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Abstract

Multiple event data occur in survival analysis when two or more events occur to a subject in the study.
Examples include the occurrence of asthma attacks in respirology trials, the recurrence of tumours after
surgical removal in cancer studies and recurrent heart attacks of coronary patients being treated for heart
disease. We discuss a Bayesian semiparametric model for such multiple event data. We assume that mul-
tiple events occur according to a nonhomogeneous Poisson process. We decompose the intensity function
into the product of various terms. First is a baseline intensity, second a term which includes the effect of
various covariates, and third a frailty term to take care of heterogeneity among different individuals with
respect to their tendency to develop events. We model the baseline intensity using a piecewise constant
model. We demonstrate that we can rewrite the model into a latent Gaussian model which allows us to
perform Bayesian inference using integrated nested Laplace approximations (INLA) ((Rue et al., 2009)).
The big benefit is computational speed, as most models do not require more than a few seconds to run, but
also accuracy in the results as the errors in the approximation are relative and not additive as with Monte
Carlo based inference. We illustrate our approach using both simulated and real life data.

1 Introduction

In many research studies, the event of interest can only occur once for a given subject, for example death.
It is sometime of interest to study events that may occur several times for a given subject. Such type of
data is called multiple event data and arises in many fields, such as manufacturing and industrial reliability,
biomedical studies, criminology and demography among others. Multiple events can be of two types, one
when identical events are involved and the other when events considered are not identical. We concentrate
on identical multiple events. A few examples are the occurrence of asthma attacks in respirology trials, the
recurrence of tumour after surgical removal in cancer studies, recurrent heart attacks of coronary patients
being treated for heart disease, and the discovery of a bug in an operating system.

Multiple events data have been studied by many authors in different contexts, for early accounts see ( Gail
et al. (1980); Andersen and Gill (1982); Lawless (1987); Oakes (1992)) and for recent review see ( Manda
and Meyer (2005); Cook and Lawless (2007) ).

In a Bayesian approach, Sinha (1993) propose a semiparametric model for multiple event-time data. Ac-
cording to this model, the events arise in the ith, i = 1, · · · , N subject as a conditional Poisson process with
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conditional intensity function
h(t|zi, wi) = h0(t) exp(βTzi)wi (1)

Here wi is the subject specific random effect (frailty), zTi is a vector of covariates, β a vector of unknown
parameters, and h0(t) is the baseline intensity function. The frailty takes care of heterogeneity among different
subjects. It is assumed that given the unobserved frailty, the intensity function for an individual does not
depend on the number of previous events experienced by the individual. Sinha (1993) models the baseline
cumulative intensity by a Gamma process with unknown parameters, while the frailty wi is assumed to be
Gamma with mean 1 and unknown variance. A Gibbs sampler is used to sample from the joint posterior
distribution of the unknown parameters. This model is useful when the focus is on the regression parameter β
and the frailties wi.

In this report, we modify the methodology of Sinha (1993) to discuss the semiparametric model for mul-
tiple event data. We consider the conditional intensity function as given in (1) and use the fact that the
conditional distribution of new events occurring for a particular subject in an interval is Poisson. We model
the baseline intensity using a piecewise constant function. The main purpose of this report is to demonstrate
that we can rewrite the nonhomogeneous Poisson processes into a latent Gaussian model which allows us to
perform Bayesian inference using integrated nested Laplace approximations (INLA) (Rue et al., 2009). INLA
provides fast and accurate deterministic alternative to Markov chain Monte Carlo (MCMC), which at moment
is the standard tool for inference in such models. INLA compute approximations to posterior marginals for
each component in the model, from which posterior expectation and standard deviations can easily be found.
The software is open source and is available for Unix, Windows and Mac. It can be downloaded from website
www.r-inla.org. On the same web site documentation details and applications are also provided.

The remainder of the report is organized as follows. Section 2 introduces latent Gaussian models with a
short description of the INLA methodology. In section 3, we discuss the model and prior structure. In Section
4 we apply our proposed methodology to simulated data. In section 5, we illustrate our approach using two
real life examples based on data sets from Gail et al. (1980) and Kvaløy and Skogvoll (2007). Section 6
contains some discussions.

2 Latent Gaussian models and INLA

Latent Gaussian models are a subset of Bayesian additive models with a structured additive predictor. For such
models, the likelihood function for response variable yi is related to the covariates through some structured
additive predictor ηi

ηi = β0 +

nf∑
j=1

f j(uji) +

nβ∑
k=1

βkzki + εi (2)

Here, the {f (j)(·)}s are unknown functions of the covariates u, the {βk}s are the linear effect of covariates z
and εis are unstructured terms. A latent Gaussian model is obtained by assigning x = {{f (j)(·)}, {βk}, {ηi}}
a Gaussian prior. The density π(x | θ1) is assume to be Gaussian with (assumed) mean zero and precision
matrix Q(θ1). The density of x is controlled by vector of hyperparameters θ1, which are not necessarily
Gaussian.

Let the distribution for response variable y = {yi : i = 1, · · · , N} be denoted by π(y|x,θ2) and assume
that yis are conditionally independent given x and θ2, some additional hyperparameters in the likelihood, then
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the posterior distribution is given by

π(x,θ | y) ∝ π(θ)π(x|θ)
∏
i

π(yi|xi,θ)

∝ π(θ) | Q(θ) |n/2 exp
(
− 1

2
xTQ(θ)x+

∑
i

log π(yi|xi,θ)
) (3)

Here, θ = (θT
1 , θ

T
2 )T with dim(θ) = m. This posterior density is not analytically tractable as the likeli-

hood is not Gaussian. INLA (Rue et al. (2009)) builds approximations to the posterior marginals of π(xi|y)

and π(θ|y) assuming two basic properties, First, the latent field x (often of large dimension) admits con-
ditional independence properties, it is a Gaussian Markov random filed (GMRF) with a sparse precision
matrix Q(θ1),(Rue and Held, 2005). Secondly, the number of hyperparameters θ is not very large ( say
m ≤ 20 ). Finally each point yi should depend on the latent field x only through the predictor ηi, i.e.
π(yi|x,θ1) = π(yi|ηi,θ1).

The approximations π̃(θ|y) and π̃(xi|θk,y), i = 1, ..., n are based on a clever use of Laplace approx-
imations. Rue et al. (2009) describe three different approximations for π̃(xi|θk,y), namely a Gaussian, a
Simplified Laplace and a Laplace. The default option in the INLA library is the Simplified Laplace approxi-
mation and this is used in all the examples in this report. Posterior marginals for the latent variables π̃(xi|y)

is obtained by numerical integration. For more detail we refer to Rue et al. (2009).
A small example of latent Gaussian model is as follows:

• Let t = {ti : i = 1, · · · , N} be Weibull distributed response variables, such that the hazard function is

h(t) = λist
s−1
i , t > 0, s > 0, λi > 0

where s is the shape parameter and λi is the scale parameter.

• Let λi = exp(β0 + β
′
1zi), where zi is an observed covariate and (β0, β1) are the unknown parameters

of interest.

• Let ηi = β0 + β
′
1zi

Such model can be written as a latent Gaussian field if we assume Gaussian priors for β0 and β1. Then the
vector x = (β0, β1, η1, · · · , ηN ) has a joint Gaussian distribution and takes the role of Gaussian field. There
is only one hyperparameter θ2 = s, for which we assume a Gamma(a,b) prior distribution with known mean
and variance.
In the Weibull model, described above, the likelihood for ti depends on the latent fieldx only through predictor
ηi and therefore INLA can be applied directly in such cases. The graph of latent Gaussian model for this
example is shown in Figure 1.
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Figure 1: The structure of Latent Gaussian model for Weibull example

3 Nonhomogeneous Poisson process model

For survival data the most common and widely used approach is the Cox proportional hazards model (Cox
(1972)), which describes the hazard for an individual with covariate vector z by the equation

h(t|z) = h0(t) exp(βTz) (4)

where h0(·) is the baseline hazard function and β is the vector of parameters associated with covariates z. The
model in (4) is used for time to event data but can be extended for multiple events as suggested by Lawless
(1987) and Sinha (1993).

To construct such a model, we partition the time axis into K non overlapping intervals, 0 = s0 < s1 <

...sK = T , define the k-th interval as Ik = (sk−1, sk]. We assume the baseline intensity to be constant in each
interval:

h0(t) = λk for t ∈ Ik = (sk−1, sk]

Suppose that there are N subjects under observation, let Ei(T ) denote the number of events occurring to
subject i by time T . Let Eik = Ei(sk) − Ei(sk−1) be the number of events occurring to subject i in interval
Ik. Then the total number of events occurring to subject i during the study time is Ei =

∑
k Eik. We assume

{Eik; i = 1, · · ·N, k = 1, · · · ,K} to be independent Poisson distributed random variables. For Ei(t), we
assume a conditional non-homogeneous Poisson process given the covariate vector zi, and unobserved random
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Figure 2: The time line is partitioned into K non overlapping intervals.

frailtywi (Sinha (1993)). With all the specifications, the conditional proportional intensity function for subject
i in the interval Ik is given by

h(t|zi, wi) = h0(t)wi exp(βTzi), t ∈ Ik = (sk−1, sk]

= exp(log(h0(t)) + log(wi) + βTzi)

= exp(bk + αi + βTzi)

(5)

where, ηik = bk + αi + βTzi with bk = log(λk) and αi = log(wi).
The conditional distributions of the number of events, Eik (for k = 1, · · · ,K) given wi and zi, are

independent Poisson and can be expressed as

Eik ∼ P(exp(ηik)(sk − sk−1)) (6)

And we assume that if Eik ⊥ Eik′ |wi, zi for k 6= k
′
. Under non informative censoring, the log-likelihood

contribution of subject i is given by

li ∝
K∑
k=1

{
Eik log

(
exp(ηik)(sk − sk−1)

)
− exp(ηik)(sk − sk−1)

}
(7)

This is the contribution from subject i over many short intervals. The data enters the likelihood only
through the number of events happening in each small interval.

Our aim is to rewrite these non-homogeneous Poisson processes into a latent Gaussian model which allow
us to perform Bayesian inference using integrated nested Laplace approximations (INLA).

We assume Gaussian priors with large variance for β. For the log frailty term αi we assume Gaussian prior
with unknown precision τα. For the log-baseline intensity, bk, we assume correlated prior process, namely an
intrinsic first-order random walk (RW1) model (Rue and Held (2005), Ch.3) with precision τb. RW1 models
are built by first assuming that the location k of the nodes are all positive integers, i.e. k = 1, · · · ,K so that
the distance between nodes is constant and equal to 1. Then, increments bk+1 − bk are assume independent
and identically distributed.

bk+1 − bk ∼ N (0, τ−1
b ), k = 1, · · ·K − 1 (8)

We assume Gamma priors with known parameters for the hyperparameters, θ = (τα, τb). Conditioned on
θ, the latent field

x =
{
α1, · · · , αm, b1, ..bK ,β, η11, · · ·

}
∼ N(0,Q−1) (9)
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Figure 3: A sample of simulated data (* denotes detecting of an event).

has Gaussian distribution with precision matrix Q(θ). By doing this we see that conditional on θ, the like-
lihood of number of events occurring to subject i in interval k depends on the latent Gaussian field x only
through the predictor ηik. Which is a requirement in INLA for computational purpose.

4 Simulation

A simulation study is conducted to assess the performance of our model. We simulate multiple events for 1000
cases of a non-homogeneous Poisson process using the thinning (random sampling) approach as discussed in
Ross (2002). We use Example 3.24 from Rizzo (2008) with intensity function

h(t) = 3cos2(t)

For this model the baseline intensity is h0(t) = cos2(t), which is a function of time, and the covariate is
fixed. A sample of simulated data set is given in Figure 3.

To evaluate the efficiency of the estimates of the baseline intensity from our model we divide the time
axis into K intervals. We consider 4 different cases by assuming K = 10, 20, 40 and 80. Then we model
the number of events Eik, i = 1, · · · , 1000 and k = 1, · · · ,K, according to our proposed non homogeneous
Poisson process model in section 3. For log baseline intensity we assume RW1 prior.

The true curve for log-baseline intensity and posterior estimates of the mean of the log-baseline along
with 95% credible intervals are shown in Figure 4. The pattern of cos2(t) is reasonably captured by piecewise
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constant baseline intensity. By increasing the number of intervals we get better approximations for the baseline
intensity.

We observe that the estimates of log baseline intensity are quite reasonable for the intervals where there is
sufficient data. There is difference in the true values and the estimates on the right end of the plots in Figure
4(a), Figure 4(b), Figure 4(c) and Figure 4(d). Also the 95% credible intervals are very broad as there are not
so many values.
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Figure 4: Simulation study: the true log baseline intensity (red curve) with posterior estimates of means (solid
line black) and 95% credible intervals (dashed lines), when the time axis is divided into K = 10 (Panel (a)), K
= 20 (Panel(b)), K = 40 (Panel(c)) and K = 80 (Panel(d)) intervals.
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5 Applications

In this section we re analyse the mammary tumour data from Gail et al. (1980) and cardiac arrests data from
Kvaløy and Skogvoll (2007) using the proposed model. For mammary tumour data, we also compare results
obtained by INLA and MCMC. The examples are run on a dual-core 2.5GHz laptop and the execution times
refer to such machine.

5.1 Example: Mammary tumour data

We consider times to development of mammary cancer in 48 rats given by Gail et al. (1980). These animals
were injected with a carcinogen and then were randomly assigned to receive either the treatment or control.
The occurrence of tumours are noted twice a week from day 62 till day 182. All animals were right censored
after 182nd day.

time

60 80 100 120 140 160 180 200

0
10

20
30

40
50

Figure 5: Display of events for tumour occurrences in 48 Rats.

The data set consists of times to tumour in days for each rat. The only covariate used is group, group=1
denotes treatment and group=2 denotes control. Figure 5 displays the occurrence of tumours for all 48 rats
under study, in the figure ∗ denotes a detected tumour. We analyse the data by assuming piecewise constant
baseline intensity function. Analysis starts by partitioning the time axis into 5 intervals of equal length. Thus
for this data i = 1, · · · , 48 and k = 1, · · · , 5. The conditional proportional intensity for animal i in time
interval k is

h(t|zi, wi) = exp{β0 + groupiβ1 + bk + αi}, t ∈ Ik (10)
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Figure 6: Posterior means by INLA (a) log baseline intensity and (b) log frailty.

where sk − sk−1 is constant as the time intervals are same. Moreover, we assume are as follows, β0 ∼
N (0, 0.001−1), β1 ∼ N (0, 0.001−1), αi ∼ N (0, τ−1

α ), log(λ) = b ∼ RW1(τb), further we assign
Gamma priors, Γ(a, b) with mean (a/b) and variance (a/b2) for the hyperparameters, τα ∼ Γ(1, 0.001)

and τb ∼ Γ(1, 0.001).
To implement the model in INLA, we define the formula and the inla() function as follows:

cutpoints = seq( 62,182, len=6)

formula = inla.surv(time,event, subject=subject) ˜ group

+ f(subject, model="iid",param=c(1,0.001))

model = inla(formula,family="coxph",control.hazard=list(cutpoints

=cutpoints), control.inla = list(

int.strategy="grid", diff.logdens=15, dz=0.2), data=data)

h = inla.hyperpar(model,dz = 0.2, diff.logdens = 15 )

inla.hyperpar is used to improve the estimate of the marginal posterior densities of the hyperparameters.
For more details about inla.hyperpar() we refer to Rue et al. (2009). inla.surv() function is discussed
in Akerkar et al. (2010).

Estimates of the log-baseline intensity and log frailty are shown in Figure 6. The log-baseline intensity
is constant. The frailty effect provides strong evidence of heterogeneity among the rats. Thus some of the
rats are more prone to tumours as compared to others in the same group. The estimated mean and standard
deviation of group (treatment effect) are calculated as 0.8 and 0.2. Which indicates the significance of the
treatment effect. Our results agree with the results given in Sinha (1993).
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Figure 7: Posterior marginals distributions approximated by INLA(solid line) and MCMC based density esti-
mates (histogram) (a) β0, (b) β1, (c) τb and (d) τα.
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To assess the quality of the INLA approximations, we compare them with MCMC estimates, obtained by
a ” one-block MCMC sampler” described in (Rue and Held (2005), Ch. 4). In Figure 6 the INLA posterior
marginals for β0, β1, τb, τα are compared to histograms based on long MCMC runs. The processing time
for INLA() was 57 seconds and MCMC results took about 2 hours for 106 updates. The results are quite
comparable.

To check whether it is important to include the frailty effect in the model, we fit a model without consid-
ering frailty effect . The estimated mean and standard deviation of group effect is 0.80 and 0.15. The results
obtained clearly support the treatment effect, but the standard error is underestimated. Our results are similar
with those obtained by Lawless (1987).

5.2 Example: Cardiac arrest data

In this example, we re analyse the effect of weather conditions on cardiac arrests in a specified population. We
consider the data set concerning the occurrence of cardiac arrests treated by the emergency medical service
in Trondheim, a city in central Norway during the time period from the start of January 1990 until the end of
November 1998 (Kvaløy and Skogvoll (2007)). The data is available for 3256 days and 809 cardiac arrests
were reported during this period. The details about the number of events per day is given in Table 1. In the
current example the number of events occurred are quite small and there are approx. 78 % days without any
event. Kvaløy and Skogvoll (2007) consider several covariates but we include only those covariates, which
they concluded are important.

cardiac arrest 0 1 2 3

number of days 2536 636 79 5

Table 1: The number of events per day.

We consider covariates air temperature, relative humidity, wind speed, precipitation, snowfall indicator
and day number (day number of a year). Temperature, relative humidity and wind speed are recorded several
times a day. For the analysis, we used the daily averages of these variables. Furthermore instead of using
the direct snow depth covariate, we use indicator function being 1 with snowfall and 0 otherwise, which we
denote by snow.

Following the suggestion by Kvaløy and Skogvoll (2007), we consider the time interval of 24 hours as it
seems reasonable that the occurrence of cardiac arrest are affected by this cycle. For this example, the subject
is a day and we analyze the effect of covariates (weather conditions) on the number of cardiac arrests in a day.
Let Eik represent the number of cardiac arrests on day i in the kth interval. We partition a time interval of 24
hours of a day in 12 equal intervals. The predictor function for ith day in kth interval is as follows

ηik = β0 + β1windspeedi + β2snowi + f (temp)(tempi) + f (precipitation)(precipitationi)

+ f (humidity)(humidityi) + f (day)(dayi) + bk
(11)

where i = 1, · · · , 3256 and k = 1, · · · , 12. As discussed in section 3, bk = log(λk) is the log of baseline
intensity in kth interval.

We assume linear effects for windspeed and snow, and smooth effects for temperature, precipitation,
relative humidity, day number and log-baseline intensity. We assume RW1 prior for log baseline intensity,
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and RW2 priors for temperature, precipitation, relative humidity, day number (Rue and Held (2005), Ch. 3).
Moreover, since we have chronological data for nearly nine years, we consider day number as cyclic covariate.
All hyperparameters are assign gamma priors with known precision.

The posterior estimates of windspeed and snow are summarized in Table 2.

covariate mean s.d. 0.025quant 0.975quant

windspeed -0.005 0.015 -0.03 0.02
snow 0.162 0.105 -0.04 0.37

Table 2: Posterior estimates of windspeed and snow.

Estimates of temperature, precipitation, relative humidity and day number are given in Figure 8. The
intensity of cardiac arrests is maximum when temperature is little lower than 0◦C and decreases with increase
in temperature (Figure 8(a)). The effect of precipitation is clearly linear (Figure 8(b)). The effect of relative
humidity seems constant (Figure 8(c)). It is quite clear from Figure 8(a), 8(b) and 8(c) that the uncertainty in
the estimates is largest at the boundaries where there are less observations.

The covariate day number is used in the model to incorporate the seasonal changes. The effect of day
number varies over whole year but is maximum during winter and least during spring (Figure 8(d)).

Figure 9(a) shows the histogram of actual cardiac arrests times. The number of cardiac arrests are least
around 5 in the morning. It increases with activity level until 16 hours, then it decreases and remains stable.
The estimates of the log baseline intensity along with 95% credible intervals are shown in Figure 9(b).

It is clear from Figure 8(a) and Figure 8(d) that the occurrence of cardiac arrest is affected by both tem-
perature and day number. The occurrence of cardiac arrest is more in winter or when temperature is negative.
Since temperature and day number are closely related, we want to study their effectiveness when modelled
separately.

We model the number of cardiac arrests in two different models, in one we consider only day number and
in the other only temperature. We assume smooth effect for both temperature and day number. The posteriors
estimates along with 95 % credible intervals for temperature and day number are given in Figure 10.

The significance of temperature and day number is evident from Figure 10(a) and Figure 10(b). The
intensity of cardiac arrests is constant but higher, when temperature is less than 0◦C and decreases sharply
with increase in the temperature. The effect of day number is varying all year. Though, the occurrence of
cardiac arrest are more during winter, when the weather conditions are extreme (bad) and is lowest in the
spring.

We investigate a number of additional models to learn about significant covariates. We assume linear
effect for covariates snow and windspeed, and assume smooth effects (RW2) for temperature, precipitation,
relative humidity and day number. Here also we consider cyclic effect for day number.

To compare different models, we use the deviance information criterion (DIC) of Spiegelhalter et al.
(2002). Details about some of the models along with the DIC and the effective number of parameters are
given in Table 3.

From the results mentioned in Table 3, The best model we obtain in terms of the DIC (7720.15) is by
including temperature, precipitation and snow in the model. While comparing different models, we notice
that the DIC of models with day number are more than the DIC of models with temperature, given the other
covariates are same. Thus we believe that temperature is more significant than day number.

We conclude that to study the effect of weather covariates on intensity of cardiac arrests, it is sufficient to
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Figure 8: Posterior means by INLA for (a) temperature, (b) precipitation, (c) relative humidity, (d) day number,
(e) log frailty
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Figure 9: (a) Histogram of actual cardiac arrest times. (b) Posterior means and 95% credible intervals (dashed
lines) of log baseline intensity .
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Figure 10: Posterior means and 95% credible intervals (dashed lines) of (a) temperature (b) day number, when
modelled separately.
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Model Covariates effective number DIC
of parameters

1 - 9.67 7740.6
2 temperature 12.33 7726.62
3 precipitation 12 7737
4 day number 19.8 7729.3
5 temp + snow 13.17 7725.2
6 snow + day number 20.8 7728
7 temp + precip 14.5 7721.3
8 day number + precip 21.9 7726.27
9 temp + humidity 15.9 7730.15
10 day number + humidity 39.5 7748.9
11 temp + precip + snow 15.32 7720.15
12 day number + precip + snow 22.9 7724.25
13 temp + precip + humidity 18 7725.48
14 day number + precip + humidity 57.7 7759.25
15 temp + precip + snow + humidity +

windspeed + day number 29.5 7732.24

Table 3: Cardiac arrests data: the effective number of parameters, DIC and the time used in seconds for
different model specifications.

include covariates such as temperature, precipitation and snow in the model. Our results support the general
belief about more cardiac arrests in extreme weather conditions.

In our final model, we include three weather variables, temperature, precipitation and snow. Figure 8(b)
suggests that precipitation has linear effect, and Figure 10(a) suggest that effect of temperature is closer to
linearity. So we assume linear effect for temperature and precipitation along with snow. The results of our
final model are summarised in the Table 5. The DIC for the model is 7718.9 and is the minimum of all the
DICs. Although the DIC of the model, when we assumed smooth prior for temperature and precipitation is
not very different. We conclude that a linear effect for precipitation, temperature and snow are sufficient to
describe the occurrence of cardiac arrest.

covariate mean s.d. 0.025quant 0.975quant

temperature -0.015 0.01 -0.027 -0.003
precipitation 0.016 0.01 0.005 0.03
snow 0.17 0.07 -0.03 0.36

Table 4: Posterior estimates of snow.

6 Discussion

In this report, we discussed a Bayesian semiparametric model for multiple event time data based on the so-
called proportional intensity model. Conditional on fixed covariate and the frailty random effect, multiple
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events occur to a subject according to a non-homogeneous Poisson process .
We avoid parametric assumptions about the baseline and model it using piecewise constant function. We

treated random effects (frailty terms) like regression coefficients. We demonstrated that we can rewrite the
nonhomogeneous Poisson process model as latent Gaussian model, which allows us to do the approximate
Bayesian inference using integrated nested Laplace approximations.
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