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clustering with applications to petroleum exploration

Gabriele Martinelli and Jo Eidsvik

Department of Mathematical Sciences, NTNU, Norway

Abstract

The paper considers the problem of optimal sequential design for graphical models. Oil and
gas exploration is the main application. Here, the outcomes at prospects or reservoir units are
highly dependent on each other. The joint probability model for all node variables is considered
known. As data is collected, this probability model is updated. The sequential design problem
entails a dynamic selection of nodes for data collection, where the goal is to maximise utility,
here defined via entropy or total expected profit. With a large number of nodes, the optimal
solution to this selection problem is not tractable. An approximation based on a subdivision
of the graph is considered. Within the small clusters the design problem can be solved exactly.
The results on clusters are combined in a dynamic manner, to create sequential designs for the
entire graph. The merging of clusters also gives upper bounds for the actual utility. Several
synthetic models are studied, along with two real cases from the oil and gas industry. In these
examples Bayesian networks or Markov random fields are used. The sequential model updating
and data collection strategies provide useful guidelines to policy makers.

1 Introduction

Our interest is a sequential selection problem over dependent variables. The main motivation is
to construct policies for oil and gas exploration, where the outcomes at prospects are dependent
by spatial proximity or by common geological mechanisms. The probability of success for any
exploration well is then highly influenced by the outcomes at other prospects.

More generally the challenge is to construct an optimal dynamic design of nodes in a graph.
For instance, in the situation with a Bayesian Network (BN) or a Markov Random Field (MRF)
we evaluate which variables are most useful to observe. We assume a fixed probability model a
priori. As we acquire data at nodes in the BN or the MRF, the original probability distribution
is updated, according to Bayes rule. Relevant design questions are then: Which nodes are more
informative? Which sequence of nodes gives the best policy? In the petroleum industry drilling
wells is extremely costly, and getting the right information is critical.

At each stage of the dynamic strategy, we choose to observe one additional variable, or quit the
search. If we acquire data at a node, we incorporate the observation in the current (a priori) model
to compute the updated (a posteriori) model. For the next stage, the updated model serves as a
prior model, and so on. The sequential decisions account for two aspects: i) the immediate profit in
terms of monetary units or information gain by knowing the current variable, and ii) the expected
future benefits induced by the predictive capacity, conditional on the current variable. These two
aspects are combined in a utility function. If the expected utility of choosing one more node is too
small, we stop collecting data. The trade off between i) and ii) is related to more general explore
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2 SEQUENTIAL DESIGN 3

or exploit problems in decision making. An oil and gas company may want to target first the most
lucrative prospects, but it is also important to know the key variables, which give us the chance to
make better, informed, decisions at the later stages. The future values in ii) then play an important
role in the utility function.

With our focus on oil and gas exploration we note some similarities and differences with com-
mon spatial design problems, e.g. Shewry and Wynn (1987), Le and Zidek (2006) and Zidek and
Zimmerman (2009). The most common problem treated in the literature is to allocate a fixed
number of monitoring stations to improve overall predictive performance in some sense. The se-
lection is thus done in the static manner, not allowing the decision maker to modify her choices
after observing the outcomes at the previously selected spatial sites. In this paper we consider
the dynamic decision problem, with one observation at a time and the ability to make sequential
decisions. Moreover, in spatial design problems the model is typically Gaussian. Our paper is new
in the sense that it studies design for graphical models with discrete outcomes at all nodes.

Our sequential design problem is a discrete optimization problem which is in theory solved via
dynamic programming (DP). This method defines a forward-backward algorithm that constructs
the optimal sequences and the expected utility. Bickel and Smith (2006) present a DP algorithm
tailored for our sequential design problem with dependent oil and gas prospects. However, their
approach is not applicable when the number of variables gets too large. For more than, say, ten
variables, we must instead look for approximate strategies. The appropriate solution seems to be
very case-specific. See e.g. Powell (2007) for more background. Various heuristic approaches are
important for special applications, but it is very difficult to assess the properties of these solutions.
For graphical models it seems natural to utilise the structure. One approach is to split the original
graph in several disjoint clusters. This idea was originally presented in Brown and Smith (2012).
They next solved the DP exactly for the clusters, and combined the results to get approximations
for the expected utilities on the full-size graph. The approach also allows an upper bound on the
utility, indicating the quality of the approximation.

Our main contribution in this paper is to use the clustering strategies for graphs to construct se-
quential designs for BNs and MRFs. A critical element in the method is to compute the cluster-wise
Gittins index. This extends the original index pioneered in statistics by Gittins (1979) and Whittle
(1980) for so-called bandit problems, studied by Benkerhouf et al. (1992) and Glazebrook and Boys
(1995) for oil and gas exploration problems. We consider the sensitivity of cluster orientation and
size, and various levels of approximation in the Bayes updating scheme. We use utility functions
based on entropy and more traditional cost/revenue aspects. For the situation with dependent
oil and gas prospects, the resulting designs can work as a road map for the exploration company.
In this way we combine statistical models and Bayesian updating with decision making to create
policies. Our focus is on oil and gas resources applications, but similar methods are relevant for
e.g. machine scheduling (Abdul-Razaq and Potts, 1988), medical treatments selection (Claxton
and Thompson, 2001), subset selection problems and more generic search problems.

The paper develops in the following way: in Section 2 we give the main ideas about sequential
design, in Section 3 we discuss how the splitting in clusters can help in building approximate
strategies, in Section 4 we provide results on synthetic examples, in Section 5 we show results on
real case studies.

2 Sequential design

A sequential strategy is illustrated in Figure 1 for the context of petroleum exploration. Here, we
initially choose to drill one of three prospects, or nothing. If we start by drilling prospect 3, the
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Figure 1: Decision tree for a simple 3-nodes discrete example with two possible outcomes (oil or
dry) per node.

design criterion for the next stage depends on the outcome of prospect 3. The decision is then to
choose among prospect 1 and 2, or quit.

Similarly, the sequential design problem we consider here entails a selection of nodes, one at a
time, to maximize a utility function. We first introduce the statistical notation and assumptions
required to frame this sequential design problem. We next outline the theoretical solution given
by DP. A small example is then used to illustrate the sequential strategies resulting from different
utility functions.

2.1 Notation and modeling assumptions

Consider N nodes, and let xi ∈ {1, . . . , ki}, i = 1, . . . , N denote the discrete random variables.
Without loss of generality, we assume ki = k possible states for all nodes i. In Figure 1, k = 2 with
oil or dry outcomes. We represent the probabilistic structure for x = (x1, . . . , xN ) via a graph. For
a BN defined by a directed acyclic graph the joint distribution is

p(x) =

N∏
i=1

p(xi|xpa(i)), (1)

where pa(i) denotes the parent set of node i, which is empty for the top nodes. Undirected graphs
are defined via the full conditionals over a neighborhood, or, by the Hammersley-Clifford theorem,
via a joint distribution over clique potentials. For a first-order MRF (Besag, 1974) we use:

p(x) ∝ exp

β ·∑
i∼j

I(xi = xj) +

N∑
i=1

αi(xi)

 , (2)

where i ∼ j denotes neighboring lattice nodes (north, east, south, and west). The parameter β
imposes spatial interaction, while the αi(xi) terms include prior preferences about states at node i.

We assume known, fixed, statistical model parameters in p(x), such as β and αi(xi) in (2) and the
conditional probabilities in (1). Associated with the probabilistic model we can of course compute
several attributes that are important for design purposes. Assuming that we know the revenues or
cost, denoted rji , for outcomes xi = j, the decision value (DV) isDV (i) = max(0,

∑k
j=1 r

j
i p(xi = j)),

i = 1, . . . , N . This DV is useful for decision making. It is non-zero only when the expected profit
is positive. The entropy (disorder) is defined by H = −

∑
log(p(x))p(x) = −E(log p(x)), and the

reduction in entropy is often used for design purposes, see Wang and Suen (1984).
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In our sequential design situation, we rely on the ability to extract the marginal probabilities at
all nodes, and to update the probability distributions when evidence is collected. Since we are going
to update the model at each stage of the sequential strategy, for many different kinds of evidence,
we require these computations to be reasonably fast. For BNs the updating of probabilities can
be done effectively by the junction tree algorithm (Lauritzen and Spiegelhalter (1988)). MRFs
can similarly be updated by forward-backward algorithms, see e.g. Reeves and Pettitt (2004) and
Tjelmeland and Austad (2012).

Assume we can acquire data at one node in the graph, and incorporate the outcome to get a
posterior distribution. For the next stage, this updated distribution serves as a prior distribution.
We can then select another node, acquire information, update the probabilities, and so on. The
sequential design of nodes is constructed by optimizing the expected utility, which means that we
integrate over all possible data when finding the optimal sequence. In our case, the utility is based
on monetary profits or entropy reduction. One could of course imagine other selection criteria here.
Minimum entropy entails a dynamic design that attempts to stabilize or minimize the uncertainty
in the graph.

Let ωi be the observable or evidence in node i = 1, . . . , N . If node i is not yet observed, we
set ωi = −. If we choose to observe node i, ωi is the actual outcome of the random variable xi at
this node. For instance, in a petroleum example, ωi = 1 can mean that prospect i has been drilled
and found dry, ωi = 2 if found gas, and ωi = 3 if oil. A priori, before acquiring any observables,
we have ω = ω0 = (−, . . . ,−). When we observe nodes, we put the outcomes at the corresponding
indices of the vector ω. Say, if node 2 is selected first, and observed in state ω2 = x2 = 1, we
set ω = (−, 1,−, . . . ,−). At each stage, one more entry of ω is assigned. The posterior that is
updated at every stage of the sequential design is generically denoted by p(x|ω), with marginals
p(xi = j|ω), i = 1, . . . , N , j = 1, . . . , k. Since we get perfect information about the selected node
variables, we get p(xi = j|ω) = 0 or 1 if node i is already observed.

In our setting it is important to monitor the design criterion or utility at all stages of sequential
conditioning. When we get evidence ω, the entropy is reduced, so that H(ω)−H ≤ 0. For the DV
we have

∑
ωDV (i|ω)p(ω) ≥ DV (i), where the probabilities for the DVs in the sum are conditional

on the evidence ω. This entails that the pre-posterior DV is always larger than the prior value, and
the value of information is always non-negative, see Bhattacharjya et al. (2010). The sequential
design will be guided by immediate entropy reduction or gain in monetary value, as well as the
expected future impact an observable can have.

2.2 Dynamic Programming for Sequential Design

The sequential design procedure forms a decision tree, where a fork represents a decision to choose
a node (or quit), and each branch points to the future decisions, and the conditional utilities,
depending on the outcome of the chosen node (Figure 1). See also Cowell et al. (2007), Chapter
8. We next present the method of DP to solve the sequential design problem. This algorithm
computes the utilities of all possible sequential designs, and then picks the most lucrative sequence.

We first consider expected profit as utility function. This criterion is relevant for the petroleum
examples with N prospects to explore and hopefully produce. Let v(ω) represent the expected
revenues, i.e. future cash flows, given that we are in observation state ω. Initially, the vector of
observables is empty: ω0 = {−,−, . . . ,−}, and the value is v(ω0). DP computes v(ω0) and finds
the associated optimal sequential design.

At the first stage we select the optimal node i among all nodes N , or quit. The expected initial
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value becomes

v(ω0) = max
i∈N


k∑

j=1

p(xi = j)

[
rji + δ max

s∈N/i

{
k∑

l=1

p(xs = l|xi = j)(rls + . . .), 0

}]
, 0

 ,

where the second and the subsequent maximizations are over nodes not yet considered in the
sequential strategy. Here, δ is a discounting factor. In practice, a δ near 1 encourages learning
the dependent model, while a smaller δ means that we choose the bigger DV s at the early stages.
Note that the expected value contains immediate profit (rji ) and a continuation value (CV) with
conditioning on the outcome of variable xi = j in the selected node. For short, we can write the
expected revenues by starting at node i by

vi(ω) =

k∑
j=1

p(xi = j|ω)
[
rji + δ · v(ωj

i )
]
, (3)

where ωj
i = {ω-i, ωi = j} and v(ωj

i ) is the CV of the state ωj
i , i.e. v(ωj

i ) = maxl 6=i{0, vl(ωj
i )}. If

we know the outcomes at all nodes, the CV is v(·, ·, . . . , ·) = 0. This forms the starting point of
DP, which proceed backwards, one step at a time, extracting the solutions for all sequences. We
show an example in the next section.

As suggested in e.g. Weber et al. (2000) and Krause and Guestrin (2009), the reduction in
entropy is useful for design. Let H(ω) be the (conditional) entropy with current evidence ω. We
construct a sequential design based on

∆H(ωj
i ) = H(ω)−H(ωj

i ),

i.e. the reduction in entropy caused by additionally observing xi = j at one stage in the strategy.
This entropy reduction can be computed efficiently utilizing fast updates of BNs and MRFs, and
the conditional properties of entropy. We introduce a ’price’ Pi of observing node i. This is assumed
constant for any outcome of node i. Similar to what we did for the profit-based utility, we set the
CV as the possible future reductions in entropy brought by the new observation. The expected
utilities when including node i in the design becomes

vi(ω) =

k∑
j=1

p(xi = j|ω)
[
∆H(ωj

i )− Pi + δ · v(ωj
i )
]
, i = 1, . . . , N. (4)

The decision maker selects the node with the highest vi(ω), i.e. the most informative part of the
graph. If no nodes contribute with positive values, we quit the search. This means that the price
Pi exceeds the expected immediate gain and future information reduction. When there are no
more nodes to observe, the CV is 0. Similar to the situation above, the DP constructs the optimal
sequential designs of nodes, and computes the associated reductions in entropy. An example is
presented in the next section.

Note that the current situation with sequential decisions can also be phrased as a Markov
Decision Process, where the generic state of the system develops as a function of the actions at
each stage, see e.g. Puterman (2005). No matter how we interpret the sequential design problem,
the computational cost grows exponentially with the number of nodes N . In the example below we
construct optimal selection strategies among eight nodes. For graphs much larger than this, exact
DP is not possible, and we outline the new approximate strategies in Section 3.
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2.3 A motivating example

We now present the DP strategies driven by the cost/revenue utility function and entropy on
a small example. The BN case study is shown in Figure 2. Here, the eight leaf nodes can be
observed, {1A, 2A, . . . , 5C}, while the remaining six auxiliary nodes, {K,P1, . . . , P5}, impose the
desired (causal) dependency structure in the BN (See Section 5). The goal is to determine where
to observe first, and which would be the consequent choice, given data at the first node, and so
on. We assume the initial probability structure of the BN is fixed. Each node has binary outcomes
(k = 2). Inspired by the petroleum exploration, we refer to these two by ’oil’ and ’dry’.

K

P1

P2

P3

P5

P4

1A

2A

3A4A

4B

5A

5B
5C

Figure 2: Example used in Section 2.3. We can collect data in the leaf nodes. By Dynamic
Programming (DP) we construct optimal sequential designs that maximise expected utility.

The main input parameters for this example are given in Table 1. Based on cost/revenues only
two nodes, 3A and 4A, have positive intrinsic value (IV) or marginal expectation E(xi). The DV
is 0 when this value is non-positive. Thus, a naive decision maker, looking for profit, and ignoring
the dependence between nodes, would forget about six of the prospects. The naive value of the
field is 661 + δ · 514 = 1170 for a specified discounting of δ = 0.99. An optimal decision maker,
using (3) and (4), would account for the ultimate consequences of the actions. Since there is much
dependence in the BN model, the output will be quite different from the naive approach. Results

Prospect 1A 2A 3A 4A 4B 5A 5B 5C

p(xi = 0) 0.44 0.46 0.48 0.61 0.70 0.40 0.48 0.48
p(xi = 1) 0.56 0.54 0.52 0.39 0.30 0.60 0.52 0.52

Entropy reduction 0.6859 0.6899 0.6920 0.6682 0.6129 0.6743 0.6922 0.6922

Costs 3000 900 2400 1800 600 1500 3600 2100
Revenues 1368 707 3443 4151 1321 943 3254 1887
E(xi) -554 -32 661 514 -19 -41 -20 -18

Table 1: Input parameters for the example in section 2.3: Marginal probabilites, marginal entropy
reductions and monetary parameters.

are shown in Table 2. We here compare the outcomes of the naive and myopic strategies with the
optimal using DP. The myopic (nearsighted) strategy relies on forward selection alone, as opposed
to the forward-backward approach of DP. Using cost/revenue utility, the myopic strategy starts
from the most lucrative prospect 3A. If this variable is dry, we update the network and find out
that all the conditional DVs are negative. In particular P (4A = oil|3A = dry) = 0.975, and this
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ensures that prospect 4A is no longer attractive. If 3A is oil, the success probabilities in most nodes
increase significantly. In fact, six of the seven remaining DVs are positive. The myopic approach
goes for the largest of all DVs, and selects 4A as the next candidate. If 3A is oil and 4A is dry, we
still have one positive DV. Not surprisingly, this is the prospect above 3A in the graph, and we go
for prospect 2A. If both 3A and 4A are oil, we go again for the most lucrative prospect which is
5B.

The optimal DP solution defines values vi(ω0) in (3) are as follows: [3352, 3952, 3595, 3427, 3852,
3926, 3443, 3738] for [1A, 2A, 3A, 4A, 4B, 5A, 5B, 5C]. Note that all these values are much bigger
than the naive value of the field, which is natural since the correlation in the graph is high. The
first selected prospect is then 2A, which has an intrinsic value close to 0, but a large influence on
the neighboring nodes. If 2A is dry, we focus on another area (prospect 5A). If 2A is oil, we remain
relatively close (3A). For the second stage, in the event of 2A dry: If 5A is dry, the network has
been entirely killed, and we stop observing. If 5A is oil, we remain in the same area (5B). The
third stage is shown in Table 2.

For the entropy-based design, we again compare myopic with a full DP based strategy. For
myopic the first node selected is either 5B or 5C, since their contribution to the reduction of the
entropy is highest (see Table 1). No matter if segment 5B is found dry or oil, we move away from
the 5-nodes, since most of the uncertainty in that part of the graph has been resolved.

Using DP, the first selected node is 1A. This node has a balanced prior probability and a high
impact on the probability structure in the network. In fact, the entropy values vi(ω0) are now as
follows: [0.8534, 0.8487, 0.8066, 0.7850, 0.7713,0.8520, 0.8353, 0.8353]. Nodes 4A and 4B, which are
characterised by prior probabilities far from 0.5, get the lowest initial entropy reduction. Node
4A is nevertheless selected when 1A is dry and 5A is oil (see Table 2). In this situation, when
the left and right part of the network has been explored, 4A is the one with the highest marginal
uncertainty, p(4A = oil|1A = dry, 5A = oil) = 0.445. The price P = Pi is set relatively low, and
under the entropy criterion we keep observing no matter the outcomes of the first two nodes.

Strategy Naive M Myopic M Sequential M Myopic E Sequential E

i(1) 3A 3A 2A 5B 1A

i(2)|xi(1) = dry 4A Q 5A 2A 5A

i(2)|xi(1) = oil 4A 4A 3A 4A 2A

i(3)|xi(1) = dry, xi(2) = dry Q Q Q 1A 2A

i(3)|xi(1) = dry, xi(2) = oil Q Q 5B 1A 4A

i(3)|xi(1) = oil, xi(2) = dry Q 2A 5A 2A 5C

i(3)|xi(1) = oil, xi(2) = oil Q 5A 4A 1A 5B

Table 2: Results of sequential design for the motivating example. Utility is monetary based (M)
and entropy based (E). Here, i(1), i(2) and i(3) are the first, second and third nodes selected. Q
means to quit the strategy.

3 Clustering strategies for large graphs

For large graphs the number of possible scenarios to evaluate exceeds what is computationally
tractable. The objective functions in (3) or (4) must then be approximated in some way. Brown
and Smith (2012) use clusters to overcome the computational limitations and to get an upper
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bound for the expected utility. We now apply this method to build sequences. We study different
complexity levels in the sequential Bayes update of the probability structure.

3.1 Sequential strategies based on clustering

The idea is to partition a large graph in smaller subgraphs, which can be computed efficiently. Let
Cd, d = 1, . . . , L be disjoint nodes of the entire node set N , i.e. Cd ∩ Ce = ∅, and ∪Ld=1C

d = N .
We denote by xCd the random variables in cluster Cd, and ωCd the cluster specific evidence. The
number of nodes in cluster Cd will be in the order of one to around ten. The approximations we
present here improve as the cluster sizes grow, with a large increase in computational cost. As an
example of the increase in computing time, consider a situation with binary outcomes k = 2. The
computing time for evaluating a size 2 cluster is about 0.007 seconds, for 5 nodes we have 0.37 sec,
and for nine nodes it is 50 seconds.

To construct an approximate sequential design, we suggest to rank the clusters and select the
optimal node within the best cluster. The ranking is based on DP within clusters, given the current
information. Once we collect data in a cluster, we update the probabilities, use DP again, and get
a new ranking. This provides the basis for the selection at the next stage of the sequential design.

It is important here to introduce the Gittins index (GI), see Gittins (1979) and Whittle (1980).
We consider the cluster-wise GIs in the spirit of Brown and Smith (2012). First, consider a variation
of (3), with a generic retirement value M instead of 0 in the decision rule. Moreover, assume that
this DP equation is set up for each cluster, given the current evidence. We have expected value for
cluster d given by:

vd(ω,M) = max
i∈Cd


k∑

j=1

p(xi = j)

[
rji + δ max

s∈Cd/{i}

{
k∑

l=1

p(xs = l|xi = j)(rls + . . .),M

}]
,M

 . (5)

Now, when the computation is restricted to cluster Cd, the GI is MCd(ω), defined as the smallest
retirement value M such that vd(ω,M) = M . This is the value which makes the decision maker
indifferent between retiring and continuing the sequential strategy. Below, we will discuss various
levels of conditioning on the generic evidence ω in (5).

Brown and Smith (2012) derived some important properties for the value function vd(ω,M),
for any evidence ω. Figure 3 illustrates the value functions. Here, we plot vd(ωCd ,M) −M for
some clusters related to an example below, for fixed evidence. The GI corresponding to each cluster
is the crossing point with the first axis. Note that the ordering of the clusters is not monotone in
M , indicating the changes in decision paths within the cluster. The cluster-wise GIs determine the
cluster to be selected at the current stage of the sequential design. We find the cluster with the
largest GI by gradually reducing the M in conjunction with DP for the clusters. Since the value
function is piecewise linear, solving vd(ωCd ,M) −M = 0 for fixed M, is relatively fast. One can
also use theory from Markov decision processes to solve the DP as a linear programming problem,
see Chen and Katehakis (1986) and Brown and Smith (2012).

To study the policies induced by this cluster strategy, we suggest to generate realizations of
the selected nodes. This entails running hypothetical scenarios where we sequentially observe (i.e.
sample the outcomes) of the chosen nodes, update the probabilities, and then proceed to the next
stage. At subsequent stages we may move between clusters or stay in the same cluster. The chosen
cluster often depends on the outcomes at the previously selected nodes.

Note that the updating step can be quite time-consuming. In principle, the evidence vector ω in
(5) is the full observation sequence until this stage, in all clusters, not only in cluster d. This means
that all cluster probability models must be updated when we acquire new data at a node. A faster,
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Figure 3: Illustration of GIs: Values of v(ωCd ,M)−M for six clusters, as a function of retirement
value M . The GI is the crossing point with the first axis. The cluster with highest GI is selected
in the sequential design.

but more approximate strategy is to update only the cluster where the current data is collected.
This means that just one of the GIs changes at each stage. We implement both of these methods
for updating the probability distribution, given the sequential observations. More specifically, we
have:

• Multiple clusters update (MCU): We rank the cluster according to their GIs. DP in the
best cluster gives the first node. We update the probability model for all the clusters, given
the observation (sample outcome) in the selected node. All cluster GIs are also modified
based on the updated probabilities. Then, we choose the best cluster at the second stage
using these GIs. We proceed until all the nodes have been observed or there are no more GIs
greater than 0.

• Single cluster update (SCU): We rank the clusters on the basis of their GIs. We start
from the cluster with the biggest index, and select a node according to a DP strategy within
the cluster. We update the joint distribution just for that cluster, given the observation in the
first node. The probability model for the other clusters are not updated, and the GIs for other
clusters then stays the same. Then, we choose the cluster with the highest GI among the
updated cluster and the other initial cluster values. The cluster with highest GI is selected,
and the best node based on DP in the cluster is chosen. We update this cluster only, given
all data acquired so far. We continue until all the nodes have been observed, or until there
are no more GIs greater than 0.

The MCU method is of course more consistent since we update the entire probability struc-
ture, and all GIs, whenever new information is available. The drawback is the computational
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cost required to recompute the joint probability distribution and apply the DP strategy in every
cluster after each observation. The SCU method is faster since only one cluster GI needs to be
updated at each stage. However, the sequential design from SCU could suffer lack of accuracy.
Pseudo-algorithms constructing sequences over Monte Carlo samples (observations) are described
in Algorithm 1 and 2.

Algorithm 1 Evaluating a Single Cluster Update (SCU) strategy

ω = [−,−, . . . ,−] # Dynamic programming outcome vector
seq = [ ] # Best sequence vector
Sample t ∼ p(x) # Current sample
for Clusters d = 1 : L do

[vCd , sCd ] = v(ωCd) # Initial cluster-based DP values
GICd = M : v(ωCd)−M = 0 # Initial GIs

end for
while ∃ d : vCd > 0 do
C∗ = arg maxd{GICd} # Best cluster
seq = [seq sC∗ ] # Best node in cluster C∗

ωsC∗ = tsC∗ # Set sampled outcome tsC∗ at selected node sC∗

[vC∗ , sC∗ ] = v(ω
tC∗

C∗,sC∗
) # Updated cluster-based DP value for cluster C∗

GIC∗ = M : v(ωC∗)−M = 0 # Updated GI for cluster C∗, according
# to the new local conditional distribution.

end while

Algorithm 2 Evaluating a Multiple Clusters Update (MCU) strategy

ω = [−,−, . . . ,−] # Dynamic programming outcome vector
seq = [ ] # Best sequence vector
Sample t ∼ p(x) # Current sample
for Clusters d = 1 : L do

[vCd , sCd ] = v(ωCd) # Initial cluster-based DP values
GICd = M : v(ωCd)−M = 0 # Initial GIs

end for
while ∃ d : vCd > 0 do
C∗ = arg maxd{GICd} # Best cluster
seq = [seq sC∗ ] # Best node in cluster C∗

ωsC∗ = tsC∗ # Set sampled outcome tsC∗ at selected node sC∗

for Clusters d = 1 : L do
[vCd , sCd ] = v(ω

tC∗
Cd,sC∗

) # Updated cluster-based DP value for cluster Cd,

# according to the new conditional distribution.
GICd = M : v(ωCd)−M = 0 # Updated GI for cluster Cd

end for
end while

3.2 Computing independent and sequential lower bounds and an upper bound

Associated with a cluster-based sequential design we can approximate the expected utility value
v(ω0). Of course, the clustering strategy gives a sub-optimal value compared to the full DP solution,
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but the optimal one is not tractable for large graphs. A useful aspect of the clustering approach is
that we can get upper bounds for the value v(ω0) by using clairvoyant information.

Let us first discuss various ways of approximating v(ω0). The Monte Carlo strategies in Al-
gorithm 1 and 2 provide a sampling-based approach for estimating this value. Here, each Monte
Carlo sample constructs a design sequence which depends on the outcome at the selected nodes.
We sum the tsC∗ selected at every step of the while cycle in Algorithm 1 and 2, possibly with
discounting. Finally, these output values are averaged over B Monte Carlo runs. The estimates
will differ between MCU and SCU, since the multiple updating scheme gives better sequences on
average. A challenge with this Monte Carlo sampling approach is a large associated Monte Carlo
error for moderate B.

Simpler approximations exist if we disregard the discounting. For instance, we get a lower
bound on the intial value v(ω0) through an independent evaluation on each of the clusters: Let
v(ωCd) be the DP value computed based on the evidence vector ω restricted to cluster d as follows:

v(ω0,Cd) = max
i∈Cd


k∑

j=1

p(xi = j)

[
rji + δ max

s∈Cd/i

{
k∑

l=1

p(xs = l|xi = j)(rls + . . .), 0

}]
, 0

 . (6)

A lower (independent) bound for the expected utility is defined by the sum of the marginal values
for all the clusters:

vLB(1)(ω0) =
L∑

d=1

v(ω0,Cd).

Clearly, vLB(1)(ω0) ≤ v(ω0), since this cluster-by-cluster approach ignores the dependence between
clusters. However, this procedure requires no simulations, and if the clusters are chosen well, the
bound can be reasonable.

This lower bound defined via (6) can be improved by sequential cluster selection. Assume we
start by evaluating the cluster with the highest GI. Its value is v(ω0,Cd). We next generate an
outcome for this cluster td, and use DP restricted to this cluster, plugging in the sampled data at
the selected nodes. Based on this we update the probability model at the remaining L− 1 clusters,
and choose the next cluster with highest GI, say Ce, and so on. This sequential cluster average
value defines an improved lower bound. Over B Monte Carlo samples we have

vLB(2)(ω) =
1

B

B∑
b=1

[
L∑

d=1

v(ωCd |tC
e<d

b )

]
,

where the conditioning is the empty set for d = 1, and tC
e<d

b is the bth sample restricted to all clusters
considered previously. Because of the imposed learning, we have vLB(1)(ω0) ≤ vLB(2)(ω0) ≤ v(ω0).
The quality of this sequential strategy depends on the choice of clusters and on the Monte Carlo
sample size B.

We next consider the construction of an upper bound. This is based on clairvoyant information
in the sequential strategy. This means that we know the outcome of all other nodes, and use this
when making decisions at the current stage. Since we are using information that is not really
available in practice, we get an upper bound for the initial value v(ω0). This works as a benchmark
for sequential strategies. Together with the various lower bounds, we can squeeze the initial value.

The Monte Carlo strategies in Algorithm 1 and 2 can be extended to provide a sampling-based
approach for the upper bound. Now, at each stage, the GIs are computed by DP within-cluster,
using the updated probability model, given the cluster evidence available at the current stage (if
any), and all sample values outside the cluster. If we again disregard discounting, we can solve the
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clairvoyant bound separately for each cluster. In this case we compute the value of a cluster, given
all observations (samples) outside the cluster. This calculation requires the full conditional for all
clusters, given the sampled outcomes in other clusters, but there is no computation of GIs. The
upper bound of the initial value is in this case:

vUB(ω) =
1

T

B∑
b=1

[
L∑

d=1

v(ωCd |tC
e 6=d

b )

]

where tC
e 6=d

b is the bth sample restricted to clusters different from Cd. In summary, we get

vLB(1)(ω0) ≤ vLB(2)(ω0) ≤ v(ω0) ≤ vUB(ω0).

4 Synthetic examples

We first study small BNs and MRFs to compare various cluster configurations. The number of
nodes is at most 12, and we manage to compare the clustering sequences and values with the
optimal solution obtained by full DP.

4.1 Small BN : Entropy utility

The entropy reduction is relevant in many applications, see e.g. Marcot et al. (2001) and Aalders
et al. (2011). When the BNs get large, and sequential strategies are requested, the current approach
should be interesting.

We run (4) on two small BNs, shown in Figure 4. The two BNs are small clusters of a bigger
network, connected through a Common Parent (CP) node. Both BNs have five nodes which can
be selected. In the network on the left the structure is made by a common node and four children,
while the network on the right has two chains departing from a common top node. Each node is
binary, with two states denoted A and B.

1L

2L 3L 4L 5L

1R

2R

4R

3R

5R

CP

Figure 4: Simple BNs used for testing the entropy criterion, connected through a

Let us start with the left network. The top node has a symmetrical prior, i.e. 0.5 probability
of state A. Nodes 2 and 3 have a CPT with propagation of information just through state A, while
nodes 4 and 5 have perfectly balanced CPT, as shown in Table 3

We set δ = 1. The original entropy of the network in configuration ω0 = {−,−,−,−,−} is
2.3615. We intuitively expect that the reduction in entropy is higher if we observe the parent node
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x2, x3 \ x1 A B

A 0.9 0.1
B 0.5 0.5

x4, x5 \ x1 A B

A 0.9 0.1
B 0.1 0.9

Table 3: CPT for Multi Level Network, from level nodes to children nodes

1. However, due to symmetry we get:

∑
x1

p(x1)

{∑
x

−p(x|x1)log(p(x|x1))

}
=

∑
x4

p(x4)

{∑
x

−p(x|x4)log(p(x|x4))

}
= 1.6684,

and the same holds for node 5. The entropy is substantially reduced if we observe state A in either
of these three nodes. Then, a single configuration, {A,A,A,A,A} gets 0.65 conditional probability.
If we observe B in 1 or 4/5, the result is having four configurations equally likely, {B,A,A,B,B},
{B,A,B,B,B}, {B,B,A,B,B} or {B,B,B,B,B}, each with a little more than 0.20 conditional
probability. Node 2 and 3 are not that informative. The overall effect is that an observation in 1
or 4/5 produces an average decrease in entropy of 0.6931. In comparison, the reduction brought
by an observation in nodes 2 or 3 is 0.6109.

The question now is, are the results that intuitive when a full DP strategy is used, i.e. when
we have the possibility to keep observing until the entropy reduction is smaller than fixed cost P?
The results (final values for all the nodes) are reported in Table 4, left.

Left network 1 2/3 4/5

DP, P=0.2 1.3615 1.4828 1.4828
DP, P=0.5 0.3863 0.3803 0.4234
DP, P=0.65 0.0863 < 0 0.0823

Myo, P=0.2 0.4931 0.4109 0.4931
Myo, P=0.5 0.1931 0.1109 0.1931
Myo, P=0.65 0.0431 < 0 0.0431

Right network 1 2/3 4/5

DP, P=0.2 1.2135 1.1607 1.2135
DP, P=0.5 0.2055 0.3139 0.4139
DP, P=0.65 0.0431 0.0431 0.0431

Myo, P=0.2 0.4931 0.4931 0.4931
Myo, P=0.5 0.1931 0.1931 0.1931
Myo, P=0.65 0.0431 0.0431 0.0431

Table 4: Final values of the DP and Myopic strategies applied to the networks in Figure 4, for
different prices P of experiment, and for δ = 1.

We see some surprising results: in the myopic case (Myo), the sequence starts by the reduction
in entropy brought by the first node, and therefore it is not surprising that nodes 1 and 4/5 emerge
as winners, no matter the price Pi = P of data collection. If the price is higher than 0.6931, no
node is profitable, because this is the maximum reduction in entropy that can be achieved with
a single-node observation. For DP strategies the final values are higher than with myopic. The
results are harder to interpret for DP: if the price is very high (0.65), we might have to stop after
a single observation. That is why node 1 is selected as the best choice. Even though the average
reduction for node 1 and nodes 4/5 is the same, the marginal entropy of {A,−,−,−,−} is smaller
than {−,−,−, A−}. Therefore an observation A in node 1 could be sufficient, but an observation
A in node 4/5 may not. This reflects in the different final values. When the cost is medium (0.5),
node 4/5 are selected first. At this price level we choose to observe two or three nodes (depending
on their outcome). When the cost is very small (0.2), it is convenient to keep observing up to end,
and this makes the values for nodes 2/3 and 4/5 identical.
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Results for the network on the right in Figure 4 are shown in Table 4, right. Here, all the nodes
have symmetrical CPT, and the marginal reduction in entropy equals 0.6931 for all five nodes.

Because of this symmetry the results for the three node sets are equal in the myopic strategy.
The same holds for DP with high price level (0.65), since just one observation is allowed.With lower
prices, it is optimal to start far from the center. Often, two or more observations are allowed, and
the reduction in entropy is higher by observing nodes 4 and 5 than observing node 1 and any other
node.

When considering the full network, we regard the two subnetworks as two different clusters,
and set P = 0.5. The left cluster has the highest GI and is selected first. This should not be
surprising, since the left network represents a less informed case with a total entropy of 2.36, while
the the second cluster has a total entropy 1.99. Within the left cluster, one of either node 4 or 5 are
selected. After observing either of these two nodes, the right cluster gets the highest GI, and the
decision maker move there to find a node that reduces the entropy. The suggested ones are node 4
or 5. The choice does in this case not depend on the outcome of the first selected node, but this is
in general not true. In particular, as we have seen before, if the outcome is A, the entropy in the
first cluster is drastically reduced and the indication of moving to the second cluster is strong. If
the outcome is B, the entropy is only slightly reduced, just enough to make the right cluster more
valuable in terms of GI. The sequential strategy (SCU or MCU) suggests to keep alternating nodes
between left and right cluster.

This small example is synthetic, but similar situations may arise in real problems. We can
imagine two sub clusters representing different areas that share little information, and we have
to place monitor stations in order to maximise the entropy reduction of our data. Our proposed
approach uses statistical updating to guide the selection of where to place the first stations, the
second station, given the first, and so on.

4.2 Small BN: revenues/ cost

We focus on two small BNs (Figure 5) with 12 correlated prospects. The small dimension allows ex-
act solutions. We analyse sequences and show how different network structures influence the quality
of the bounds. We further compare these bounds with the ones produced by the approximated
sequential strategies presented in Martinelli et al. (2011a).

Figure 5 (left) shows 12 prospects mutually correlated through a single common parent. For
a similar use of common parent networks in oil and gas exploration contexts, see Martinelli et al.
(2012). Table 5 shows the marginal probabilities and the intrinsic values (IV)s for all 12 prospects.
We consider an oil exploration setting, with two possible outcomes, oil and dry. We have few

prospect i 1 2 3 4 5 6 7 8 9 10 11 12

p(xi = dry) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
p(xi = oil) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

Intrinsic Value -108 375 -657 -711 360 -184 -172 2417 -642 815 1088 -949

Table 5: Marginal probabilities and Intrinsic Values for the 12 prospects of the case studies in
Section 4.2

prospects with positive IV, the most prominent being prospects 8, 10 and 11. The network CPTs
(Table 6) impose both positive and negative correlations between the prospects. For example,
discovering oil in prospect 8 boosts the probability of a discovery in prospect 11, but lowers the
probability of finding oil in prospects 10 and 7.
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Figure 5: Small BN case studies used in Section 4.2.

P1, P4, P7, P10 / CP 0 1

dry 0.2 0.8
oil 0.8 0.2

P2, P5, P8, P11 / CP 0 1

dry 0.8 0.2
oil 0.2 0.8

P3, P6, P9, P12 / CP 0 1

dry 0.6 0.4
oil 0.4 0.6

Table 6: Conditional Probability Tables for the children nodes of the case study presented in Section
4.2, shown in Figure 5, on the left

In Figure 5 (right) the dependence structure is imposed through a Markov chain. The resulting
marginals and the IV are the same as in the previous structure (0.5 chance of oil in each of the
prospects), but now the CPTs link directly the prospects with each others and not through a
common parent. Thus, there is a predetermined order that guides the clustering, and we here aim
to study this structuring effect on the resulting cluster strategies.

We study the sequential SCU strategies under different clustering configurations. We use dis-
counting δ = 0.99. Results for the left network are summarized in Table 7. For the 2-clusters
approach (second column), the first selected node is prospect 8, characterized by the highest IV. If
prospect 8 is dry, we choose prospect 10, which is negatively correlated with prospect 8. If prospect
8 is oil, we move to prospect 11, which is positively correlated with prospect 8. And so on for the
third best choice. In general we observe less flexibility in strategies characterised by many clusters
(left columns).It is interesting to notice that the strategy with 12 clusters using SCU, coincides
with the naive strategy, and the first three selected prospects are 8, 11 and 10, no matter their
outcome.
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# Clusters 1 2 3 4 6 12
Cluster size 12 6 4 3 2 1

i(1) 8 8 8 8 8 8

i(2)|xi(1) = dry 10 10 10 10 11 11

i(2)|xi(1) = oil 2 11 10 10 11 11

i(3)|xi(1) = dry, xi(2) = dry 5 11 11 11 7 10

i(3)|xi(1) = dry, xi(2) = oil 1 7 7 7 7 10

i(3)|xi(1) = oil, xi(2) = dry 5 10 11 11 10 10

i(3)|xi(1) = oil, xi(2) = oil 11 5 11 11 10 10

Table 7: Results of the sequential exploration program SCU for the simple BN example described
in Section 4.2, for strategies with different cluster size. i(1), i(2) and i(3) are respectively the first,
the second and the third best prospect selected. Q means quit (the strategy).

The final values for left and right networks are shown in Table 8. Here we show results over 1000
Monte Carlo samples using either the MCU or SCU approach. This means that for each sample
and for each strategy we simulate outcomes of the drilling campaign, collecting the revenues for the
wells whose outcome turned out to be positive, the costs for the sites whose outcome was negative,
and stopping when the strategy would not support more exploration.

Naturally, the final values of MCU strategies always improve the final values of SCU strategies.
The final value with the SCU monotonically increases with cluster size, reaching its maximum
when all the sites are gathered in a single cluster. With the MCU approach, the quality of the
results does not decrease so much with smaller cluster size. Note that the SCU and MCU are much
closer to each other for the right Markov chain network. This reflects the behaviour of SCU and
MCU sequential strategies. Since there is a natural ordering in the clusters, the learning within the
cluster is higher in the Markov chain network. This means that SCU strategies with large cluster
size (six or four nodes per cluster) perform much better than for the more unstructured common
parent network.

We next set δ = 1 and compare the sequential cluster strategies with the lower and upper
bounds. Figure 6 shows the result of left and right network, plotted as a function of cluster size.
The 2-clusters configuration reveals already a high efficiency, with a computational time that is
orders of magnitudes less than the single cluster configuration. Because of Monte Carlo variability
the sequential bounds for the 2-clusters approach look tighter than the bounds for the 3-clusters
approach (left display). The Markov chain network (right) has narrower gaps in the bounds. In
the common parent structure we have conditional independence between children only through the
common parent, which is not possible to observe directly. This makes the learning very hard. With
the Markov chain structure, on the other hand, we have conditional independence between clusters,
given a separating cluster, and this makes the clustering approach more efficient. Still, in the left
display the sequential value (LB2) remains quite close to the optimal value, even for relatively small
clusters. The independent value (LB1) increases with cluster dimension, but it is never as good
as the sequential bound. Correspondingly, the clairvoyant bounds (UB) slightly decreases as the
clusters become larger. In general, an increase in the cluster size does not seem to have a strong
effect. The gap between the sequential and the upper bound is 1321 for clusters of size 3, and 1421
for clusters of size 2. For the Markov chain structure the gap between the sequential and the upper
bound is 149 for clusters of size 3, and 371 for clusters of size 2.

We also compare these results with the ones obtained via Rolling-Horizon Look-Ahead (RHLA)
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strategies presented in Martinelli et al. (2011a). These strategies do not use a clustering approach
based on the BN structure. They instead approximate the DP value after a certain number n of
steps with heuristics approximations, resulting in Depth n (Dpt n) RHLA strategies. For increasing
depths, the value goes towards the correct value, because we are using the heuristics after a higher
number of exact steps. We observe that for the common parent network (left) it is sufficient
to compute a Dpt 6 strategy for reaching a value that is very close to the exact one. From a
computational point of view, a Dpt 6 strategy costs as much as a clustering strategy with cluster
size equal to 6, with a substantial improvement in the quality of the approximation (the gap
between a Dpt 6 strategy and the exact one is less than 10 units). For the Markov Chain network
(right), on the other hand, the comparison with the RHLA strategies shows that the quality of
a clustering strategy with cluster size equal to four or six, performs as well as a RHLA strategy
with corresponding depth, showing that in this case the approximation introduced by a clustering
approach is reasonable and effective.

# Clusters 1 2 3 4 6 12 Case study
Cluster size 12 6 4 3 2 1 (Figure 5)

Average Value SCU 7295 6992 6779 6638 6398 5783 Left
Average Value MCU 7295 7153 7112 7112 7112 7112 Left

Average Value SCU 7962 7887 7876 7869 7159 4947 Right
Average Value MCU 7962 7887 7887 7887 7765 7762 Right

Table 8: Average values (discounted final values for a sample of size 200), for clusters of different
size, for the two case studies presented in Section 4.2.
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Figure 6: Independent LB, sequential LB, clairvoyant UB and exact values for the two examples
shown in Section 4.2. We also show the comparison with RHLA strategies.

4.3 MRF : small cases

We next study MRFs. We use a lattice where each node represents a reservoir unit, i.e. a possible
prospect. We are interested in finding the best drilling sequence and approximating the expected
value of the whole field. Here, we test our methods on a small 3 × 4 lattice with 12 nodes corre-
sponding to 12 potential prospects. We compare the exact DP solution (which is possible for such
small lattices) with cluster approaches splitting the lattice in a number of sub-lattices. The MRF
is an Ising field (β = 1) with k = 2 colours, representing oil and dry states. Revenues and costs
are equal for all prospects and symmetrical (+3 and −3 units). The field is non-symmetrical, i.e. a
priori marginal probabilities for oil and dry states follow a parabolic trend with a maximum in cell
6 (2nd row, 2nd column). As a direct consequence, the IVs are oscillating around 0, with positive



4 SYNTHETIC EXAMPLES 19

values just on the left part of the lattice. Marginal prior probabilities and IVs are shown in Figure
7. The nodes are numbered from left to right and from top to bottom, see Figure 8. We test the
effects of different clusters size and shape. We propose six possible cluster combinations in Figure
8.

Figure 7: Marginal prior probabilities of oil and Intrinsic Values for the case study presented in
Section 4.3
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Figure 8: Six possible clusters’ configurations for the MRF presented in Section 4.3
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We analyse the best sequences computed with SCU (Table 9), setting δ = 0.99. We notice that,
given the high correlation present in the field, if the first node is found dry, there are few hopes
to find any good spots. This is the reason for quitting (Q) the strategy for the 1-cluster scenario,
when the first node (prospect 6) is dry. When more than one cluster is used, the strategy moves out
from the cluster where the dry node has been found, but suggests to keep the exploration campaign
alive. When oil is found in the first place, the suggestion is to keep drilling in the same cluster
where the discovery has happened. The optimal choice is to drill prospect 7, which is crucial for
exploring the right part of the field.

It is interesting to observe that configurations 3 and 4 are more rigid, in the sense that the third
best choice does not depend on the outcome of the second, but just on the outcome of the first.
This reflects the vertical and horizontal clusters present in configurations 3 and 4, that impose less
learning in the MRF. One way to compare the strategies is to study the final values shown in the
last row of Table 9. These are based on 100 Monte Carlo simulations. For the sake of comparison,
the naive value of the field (sum of positive IVs) is 1.31. There is an evident reduction of value
when the cluster number increases, as expected. There is also a less immediate, yet interesting
and comforting, increase in value for more compact clusters. I.e. results for configuration 1 are
better than results for configuration 2, and results for configuration 6 are better than those for
configuration 4. The results of the exact DP are in this case much better than any of the clustering
configurations. This appears to be a consequence of the decision of quitting right after the first dry
node, without further losses.

Configuration 0 1 2 3 4 5 6

# Clusters 1 2 2 4 3 4 3
Cluster size 12 6 6 3 4 3 4

i(1) 6 6 6 6 6 6 6

i(2)|xi(1) = dry Q 7 10 5 10 5 5

i(2)|xi(1) = oil 7 2 5 10 5 10 2

i(3)|xi(1) = dry, xi(2) = dry Q Q Q 2 2 7 11

i(3)|xi(1) = dry, xi(2) = oil Q 8 9 2 2 7 11

i(3)|xi(1) = oil, xi(2) = dry 5 10 2 7 7 5 5

i(3)|xi(1) = oil, xi(2) = oil 2 5 2 7 7 9 7

Average Value 8.02 6.98 6.89 5.10 5.95 5.01 6.30

Table 9: Results of the sequential exploration program for the simple MRF example described in
Section 4.3, for strategies with different cluster size and shape. i(1), i(2) and i(3) are respectively
the first, the second and the third best node selected. Q means quit (the strategy).

5 Real examples

The next two examples are from the petroleum industry. Drilling decisions for large-scale prospects
is the challenge in the first application, using a BN model to model the dependence between
prospects. The second example is at a smaller geographical scale, where many reservoir units are
represented using a MRF. In both situations the clustering strategies are useful for improved drilling
campaigns, letting both exploration and exploitation play integral parts.
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5.1 Large BN for prospects in the North Sea

The original motivation for this work comes from a large BN describing a geological feature: the
migration paths of the Hydrocarbons (HC) expelled by the source rock in a field located in the
North Sea. The network and its parameters were originally presented in Martinelli et al. (2011b),
and extensively discussed for similar purposes of optimal exploration in Martinelli et al. (2011a)
and Brown and Smith (2012). The graph is composed by 17 auxiliary nodes (kitchens, marked
with K and prospects, marked with P in Figure 9), and 25 segment nodes at the bottom. The
segments correspond to possible drilling locations. Each segment node can have k = 3 states (oil,
gas or dry), and the conditional distributions are assigned to obey physical constraints.

Here, we consider two possible ways to divide the original network in clusters. The first one,
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Figure 9: Bayesian Network describing the migration paths of the HC expelled from the source
rock. The letter K marks the kitchens, i.e. places where the formation of HC has started, the
letter P marks the prospects, large areas of possible accumulations, while the numbers mark the
segments, corresponding to potential drilling locations.

with clusters of small dimension, is shown in Figure 9, left. The second one, with clusters of bigger
dimension, is presented in Figure 9, right. Brown and Smith (2012) describe the effect of different
cluster size on the bounds, and show that the gap is sufficiently small even for moderate-size
clusters. This is not surprising, given that the learning is relatively local for this network. Similar
comments can be found also in Martinelli et al. (2011a). Now we are interested in studying how
the strategies described in Section 3.1, for both SCU and MCU, perform on this large network.
The average results over 200 Monte Carlo samples are reported in Table 10.

Small clusters Big clusters

SCU MCU SCU MCU

Estimated value 22637 23117 23981 24001
Average # nodes drilled 17.07 16.75 18.02 17.70

Average # nodes dry 3.23 3.05 3.10 3.00
Time per sample 15sec 25sec 30min 50min

Table 10: Sequential clustering strategies applied to the case presented in Section 5.1. Small clusters
refer to the partition of Figure 9 on the left, while big clusters refer to the partition on the right
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The expected revenues increase with cluster size, as expected, and increase when we update
every cluster with the new information (MCU) and not just the cluster where we have collected the
last piece of information (SCU). The difference between SCU and MCU is larger when the clusters
are small and many, since SCU with small clusters may disregard an impact on a large part of the
network. When the cluster size gets larger, we are loosing just peripheral information when using
SCU instead of MCU.

Note that the average number of nodes drilled increases when going from small to big clusters,
but the number of nodes drilled and found dry decreases, meaning that we are more accurate. What
is more surprising is that when we move from SCU to MCU both the average number of nodes and
the number of dry nodes decrease, but with an increase in the revenues. This means that we are
avoiding to drill just the dry nodes, while we are keeping the good nodes. This is of course good
news for a petroleum company, who can now likely increase their profits by applying these more
sophisticated statistical updating schemes in their work processes. In this whole analysis we can
not ignore the fact that applying MCU with big clusters is computationally more expensive.

The difference between SCU and MCU (Table 11) for the small-clusters partition does not
appear in the first nor in the second choice, but just at the third choice. The equal second choice
is due to the fact that cluster 6, that includes segment 18, the best segment, remains the one with
highest GI even after segment 18 is selected, if the update is positive (oil or gas). Therefore it is
selected as second best choice by both approaches. When segment node 18 is dry, we move to the
cluster containing segment 8, which is far away in the graph, and whose GI is selected by both
MCU and SCU approaches. For what concerns the third choice, we can, on the other side, see the
difference between the two approaches: in the MCU approach, after leaving cluster 6 with a good
outcome (at least one segment oil or gas), we move to a neighbouring cluster and we drill segment
9. In the SCU approach, where the cluster containing segment 9 has not received the positive
information, we pick the second cluster with the a priori highest GI, moving far away towards
segment 8. In the big-clusters partition the same hold, but now segment 9 and 18 are in the same
cluster, and we can no longer notice differences between the two approaches, at least in the first
3 choices. Considering these sequences, and the large increase in computational time using large
clusters, it seems that MCU with small clusters is a flexible and fast option.

Small clusters Big clusters

SCU MCU SCU MCU

i(1) 18 18 18 18

i(2)|xi(1) =dry 8 8 8 8

i(2)|xi(1) =oil or gas 19 19 19 19

i(3)|xi(1) =dry, xi(2) =dry 10 24 24 24

i(3)|xi(1) =dry, xi(2) =oil or gas 10 24 24 24

i(3)|xi(1) =oil or gas , xi(2) =dry 8 9 9 9

i(3)|xi(1) =oil or gas, xi(2) =oil or gas 8 9 9 9

Table 11: Results of the sequential exploration program for the large BN case study shown in
Section 5.1, for single cluster update and multiple clusters update strategies with different cluster
size. i(1), i(2) and i(3) are respectively the first, the second and the third best segment node selected.
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5.2 MRF for reservoir units in a North Sea oil field

This MRF case study is from an oil reservoir in the North Sea. Bhattacharjya et al. (2010) use this
example to evaluate static acquisition strategies for imperfect data (seismic data acquisition). Here,
we consider the sequential drilling problem over the dependent reservoir units. We use a lattice
representation of the field with 10 × 4 cells, i.e. 40 nodes. The model is a categorical first-order
MRF as in (2). The MRF model has three colours, representing respectively oil saturated sand
(xi = 1), brine saturated sand (xi = 2) and shale (xi = 3). Only the oil state is lucrative. The
other two states entail only cost at location i, but may of course provide valuable information about
the outcomes at other nodes. The external field parameter αi(xi) is set from geological information
and from existing seismic data, see Bhattacharjya et al. (2010).

As was done in Bhattacharjya et al. (2010), we assign a fixed cost rji = 2 Million USD for

drilling a dry well (state j = 2 or j = 3), while we have a potential revenue rji = 5 million USD
when finding an oil saturated sand (state j = 1). Before drilling we have the situation represented
in Figure 10, top display.

Figure 10: Top: marginal probability for state oil in the 10 × 4 (1 − 40) reservoir units. Bottom
left: 2-cells clusters. Bottom right: 4-cells clusters.

The 40-cells size of the MRF prevents us from running a full search. In Martinelli et al. (2011a)
we have considered solutions based on an approximation with myopic/naive heuristics to the original
DP procedure. Here we compare two possible clustering strategies with SCU approach, the first
based on 20 very small 2-cells clusters, and the second based on 10 small clusters of size 2 × 2
(Figure 10, bottom display).Since the field is not homogeneous, we re-compute the joint cluster
probabilities p(xC(i)) for all conditioning sets, and the computational time is large. Faster results
could possibly be obtained by approximating the forward-backward algorithm used for computing
p(x), using the arguments presented in Tjelmeland and Austad (2012).

We also compare these results with those obtained with RHLA strategies of different depth
presented in Martinelli et al. (2011a). Results in terms of final values and bounds are shown in
Table 12.

We notice how in this case a clustering strategy with large clusters produce better results than
the RHLA strategies until Dpt 2. Simple 2-cells clusters give much better results than the classical
naive approach (sum of positive intrinsic values), and the result is further improved when using
4-cells clusters. It is worth noticing that the gap between sequential LB and Clairvoyant LB is
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Cluster size 2-cells 4-cells Naive Dpt 1 Dpt 2

Independent LB 8.04 10.44 - - -
Sequential LB 9.12 13.71 - - -

RHLA LB - - 4.21 8.36 10.74
Clairvoyant UB 28.23 17.00 - - -

Table 12: Lower and upper bounds with clusters of different size and RHLA depth 1 and depth 2
final values, for the case study presented in Section 5.2. Parameters: β = 1.

already quite narrow with 4-cells clusters. The bounds are produced by averaging over 200 Monte
Carlo samples.

2-cells clusters 4-cells clusters Dpt 1 Dpt 2

i(1) 14 14 19 14

i(2)|xi(1) =brine or shale 24 10 14 19

i(2)|xi(1) =oil 13 13 14 19

i(3)|xi(1) =brine or shale, xi(2) =brine or shale 10 24 40 40

i(3)|xi(1) =brine or shale, xi(2) =oil 23 20 4 18

i(3)|xi(1) =oil, xi(2) =brine or shale 24 10 18 4

i(3)|xi(1) =oil, xi(2) =oil 24 4 18 18

Table 13: Results of the sequential exploration program for the large MRF case study shown in
Section 5.2, for single cluster update strategies with different cluster size. i(1), i(2) and i(3) are
respectively the first, the second and the third best reservoir unit selected.

For sequences (Table 13), the cluster size has a greater influence than in the BN case of Section
5.1, since the best nodes are now more spread out in different clusters. The first best pick is a
typical myopic first best pick and corresponds to reservoir unit 14. If this is oil, we remain in the
same cluster, and we go for unit 13. If it is dry, the algorithm suggests to move to unit 10 in
the 4-cells cluster configuration and to unit 24 in the 2-cells cluster configuration. This happens
because the GI of cluster 4 in the 4-nodes clustering is influenced by the presence of two almost-sure
dry nodes at the bottom, while cluster 7 in the 2-cells clustering has a good GI, since it is made
just by two nodes whose presence of oil is quite likely. In general, the 4-nodes clustering strategy
shows a better ability to test new areas and to come back to the more certain places in case of dry
discoveries. If unit 10 is oil, we remain close and drill unit 20, while if it is dry we move back to unit
24. The 2-cells clustering shows, on the other side, less adaptation, for example in the suggestion
of drilling unit 24 no matter the outcome of unit 13, due to the small size of its clusters and to the
absence of updating given by the SCU strategy. RHLA Dpt 1 and Dpt 2 strategies do not have the
constraint of the clusters and therefore their behaviour is more flexible: the first two nodes belong
to different zones of the field, no matter the outcome of the first choice. At the third step, if both
unit 14 and 19 are found dry we move to unit 40, exploring a third new area of the reservoir.

In practice the petroleum companies tend to target the most lucrative units at any time. This
example shows that it may be better in the long run to balance the search over the dependent
prospects.
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6 Conclusions

In this paper we have used clustering of large graphs to suggest dynamic designs of nodes. The
main output of the suggested algorithms is approximate sequences of nodes, where the selection
of nodes is guided by entropy or profit-based utility functions. In addition, we can compute the
expected utility of strategies, with an upper bound. In all the examples that we have tested, the
proposed strategies and the proposed bounds perform much better than classical naive or myopic
strategies which are commonly used in the petroleum industry today.

Most big oil fields have been discovered. There is a tendency in the oil and gas industry of looking
for smaller volumes. In such situations, accurate statistical descriptions of the dependencies are
important. Small prospects may not be lucrative marginally. But seen jointly, a set of prospects
may be lucrative. Our methods shows that this dependence allows flexibility in the search for
drilling targets, and that this view can give clear gain in profits, on average. Since there is much
structure in the models for petroleum prospects, the clustering approaches seem promising to deal
with the intracable search problem.

The presented methods rely on fast updating of the probabilities of the graphical model. We
have outlined one strategy which uses multiple cluster updating at all stages of sequential data
collection. This is more time-consuming than a single cluster updating scheme, which does only
local updating of probabilities and the cluster-wise Gittins Indeces. In the examples we examined,
the multiple cluster updating approach with small clusters is often preferable over the single cluster
updating approach with larger clusters. In practice, the comparison depends on the cluster size
and the dependence in the probability model. If the clusters are small and the learning within the
cluster is marginal, or comparable with the learning provided by other clusters, the multiple cluster
updating is favourable. In cases where the learning within the cluster is higher, the single cluster
updating performs well (See Section 4.2, right network).

The clustering approach is most useful when there is much structure in the graphical model
(parts of the network are almost uncorrelated with other branches). With lack of structure, two
challenges arise: i) the selection of clusters gets harder and more sensitive, ii) the learning between
clusters can be high and the efficiency of the clustering approach goes down. For instance: The left
network in Section 4.2 with little structure shows that it is difficult to assign correctly the nodes to
each cluster. Our partition here might be suboptimal. Still, there are too many possible orderings
of clusters to search for the optimal one. Ideally, the guideline should be to create clusters composed
by nodes that share some common feature, like a geographical proximity (MRF examples) or some
known correlation based on previously identified covariates (BN example of Section 5.1). In cases
where there are no such intuitive directions for clustering, we suggest to use trial and error over a
couple of clustering sets.

We compared the clustering approach with the look-ahead algorithms, which do not explicitly
use the structure of the graph. There were clear improvements when using clustering on the
structured graphs (like the Markov chain), but no added value of clustering in unstructured graphs
like the common parent network in Section 4.2.

The Monte Carlo sampling approach for approximating the expected utility can have large
variability. One may improve some of this with variance reduction techniques. The upper and
lower bounds can be computed without Monte Carlo when the discounting factor δ = 1. In most
applications the sequentiality is influenced by δ, and improved sampling-based strategies would be
useful.

Many design problems are different in the sense that a fixed number of nodes can be selected
at once, without being able to modify the node selection after observing the first node(s). For
instance, a petroleum company may decide to drill two wells at once, without learning, simply
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because the equipment is available and money is saved. This entails another discrete optimisation
problem, but some of the presented cluster ideas might be re-used here.

We have not considered budgetary constraints in the current paper. The design can be over
as many nodes as is profitable in terms of the utility. It would be interesting to study constraints
in the sense that only N? < N nodes can be selected. Another related topic we did not study is
the situation with imperfect information, i.e. when the decision nodes are only observed indirectly.
This amounts to another layer in the graphical models considered here. The design sequences may
show more flexibility when both imperfect and perfect data collection is possible. There are several
interesting problems at the interface of statistical modelling and inference and operations research
/ decision making. New insights in such problems will be useful for policy making.
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