in terms dbimation content.

Table 3 displays the ranking of individual boreholes forcalleria. For the Kriging std criterion

Table 3: The rank of the seven most valuable boreholes basdifferent criteria: Kriging std, slope, corre-
lation, weight of mean, entropy and the VOI.

Rank1l Rank2 Rank3 Rank4 Rank5 Rank6 Rank?7
Std 7 8 12 5 16 13 14
Slope 21 1 15 9 16 14 11
Corr 7 21 8 1 16 5 12
Weight 7 8 21 1 16 5 12
Entropy 7 8 19 13 5 12 14
VOI 7 8 5 1 16 11 12

the Rank 1 borehole is the one that causes the largest iecireaserage prediction uncertainty
when it is removed from the set of planned boreholes. Forestbp Rank 1 borehole is the one
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that causes the largest decrease in average parameterfgluealently for correlation, weight of
mean and entropy. The Rank 1 borehole for VOI is the one thetesathe smallest VOI when it is
removed from the set of planned boreholes. Of course, tlgthisrof the boreholes are important,
but note that the measurements within a borehole tend toyedependent, so it is probably not
that interesting to evaluate the value per measurementlotlagon of boreholes, relative to the
current data and the resource blocks is of course relevant.

Borehole7 and8 come out as the most informative using most evaluationr@iteéBorehole
7 is the longest borehole wits3 observations, borehokehas21 and is the third longest. There
are slight variations in the rankings, but the one critetending out is the slope which ranks
borehole21 on top, and ha% and8 just outside the top seven list. Boreha@lecontains onlyl1
observations, and is just outside rank 7 in most of the othesra. A possible explanation for
the rankings of slope is the skewed distribution of slopeigufe 4. Removing data will push the
slopes away from 1, but the relative effect is not as cleaoathk other criteria, especially when
considering the average slope. We note that the correlatidrweight of the mean criteria appear
a bit like the slope, while the more commonly used unceryaiduction criteria; kriging standard
deviation and entropy (and VOI) are different from slopej gnite similar to each other.

We next study the VOI of XRF data in the seven top-ranked badesh This is compared with
the VOI of XMET data in all 21 boreholes. Like in Section 5.3¢ wreate decision regions for
various prices of XRF data and XMET data. For any set of adiuisprices, the decision is to
purchase the data with the largest VOI compared with thecéetsal price of data. We compute
this as a function of the price of drillingdm and the (additional) price of XRF processing per
m. Figure 6 (right) shows the decision regions of the paXRF acquisition, full XMET data,
or nothing. When the price of XRF processing is small or matdercompared with the drilling
price, we decide to purchase partial XRF data. When the psiug price increases, full XMET
becomes the most lucrative. If both prices are very largej@gide to purchase no more data.

6 Closing remarks

We have presented a unified geostatistical model for XMET ¥R& data used in mining
exploration. Several criteria for uncertainty reductioa discussed, and we demonstrate how to
compute the value of information in this context by assunsome cost and revenue input. Our
case study is from an oxide mineralization in Norway.

We performed an analysis to understand the value of drilimoge boreholes, and which data
(XRF or XMET) to acquire in these boreholes. Our analysisaghtihat aboutt0 million tonnes
can be classified as measured or indicated given the plaratad @his is a significant increase
from the current level. The ore also contains some othermaigi¢ghat can help justify opening the
mine, but the existing and the planned boreholes are natnretve of these mineral grades.

The slope parameter seems to be less robust than the othigiis@¢6tandard error, correlation,
and weight of the mean), probably because it is very closgdoo hany resource blocks.

The value of information is used to compare XMET and XRF asitjon over assumed costs,
recovery factors and price ranges. For the case study theriegb XMET data is almost as valu-
able as perfect XRF information, and the XMET comes with aleneost. However, neither XRF
nor XMET data seem to provide a lot of added value relativééar fprice ranges and the decision
at stake. On the other hand, the VOI is quite sensitive totipptameters in this situation, and for
intermediate price ranges, the planned boreholes can beahial
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The value of information is computed based on the prior ardpmsterior values for a one-
time decision: open the entire mine or not. In practice a necoraplex mining strategy would be
incorporated. For instance, it is important to generatd ¢asv as early as possible. However,
one should not only take high-quality ore for a long periodiofe, because that could lead to
a long periode of mining only waste rock. Moreover, one cacidito go underground or to
stop based on very uncertain drill cutting grade data c@téduring mining. In this situation the
value of information typically becomes larger, becauseismoser to make decisions with huge
implications. However, the computation is a complicatedregsion, where actions depend on
the outcomes in a sequential strategy (Miller (1975); Bidhtarjya et al. (2010)). One solution
is to use some kind of approximate dynamic programming, ev@iitempting to incorporate the
important parts of the mining strategy (Boland et al., 2010)

In this work we have assumed that the joint Gaussian geststalimodel for XRF and XMET
is valid. In would be interesting to confirm the imposed clatien in XRF and XMET by analyz-
ing some of the new data both with data types.
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