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Increasing power with the unconditional maximization

enumeration test in small samples – a detailed study

of the MAX3 test statistic

Mette Langaas Øyvind Bakke

Abstract

We present and compare statistical methods for calculating p-values for discrete
distributions in the presence of nuisance parameters in small samples. The meth-
ods we consider are asymptotic, conditional, and unconditional, and combinations
thereof, where the p-value from one method is used in sequel as a test statistic in
another method. We consider tests were for a given significance level we reject the
null hypothesis if the p-value is not greater than the significance level. It is well
known that the unconditional maximization method yields a valid p-value. This
implies that when the unconditional maximization method is applied in sequel to
a p-value that is not valid, the new maximization p-value will always be valid.
Statistical methods for calculating valid p-values can be ranked according to the
power of the corresponding test. When the unconditional maximization method is
applied in sequel to a p-value that is valid (refer to the corresponding test as the
original test), the new maximization p-value will always be as least as small as the
starting p-value. This is true for all possible outcomes, and will thus give a new
test with uniformely at least as high power as the original test. The unconditional
maximization method can therefore be seen as a post processing tool to increase
the power of an existing test. We elaborate on these general findings in a detailed
study of the robust MAX3 test statistics for testing associations between a genotype
and a phenotype in case–control data for sample sizes on the order of tens. 2×
3 contingency table; Cochrane–Armitage trend test; P -value; Robust test statistic;
Polymorphism.

1 Introduction

We live in the millennium of big data, where scientists routinely collect hundreds to thou-
sands of samples and study tens of thousands of genetic markers, such as in genomewide
association (GWA) studies, presented in Sladek and others (2007), Djurovic and others
(2010), and Martinelli-Boneschi and others (2012). However, the first step on the road to
the important discoveries is often a targeted pilot study involving small sample sizes. For
randomized clinical studies, intervention studies and studies of rare diseases, these pilot
studies might involve samples that are only on the order of tens, and only one or a few
genetic markers (Serra and others , 2011). When data are scarce it is of great importance
to apply the most powerful statistical method of analysis available.
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Many biological and medical studies use statistical hypothesis testing to find an as-
sociation between a phenotype and a genotype. Different test statistics may be applied
and tailored to different alternative hypotheses such as different genetic models as one
example. Instead of performing multiple separate hypothesis tests and regarding this
as a multiple testing problem, it is possible to combine one test statistic for each alter-
native hypothesis into a robust test statistic by taking the maximum over the different
test statistics, for example. This may result in a robust test statistic with an unknown
parametric distribution, like the MAX3 test statistic of Freidlin and others (2002) that
is the subject of presentation.

There are a number of comparative studies that can help researchers choose the most
powerful test statistic available, such as for the association between a dichotomous phe-
notype and genotype (see Zheng and others , 2006; Joo and others , 2009), but few studies
compare different methods for calculating p-values based on one test statistic. The meth-
ods for calculating p-values that we discuss are asymptotic, conditional and unconditional
methods, all based on the same test statistic.

There is a large body of literature on hypothesis testing in 2 × 2 contingency tables,
where conditional tests are often found to be less powerful than unconditional alternatives,
as described by Mehrotra and others (2003) and Lydersen and others (2009). Our focus
is on genotype–phenotype association for a biallelic marker in a case–control setting,
which means that the data are presented in a 2 × 3 contingency table. Due to the less
discrete nature of higher order (r × c) contingency tables, some researchers have found
that the power advantage of the unconditional test over the conditional test tends to be
less pronounced than for the 2× 2 contingency table (Mehta and Hilton, 1993).

Our presentation is organized as follows. In Section 2 we present the MAX3 test
statistic, background and genetic notation. In Section 3 we look at how to calculate
exact power, and stress the concept of validity of a p-value. We then present four general
methods for calculating a p-value, and look at how these methods can be combined in
Section 4. Section 5 presents the results from conducting a large study on method validity
and power, we discuss and conclude in Sections 6 and 7.

2 Association between genotype and phenotype in

case–control studies using the robust MAX3 test

statistic

Assume that genotype and phenotype data are collected in a case–control study, and that
the genotype data come from one biallelic genetic marker. Index the three genotypes aa,
aA, AA, where A is the high risk allele, by 0, 1, 2, respectively. Phenotype (case or
control), and genotype data (three categories) can be presented in a 2 × 3 contingency
table (Table 1). The number of cases and controls with genotype i is denoted by xi and yi,
respectively, and the total number of cases and controls with genotype i by mi = xi + yi,
i = 0, 1, 2. Let n1 = x0 + x1 + x2 denote the total number of cases, n2 = y0 + y1 + y2 the
total number of controls, and let N = n1 + n2 = m0 +m1 +m2.

Denote by k the prevalence of the disease, i.e. the probability that a randomly drawn
individual from the population under study has the disease, and by gi the probability
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Table 1: Notation for 2× 3 table.

Genotype
aa aA AA Total

Case x0 x1 x2 n1

Control y0 y1 y2 n2

Total m0 m1 m2 N

that an individual has genotype i, i = 0, 1, 2. Let fi be the penetrance, i.e. the
conditional probability of disease given genotype i. When we test for association between
a phenotype and a genotype, the null hypothesis is

f0 = f1 = f2.

The above probabilities cannot be estimated in a case–control study when the disease
prevalence of the population are unknown. Therefore it is convenient to express the null
hypothesis in terms of conditional probabilities of genotypes given disease status. Let
pi and qi denote the conditional probabilities of an individual having genotype i given
that the individual is diseased and not diseased, respectively. Then fi = kpi/gi and
1− fi = (1− k)qi/gi by elementary probability laws. If the null hypothesis f0 = f1 = f2
is true, then all pi/gi are equal, and, likewise, all qi/gi are equal, i = 0, 1, 2. By dividing
the former by the latter, it is seen that all pi/qi are equal. Since both the pi and the qi
add to 1, pi = qi for all i. Conversely, pi = figi/k and qi = (1− fi)gi/(1− k). If pi = qi
for all i, then fi/k = (1− fi)/(1− k), giving fi = k for all i, thus all the fi are equal.
We now have an equivalent formulation of the null hypothesis,

p0 = q0, p1 = q1, p2 = q2. (1)

Tests of this null hypothesis against the alternative that not all pi = qi include the
classical test for homogeneity using Pearson’s chi-square statistic, which asymptotically
has the chi-square distribution with two degrees of freedom under the null hypothesis,
and generalizations of Fisher’s exact test for 2× 2 contingency tables to 2× 3 tables.

However, genetic models provide more specific alternative hypotheses, and the re-
cessive, dominant and additive models are often investigated, each associated with a
different alternative hypothesis. Introducing genotype relative risks (GRRs), λ1 = f1/f0
and λ2 = f2/f0, the alternative hypotheses for the three models formulated in terms of
penetrances, the GRRs or the pi and qi (the formulations in terms of the latter can be
found by arguments similar to the one for the null hypothesis) are:

Recessive: f0 = f1 < f2, 1 = λ1 < λ2, p0/q0 = p1/q1 < p2/q2

Monotone: f0 < f1 < f2, 1 < λ1 < λ2, p0/q0 < p1/q1 < p2/q2 (2)

Dominant: f0 < f1 = f2, 1 < λ1 = λ2, p0/q0 < p1/q1 = p2/q2

The monotone case with f1 = (f0 + f2)/2 is called additive. The Cochran–Armitage
test for trend (CATT) (Armitage, 1955; Cochran, 1954; Sasieni, 1997; Slager and Schaid,
2001) is often used to test the null hypothesis (1) towards one of the genetics models
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(alternative hypoteses) in (2), partly motivated by the formulation in terms of the pi and
qi. It is based on the statistic

∑2
i=0 si(xi/n1 − yi/n2), where s0, s1, s2 are scores appro-

priate for the alternative hypothesis in question. Standardizing and replacing unknown
parameters pi, qi by estimators mi/N , we obtain the CATT test statistic,

CATT =

∑2
i=0 si(n2xi − n1yi)

√

n1n2

(

∑2
i=0 s

2
imi −

1
N

(
∑2

i=0 simi

)2
)

,

which asymptotically has a standard normal distribution under the null hypothesis. The
absolute value of CATT is invariant to linear transformations of the scores, so they are
chosen (s0, s1, s2) = (0, s, 1), and we use the notation CATTs. The value of s is chosen as
s = 0, 1

2
, 1 for the recessive, additive and dominant model of (2), respectively (Zheng and

others , 2003). The index s thus denotes which genetic model (alternative hypothesis) is
used. A large value for CATTs indicates rejection of the null hypothesis.

When the genetic model is unknown, a popular strategy is to form one combined
alternative hypothesis by taking the union of the three alternative hypotheses in (2). A
test statistics tailored towards this combined alternative hypothesis is the MAX3 test
statistic, which is the maximum of the three CATT test statistics for the recessive, addi-
tive and dominant models (Freidlin and others , 2002), max(CATT0,CATT1/2,CATT1).
If the the potential high risk allele is unknown, the combined alternative hypothesis is
defined by the union of the three alternative hypotheses in (2) and these three alternative
hypotheses with the inequalies reversed. This may be written as

(1) p0/q0 6= p2/q2,

(2) p1/q1 lies in the closed interval joining p0/q0 and p2/q2,
(3)

and will cover all six combinations of genetic models and which allele is the high risk one.
To test (1) against (3) the MAX3 test statistics is used, defined as

MAX3 = max(|CATT0|, |CATT1/2|, |CATT1|). (4)

The exact parametric distribution of the MAX3 statistic is unknown.
The MAX3 test statistic is just one out of many possible so-called robust test statis-

tics that can be used to test for an association between genotype and phenotype in
case–control studies. Other choices include MIN2, MERT and CLRT. Evaluations and
comparisons have been done by Zheng and others (2006) and Joo and others (2009).
We will focus on the MAX3 test statistic in this presentation, but will not provide a
comparison of various robust test statistics.

3 P -values and power

Assume that the outcome Z of an experiment is used to choose between a null hypothesis
H0 : θ ∈ Θ0 and an alternative hypothesis H1 : θ /∈ Θ0, where the probability distri-
bution of Z depends on a parameter (vector) θ. Following Casella and Berger (2001,
Section 8.3.4), we define a p-value as a test statistic p(Z) satisfying 0 ≤ p(z) ≤ 1 for all
possible outcomes z. We consider tests, where for a significance level α, H0 is rejected
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when p(Z) ≤ α. A p-value is valid if Prθ(p(Z) ≤ α) ≤ α for all α and θ ∈ Θ0. In this
case, the test preserves its nominal level in the sense that the probability of a type I error
is at most α.

In Section 4 we will consider several choices of p-value p(Z) for testing association
between genotype and phenotype in a case–control study (1, 3). Desireable properties of
a p-value are validity and high power (the probability to reject H0). If the sample space
is discrete, the power at θ of a test defined by p(Z) for a given α is

γ(θ) = Prθ(p(Z) ≤ α) =
∑

p(z)≤α

Prθ(Z = z), (5)

where the probabilites depend on θ, and the summation is over all outcomes z having a
p-value not greater than α. The test size is supθ∈Θ0

γ(θ).
If p(Z) and p′(Z) are two p-values giving power functions γ and γ′, respectively, it

follows from (5) that if p(z) ≤ p′(z) for all outcomes z, then γ(θ) ≥ γ′(θ) for all θ. So
uniformly smaller p-values over the sample space give uniformly higher power over the
parameter space.

In our case, it is reasonable to assume that the numbers (x0, x1, x2) of cases having
genotype 0, 1, 2, respectively, are trinomially distributed with parameters (n1; p0, p1, p2),
and independent of the numbers (y0, y1, y2) of controls, which are trinomially distributed
with parameters (n2; q0, q1, q2). We consider n1 and n2 being part of the experimental
design, so that the sample space consists of

(

n1+2
2

)(

n2+2
2

)

outcomes, giving a bound of the
number of summands in (5). Power can then be calculated by the sum at the right of (5),
where the joint probability of z = (x0, x1, x2, y0, y1, y2) with θ = (p0, p1, p2, q0, q1, q2) is

Prθ(Z = z) =
n1!

x0!x1!x2!
px0

0 px1

1 px2

2 ·
n2!

y0!y1!y2!
qy00 qy11 qy22 . (6)

4 Methods for calculating p-values

A standard way of obtaining a p-value is by means of a test statistic T (Z) (for example
MAX3). Assume that large values of T (Z) give evidence of H1. If H0 is simple, i.e. Θ0

contains only one point θ,

p(z) = Prθ(T (Z) ≥ T (z)) =
∑

T (z′)≥T (z)

Prθ(Z = z′) (7)

is a valid p-value. For the latter equality, a discrete sample space is assumed. Note that
only the ordering of the sample space provided by T (Z) matters: If T ′(Z) is another
statistic, and T (z1) ≤ T (z2) if and only if T ′(z1) ≤ T ′(z2) for all outcomes z1, z2, then
T (Z) and T ′(Z) define the same p-value.

Equation (7) is not directly applicable in our case, since H0 is composite, stating that
genotype frequencies are equal for cases and controls, consequently being equal to the
unconditional frequencies, pi = qi = gi, so that Θ0 consists of all θ = (g0, g1, g2, g0, g1, g2).
We now review various approaches to calculating p-values in other ways.
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4.1 Maximization approach (M)

For the maximization approach, (7) is replaced with

p(z) = sup
θ∈Θ0

Pr(T (Z) ≥ T (z)) = sup
θ∈Θ0

∑

T (z′)≥T (z)

Pr(Z = z′). (8)

The ordering of the outcomes z defined by decreasing T (z) is the same as the ordering
defined by increasing p(z) as seen from (8).

If a 1 − γ confidence region for Θ0 is available, the maximization of (8) restricted to
this region, and with a penalty of γ added to the p-value, also results in a valid p-value
(Berger and Boos, 1994). We are, however, unaware of such confidence regions for the
present 2× 3 case.

4.2 Estimation approach (E)

The E p-value is defined by (7), but in place of the unknown parameters gi = pi = qi
of (6), the maximum likelihood estimates under the null hypothesis are used, ĝi = mi/N .

This approach will not give valid p-values in general, since there is no guarantee that
the true parameter vector g would not give a greater p-value than the E p-value (compare
(8)). However, the estimators converge in probability to the true parameters as N grows
(as do maximum likelihood estimators under some regularity conditions in general), so
the E p-values, being sums of continuous functions of the form (6), are asymptotically
valid as N tends to infinity.

The E p-value can be estimated by simulation by drawing random samples from the
probability distribution (6) inserted ĝi in place of pi = qi. This is parametric bootstrap
simulation (retaining the disease status of each individual and drawing genotypes ac-
cording to ĝ0, ĝ1, ĝ2). In this case it is the same as nonparametric bootstrap simulation
(retaining the disease status of each of the N individuals and drawing genotypes with
replacement, since the probability of drawing genotype i then will be ĝi).

4.3 Conditioning on sufficient statistics (C)

When an outcome z = (x0, x1, x2, y0, y1, y2), is presented as a contingency table (Table
1) the column margins are m0 = x0 + y0, m1 = x1 + y1 and m2 = x2 + y2. When we
condition on the column margins M(z) = (m0, m1, m2), the probability under the null
hypothesis of an outcome z is a trivariate hypergeometric probability

Pr(Z = z | M(Z) = M(z)) =

(

m0

x0

)(

m1

x1

)(

m2

x2

)

(

N
n1

) , (9)

showing that the column margins are sufficient statistics for the genotype frequencies.
Conditioning on column margins is also done in Fisher’s exact test for testing equality of
two binomial proportions.

The p-value of an outcome z conditioned on its column margins M(z), named the C
p-value, is calcuated by the sum

p(z) = Pr(T (Z) ≥ T (z) | M(Z) = M(z)) =
∑

T (z′)≥T (z)

Pr(Z = z′ | M(Z) = M(z)). (10)
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The C p-value is valid conditional on every possible column margin vector m =
(m0, m1, m2), i.e. if H0 is rejected when the p-value does not exceed α, then
Pr(rejection | M(Z) = m)) ≤ α under H0 for all m. It is, however, also valid considered
as a p-value for the original unconditional experiment, since by the law of total probability

Pr(rejection) =
∑

m

Pr(rejection | M(Z) = m) Pr(M(Z) = m)

≤
∑

m

αPr(M(Z) = m) = α
∑

m

Pr(M(Z) = m) = α,

where the sum is over all possible column margin vectors m = (m0, m1, m2) and in
our situation Pr(M(Z) = m) is trinomial under the null hypothesis (1). The number of
nonzero summands in (10) is much smaller than it would have been without conditioning,
making summation also feasible for relatively large studies. Bakke and Langaas (2012)
found a formula for the maximal number of nonzero summands in (10), and numerical
examples are given in the C column of Table 3.

Tian and others (2009) have devised an efficient algorithm to calculate exact MAX3
probabilities by adding bivariate hypergeometric probabilities of sample points condi-
tioned on marginal sums mi, ni . Other authors, Sladek and others (2007), have instead
used an approximate version of the C p-value using permutation testing.

We have seen that the outcome of an experiment can be presented as a contingency
table z = (x0, x1, x2, y0, y1, y2). The outcome may alternatively be given on the individual
level as two vectors of length N , one giving the disease status and one giving genotype
status. Thus, entry k in the disease vector gives the disease status of individual k and
entry k in the genotype vector gives the coded genotype of individual k. In permutation
testing we generate B new outcomes of our experiment by permuting (shuffling) the
genotypes vector, while keeping the disease vector fixed. This gives B new contingency
tables with the same margins as the observed contingency table. The permutation p-
value is given as the proportion of the B + 1 outcomes (the original outcome and the B
permutation outcomes) having a value of the test statistic T greater than or equal to that
of the original outcome. The permutation p-value is valid (Phipson and Smyth, 2010).
When B tends to infinity the permutation p-value equals the C p-value. This can be seen
by the fact that the permutation procedure is a trivariate hypergeometric experiment,
drawing genotypes of the n1 cases from the m0, m1, m2 of each genotype.

We recommend using the C p-value, and not the permutation p-value, based on the
following arguments. If the permutation algorithm is run more than once for the same
observed outcome, this may result in a different permutation p-value for each run, which
for a given significance level may lead to different hypothesis testing decisions. For GWA
studies a significance level of 5 · 10−8 is routinely used. To be able to arrive at a p-value
below this significance level B must at least be 2 ·107. Using permutation with very large
values of B is very inefficient compared to using (10) directly.

4.4 Asymptotic approach (A)

Another way of dealing with nuisance parameters and to avoid summation over a large
set of outcomes, is to use of the asymptotic distribution of T (Z) under the null hypothesis
(1). For large samples, the approximate distribution of (CATT0,CATT1/2,CATT1) under
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the null hypothesis is trivariate normal, and the correlation coefficients can be estimated
consistently (Freidlin and others , 2002; Zheng and Gastwirth, 2006). Asymptotic p-values
can be calculated from Pr(MAX3 < T (z)) = Pr(|CATT0| < T (z), |CATT1/2| < T (z),
|CATT1| < T (z)), when T (z) is the observed value of the MAX3 test statistic for an
outcome z. González and others (2008) and Zang and others (2010) used numerical
integration to calculate asymptotic p-values for the MAX3 test statistic. Asymptotic
p-values are in general not valid.

4.5 Combination of methods

Instead of applying one of the methods mentioned above (M, E, C, A) to the original
test statistic T , it is possible to let the negative of the p-value of one method serve as a
test statistic for another. This may be repeated, and it is possible to have sequences of
methods, the p-value of one serving as a test statistic for the next. We will denote by
E◦M the p-value obtained by first applying E to T and then M to the resulting p-value,
E◦E◦M if E is applied twice and then M, and so on.

The idea of applying the p-value of one test as the test statistic for another is used
in Fisher–Boschloo’s test for equality of two binomial proportions (Boschloo, 1970; Mc-
Donald and others , 1977). Here, the p-value of Fisher’s exact test, which may be seen as
a C method, was used as a test statistic for the M method, resulting in a C◦M p-value.
Silva Mato and Mart́ın Andrés (1997) gave a review of methods for 2×2 tables, including
M, C◦M and E◦M. Lloyd (2008) explored combinations of E and M in general, including
iterated applications of E before M.

Applying the C method twice leaves the C p-value unaltered, that is, the C p-value
equals the CC p-value, since conditional on the column margins the ordering of the test
statistics and the ordering of the C p-values will be the same. Applying the M method
twice also leaves the M p-value unaltered, since the ordering of the M p-values are by
construction the same as the ordering of the test statistics, over all possible outcomes.

The application of the M method to an existing p-value – valid or not – always leaves
a valid p-value, since M gives a valid p-value by construction. Also, it is interesting to
note that the application of M to an existing, valid p-value gives a p-value that is at least
as small as the original p-value. This is true for all possible outcomes, and thus gives a
test with uniformly (for all α and θ) at least as high power as that of the original test.
Röhmel and Mansmann (1999) showed this for the 2×2 contingency table, but the proof
extends to a general situation.

Theorem 1. Let p(Z) be a p-value and let p′(Z) be the M p-value defined by p(Z), i.e.,
p′(z) = supθ∈Θ0

Prθ(p(Z) ≤ p(z)) for all outcomes z.
(a) p′(Z) is a valid p-value.
(b) If p(Z) is a valid p-value, then p′(z) ≤ p(z) for all outcomes z.

Proof. (a) This is true in general for any statistic p(Z) (see Casella and Berger, 2001,
Theorem 8.3.27).

(b) If p(Z) is a valid p-value, Prθ(p(Z) ≤ α) ≤ α for all significance levels α and all
θ ∈ Θ0. In particular, setting α = p(z), we get Prθ(p(Z) ≤ p(z)) ≤ p(z) for all p(z) and
all θ ∈ Θ0. Thus p

′(z) = supθ∈Θ0
Prθ(p(Z) ≤ p(z)) ≤ p(z) for all z.
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Table 2: A hypothetical case–control study with n1 = 40 cases and n2 = 40 controls.

Genotype
aa aA AA Total

Case 6 4 30 40
Control 13 7 20 40
Total 19 11 50 80

Because of Theorem 1 we will only consider combinations of methods that ends with
an M step.

Both M and C give valid p-values, but one does not in general give uniformly (for all
α and θ) better power than the other. By the above, C◦M always gives power that is
uniformly (for all α and θ) as high as C. The reason that M is not routinely applied, is
due to the computational effort required.

Note that the M p-value can be calculated based on the C p-values of all possible
outcomes, since by the law of total probability,

p(z) = sup
θ∈Θ0

∑

m

Pr(T (Z) ≥ T (z) | M(Z) = m) Pr(M(Z) = m), (11)

where the sum is over all possible values of m = (m0, m1, m2) giving sum N . Further,
the probability Pr(T (Z) ≥ T (z) | M(Z) = m) equals the C p-value of the outcome
with column margins m having the smallest test statistic which is at least as large as
the observed T (z). If there are no test statistics at least at large as T (z) for the m in
question the probability is zero. Further, the distribution of M(Z) is trinomial under H0

(1). The C◦M p-value can be calculated using (11), with the negative of the C p-value
in place of the test statistic T (Z), since the C and the CC p-values are identical.

4.6 The 2× 3 case illustrated with a hypothetical example

Assume we observe Table 2 in a hypothetical case–control study with n1 = 40 cases and
n2 = 40 controls, and that we do not know the mode of inheritance of the biallelic marker
under study or which allele is the potential high risk one. We would like to test the null
hypothesis (1) against the alternative hypothesis (3), and we base our calculations on
MAX3 defined by (4).

The MAX3-test statistic for our observed table is 2.31. Of the
(

42
2

)(

42
2

)

= 741321
possible outcomes, 562184 have a MAX3 statistic not less than that of the observed
table. If we knew the explicit probability of each outcome under the null hypothesis, we
would, according to (7), add the probabilities of the 562184 outcomes to get the p-value.

M: In the maximization approach (M), we approximate (8) by maximizing over a
discrete grid for the nuisance parameters (g0, g1, g2) with increments 0.01, giving

(

102
2

)

=
5151 values of the nuisance parameters. This means computing 5151 sums of 562184
terms each, giving a maximum of 0.0490 at (g0, g1, g2) = (0.08, 0.84, 0.08), so that the M
p-value is 0.0490 (Figure 1).

E: For the estimation approach (E), we insert the maximum likelihood estimates of
the nuisance parameters under the null hypothesis, (ĝ0, ĝ1, ĝ2) = (19/80, 11/80, 50/80) =
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Figure 1: Illustration of the E and M p-values for the hypothetical example in Section
4.6. The M p-value of 0.0490 is found at (g0, g1, g2) = (0.08, 0.84, 0.08) (marked with a
circle), and the E p-value of 0.0379 at (ĝ0, ĝ1, ĝ2) = (0.2375, 0.1375, 0.6250) (marked with
a triangle). Light shades indicate large p-values, black denotes zero.

(0.2375, 0.1375, 0.6250), into (6) to calculate the probability of each outcome, by (7)
giving a p-value of 0.0379 (Figure 1). Note that E p-values need not be valid for small
samples.

E◦M: The E p-values are considered a test statistic (instead of the original MAX3),
thus the E p-value needs to be calculated for all 741321 tables. This changes which
outcomes are equal to or more extreme than the observed outcome. In this scenario there
are 556926 outcomes with an E p-value not larger than the observed 0.0379. Applying the
M method to the E p-values gives a maximum over 5151 values of nuisance at (g0, g1, g2) =
(0.00, 0.07, 0.93) and a p-value of 0.0411. Note that this p-value is valid, and that in this
case the E◦M p-value is smaller than the M p-value.

C: To calculate the conditional p-value we only consider outcomes having the same
column margins as the observed table. There are 240 tables having column margins
(m0, m1, m2) = (19, 11, 50) (see Bakke and Langaas, 2012). Of these, 174 have a MAX3
test statistic not less than our observed table. The p-value according to (10) is 0.0590.

C◦M: The C p-values are considered a test statistic, thus the C p-value needs to be
calculated for all 741321 tables (conditioned on the column margins for each outcome,
the maximal number of tables having the column margins of any of these tables is 574,
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see Bakke and Langaas, 2012). Now there are 567464 outcomes in the tail. Apply-
ing the M method to the C p-values gives a maximum over 5151 values of nuisance at
(0.38, 0.35, 0.27) and a p-value of 0.0499, which is, in accordance with Section 4.5, indeed
smaller than the C p-value.

A: We use the asymptotic distribution as described in (González and others , 2008;
Zang and others , 2010), which gives a p-value of 0.03732, using the asy method of the
Rassoc R package (Zang and others , 2010). Note that A p-values are not valid for small
samples.

A◦M: Considering A p-values as a test statistic changes which outcomes are equal to
or more extreme than the observed outcome. The A p-values for all outcomes need to be
calculated, and the asy method of the Rassoc R package (Zang and others , 2010) adds
0.5 to all table cells of tables in which at least one cell entry is zero. Using the A p-value
as the test statistic there are 551696 outcomes in the tail. Applying the M method to the
A p-values gives maximum over 5151 values of nuisance at (0.4, 0.05, 0.55) and a p-value
of 0.0387. Note that the A◦M p-value is valid.

To sum up, the smallest p-values are achieved for the A (0.03732) and E (0.0379)
methods, but these methods are not in general valid. Of the valid methods the C (0.0590)
method gives the largest p-value, followed by C◦M (0.0499), M (0.0490), E◦M (0.0411),
and finally A◦M (0.0387). We compare the methods further in the next section.

5 Power study

To study the validity of the E and A methods, and compare the power of all the methods
presented in Section 4, we have conducted an extensive power study.

We have studied balanced and slightly unbalanced situations with respect to the row
margins n1 (smaller sample) and n2 (larger sample). A selection of these combinations are
presented in Table 3 along with the number of possible outcomes with these row margins,
and the maximum number of outcomes conditional also on column margins (Bakke and
Langaas, 2012).

For the smaller sample, we have considered ten values, n1 = 5, 10, 15, . . . , 50, and for
the larger sample, we have considered n2 = n1, n1 + 5, n1 + 10, n1 + 15, and n1 + 20.
This gives a total of 50 combinations (n1, n2). For each of these combinations we have
calculated p-values for all possible outcomes and for all the seven methods considered in
Section 4.6: the conditional method, C, the asymptotic method, A, the unconditional
methods E and M, and the combined unconditional methods E◦M, C◦M and A◦M. The
test size and power were calculated for grids in pi and qi (as explained below) using
Equation (5). Thus, these are exact calculations and no simulations are involved.

Test size calculation set-up The null hypothesis (1) states that pi = qi = gi. The
test size was calculated at values of (g0, g1, g2) placed in a regular grid, which we denote
the H0 grid. The grid had increments of 0.01, giving

(

102
2

)

= 5151 points. In biological
analyses, Hardy–Weinberg equilibrium (HWE) is sometimes assumed, and the test size
under HWE was calculated for values of the disease allele frequency q from 0.01 to 0.99
with increments of 0.0005, giving 1961 triplets (g0, g1, g2) = ((1− q)2, 2q(1− q), q2). We
denote this the H0–HWE grid.
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Table 3: The number of outcomes with given row margins (U) and the maximum number
of outcomes conditional on column margins (C) for selected sample sizes from the study
in Section 5.

n1 n2 U C
10 10 4356 44
20 20 53361 154
30 30 246016 331
40 40 741321 574
50 50 1758276 884
10 30 32736 66
20 40 198891 231
30 50 657696 474
40 60 1628151 784
50 70 3389256 1161

Results for test size The methods E and A were not found to keep the nominal
level, which was expected as explained in Section 4. The percentage of points in the H0

grid at which a level of 0.05 was violated was between 0 and 56% (n1 = 10, n2 = 15) for
the E method, with a mean of 29% over all 50 · 5151 combinations of sample sizes and
grid points. For the H0–HWE grid the percentages were between 0 and 75% (n1 = 25,
n2 = 30), with a mean of 32%. Maximum test size for E was 0.064 at one gridpoint for
n1 = 10 and n2 = 15 in the H0 grid and 0.056 at one gridpoint for n1 = 25 and n2 = 30
in the H0–HWE grid. The points of violation for the E method when n1 = n2 = 40 are
shown in Figure 2.

For the A method there were violations of between 0 and 42% (n1 = 40, n2 = 60) of
the points of the H0 grid, with a mean of 30%. For the H0–HWE grid the percentages
were between 0 and 37% (n1 = 40, n2 = 50), with a mean of 9%. Maximum test size for
A was 0.072 for n1 = 5 and n2 = 25 in the H0 grid and 0.053 for n1 = 40 and n2 = 50 in
the H0–HWE grid. The points of violation for the A method with n1 = 50 and n2 = 70
are shown in Figure 2.

For E, given n1, there were the fewest violations when n2 = n1. For A, surprisingly,
the trend was for more violations when n1 grows.

Power calculation set-up The power study was inspired by Joo and others (2010).
We used a disease prevalence of k = 0.1, and disease allele frequencies q = 0.1, 0.2, . . . ,
0.5. We assumed HWE, so that genotype frequencies were g0 = (1− q)2, g1 = 2q(1− q)
and g2 = q2. This means that we only studied five genotype frequency vectors (g0, g1, g2).

The genotype relative risks, λ1 and λ2, were chosen based on four genetic models.
Two sets of λ2 were considered: A moderate effect set 1.2, 1.4, . . . , 5.0 and a large effect
set 1.5, 2.5, . . . , 20.5, each containing 20 values for λ2. For the recessive model, λ1 = 1,
for the dominant model λ1 = λ2, for the additive model λ1 = (1 + λ2)/2, and for the
overdominant model λ1 = 1.2λ2.

Combining the four genetic models, the 20 values for λ2 and the five values of
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Figure 2: Genotype frequencies for which test size is greater than a significance level of
0.05 (grey grid points). Left: The E method with n1 = n2 = 40. Right: The A method
with n1 = 50 and n2 = 70. The curve indicates points of Hardy–Weinberg equilibrium.

(g0, g1, g2), we get 400 parameter sets under H1 for each of the moderate and large effect
sets. This would give a total of 800 parameter sets, but 15 of these gave invalid values
for f2, leaving us with 785 parameter value sets to investigate.

Results for power For each combination of 50 pairs of sample sizes and seven methods
(M, E, E◦M, C, C◦M, A, A◦M), we obtained power at the 785 parameter sets under H1.
In Figure 3, we show graphs of power as a function of genotype relative risk λ2 for disease
allele frequency q = 0.1 for sample sizes (n1, n2) = (10, 20) (very small sample sizes),
(40, 40) (equal sample size for cases and controls) and (50, 70) (40% more controls than
cases), and additionally for q = 0.3 in the (40, 40) case. For each graph test size under the
null (λ2 = 1) is added for comparison. In Table 4 we present power results for a selection
of 24 parameter sets, together with 3 parameter sets under the null for comparison for
sample size (40, 40).

For each of the 785 parameter sets and the 50 sample sizes (in total 39250 scenarios)
we have compared the performance of the five methods that gave valid p-values – A◦M,
C, C◦M, E◦M and M – with respect to power at the 0.05 significance level in a pairwise
set-up. Overall the ranking of the methods were C◦M, E◦M, M, C and A◦M, with C◦M
as the best method. Results for pairwise comparison between methods are presented in
Table 5, for all scenarios, and for subsets of the parameter sets from each of the recessive,
additive, dominant and over-dominant genetic models, and for subsets of the sample
sizes: larger (n2 ≥ 30), smaller (n2 < 30), balanced (n2 − n1 < 10) and unbalanced
(n2 − n1 ≥ 10) sample sizes.

To summarize, C◦M wins over (is more powerful than) E◦M in 60.4% of the scenarios,
while E◦M wins over C◦M in 34.6% of the scenarios. C◦M wins over M in 72.2% of the
scenarios, over C in 97.4% and over A◦M in 83.7% of the scenarios. Furthermore, E◦M
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Table 4: Power (%) for various methods at a significance level of 0.05, n1 = n2 = 40.
Hardy–Weinberg equilibrium is assumed, and the parameters considered are disease allele
frequency q and genotype relative risks λ1 and λ2, where the model determines λ1 in terms
of λ2. The prevalence k is 0.1.

Parameters Method
Model λ2 q A A◦M C C◦M E E◦M M
H0 1 0.1 1.7 1.5 3.0 3.6 5.0 4.5 2.4

0.3 4.0 3.6 3.9 4.4 4.9 4.6 4.4
0.5 5.1 4.5 4.0 4.8 4.8 4.6 4.6

Recessive 2 0.1 1.9 1.6 3.3 3.9 5.2 4.7 2.7
0.3 15.3 13.5 13.2 14.3 15.8 14.4 14.2
0.5 30.1 28.0 26.7 29.4 29.4 28.8 28.8

5 0.1 4.2 3.7 6.4 7.4 10.0 9.3 7.3
0.3 83.7 82.4 80.4 82.9 83.6 82.7 82.5
0.5 96.0 95.1 94.9 95.7 95.8 95.4 95.4

Additive 2 0.1 7.2 6.4 10.5 12.0 14.1 13.0 8.8
0.3 18.9 17.3 17.7 19.3 19.7 18.7 18.4
0.5 19.5 18.2 17.3 19.2 19.0 18.6 18.7

5 0.1 61.4 58.7 68.4 71.2 73.4 72.0 64.5
0.3 79.1 77.1 76.8 79.0 79.3 78.4 78.3
0.5 64.7 63.3 62.1 64.6 64.7 64.1 64.2

Dominant 2 0.1 20.2 18.2 25.8 28.4 31.6 29.9 22.2
0.3 31.0 28.7 29.4 31.7 32.2 30.7 30.3
0.5 20.6 19.6 17.9 19.9 20.2 19.9 19.9

5 0.1 93.7 92.7 95.4 96.1 96.7 96.4 94.3
0.3 91.5 90.6 90.0 91.4 91.8 91.2 91.2
0.5 63.4 63.0 60.3 62.4 63.6 63.3 63.4

Over- 2 0.1 34.0 31.4 40.6 43.7 47.3 45.4 36.1
dominant 0.3 42.5 39.7 40.4 43.1 44.0 42.1 41.6

0.5 24.6 23.8 21.3 23.4 24.3 23.9 23.9
5 0.1 97.6 97.1 98.4 98.7 98.9 98.8 97.9

0.3 94.6 94.1 93.5 94.5 94.9 94.4 94.4
0.5 66.7 66.4 63.4 65.4 66.9 66.7 66.7
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Figure 3: Power (%) at a significance level of 0.05 as a function of genotype relative risk
λ2 (on a logarithmic scale) for various methods (A◦M, C, C◦M, E◦M, M; see legend) and
sample sizes. Hardy–Weinberg equilibrium is assumed; the prevalence k is 0.1. Disease
allele frequency q is 0.3 (lower right figure) and 0.1 (other figures). The genotype relative
risk λ1 is determined by the model. On each figure, the upper five graphs are for the
overdominant model, the next five graphs for the dominant model, the next five graphs
for the additive model, and the lower (left) five graphs for the recessive model.
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wins over M in 59.4% of the scenarios, over C in 78.0% and over A◦M in 69.8% of the
scenarios. M wins over C in 60.8% and over A◦M in 73.8% of the scenarios. For these
comparisons the number of draws varies from 2.5% to 5.1%. The comparison between
the A◦M and C methods is not that clear. We find that A◦M wins over C in 48.4% of
the scenarios, while C wins over A◦M in 49.1% of the scenarios. The average difference
in power is given in Table 5.

For the comparisons between the E◦M and C◦Mmethods, C◦Mwins in the majority of
the scenarios within each genetic model, for larger sample sizes and for both balanced and
unbalanced samples, but E◦M is better than C◦M for smaller sample sizes. We have also
looked in more detail into the comparison of C and M, since the discussion on conditional
versus unconditional methods has been given much emphasis in the literature, mainly for
the 2 × 2 case. For all genetic models, M wins over C in the majority of scenarios, with
the strongest win for the recessive model, while C (compared to M) performs it’s best for
the additive model. Further, M shows the greatest wins for smaller and balanced sample
sizes, while C (compared to M) performs it’s best for the larger and unbalanced sample
sizes.

6 Discussion

Ordering of the sample space Consider an 2 × 3 case–control experiment with
sample size (n1, n2). The

(

n1+2
2

)(

n2+2
2

)

possible outcomes can be ordered according to
decreasing test statistics, e.g. the MAX3, or to increasing p-value obtained by any of the
seven methods (M, E, E◦M, C, C◦M, A, A◦M) based on the same test statistic. From the
definition of the M p-value we have seen (in Section 4.1) that the ordering of the outcomes
based on the (negative of the) p-value will be the same as the ordering based on the test
statistic. Any test statistic giving the same ordering of the sample space as the MAX3
test statistic will give exactly the same M p-value as the MAX3 test statistic. This also
means that the C◦M p-value will give the same ordering of the possible outcomes as the C
p-value, the same for E and E◦M, A and A◦M, and so on. On the other hand, the C and
E p-value provides a different ordering of the sample space than the MAX3 test statistic.
Combining this fact with the finding (from Section 5) that the E◦M and C◦M methods
perform better than the M method, we question the quality of the MAX3 test statistics
for the genetic models considered (recessive, additive, dominant and over-dominant) in
our power study, and find that it might be of interest to search for a better test statistic.
(This conclusion also holds if we remove the over-dominant model from the power study.)
Alternatively, the C◦M and E◦M methods provide an alternative way of improving the
chosen test statistic by reordering the outcomes of the sample space.

Including covariates In genotype–phenotype association studies, covariates (age,
sex, smoking status, body mass index, among others) may be present, and researchers
may want to take these covariates into account in the statistical analyses. So and Sham
(2011) present an asymptotic MAX3 method with an adjustment for covariates. The
method is based on the asymptotic normality of score statistics in a multiple logistic
regression, and is suggested for use in GWA study sample sizes on the order of hundreds
or thousands. For small sample sizes, conditional (exact) versions of multiple logistic
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Table 5: A pairwise comparison of power for the five methods C◦M, E◦M, M, C and
A◦M, for various subsets of the 785 parameter sets and the 50 sample sizes studied in
Section 5. For each subset and comparison two numbers are given, the percentage of
times the method of the upper column header is at least as powerful as the method of
the lower column header (first row for each subset), and the average difference in power
between these methods (second row for each subset). All refers to all 39259 scenarios,
Recessive, Additive, Dominant and Over-dominant refers to all 50 sample sizes for the
parameter sets with the indicated genetic model (185 parameter sets for recessive and
200 for the others). For the remaining categories all 785 parameter sets are used, but
subsets of sample sizes are used. Smaller refers to sample sizes where n2 < 30 and Larger
where n2 ≥ 30, Balanced has n2 − n1 < 10 and Unbalanced has n2 − n1 ≥ 10 (number of
sample sizes ranges from 15 to 35).

C◦M C◦M C◦M C◦M E◦M E◦M E◦M M M C
E◦M M C A◦M M C A◦M C A◦M A◦M

All 65.4 76.7 100.0 86.2 64.5 81.1 72.4 63.5 77.2 51.6
0.1 1.2 1.6 2.1 1.1 1.5 2.0 0.4 0.9 0.5

Recessive 57.7 74.1 100.0 72.5 67.6 85.0 60.9 71.8 59.7 36.8
−0.3 0.5 1.3 0.9 0.8 1.6 1.2 0.9 0.5 −0.4

Additive 73.7 87.5 100.0 93.9 62.3 76.2 70.9 59.0 78.9 54.1
0.4 1.7 1.7 2.6 1.3 1.3 2.2 0.1 0.9 0.8

Dominant 66.2 74.3 100.0 89.3 63.6 81.4 77.1 61.7 83.6 56.5
0.2 1.4 1.7 2.4 1.2 1.5 2.2 0.3 1.1 0.8

Over-dominant 63.5 70.8 100.0 88.0 64.6 81.9 79.9 62.2 85.4 57.8
0.1 1.3 1.7 2.4 1.2 1.6 2.3 0.4 1.1 0.7

Smaller 47.0 79.0 100.0 90.2 82.4 98.1 90.9 70.0 79.3 54.2
−0.6 1.6 3.0 3.4 2.2 3.6 4.0 1.4 1.8 0.4

Larger 73.3 75.7 100.0 84.5 56.8 73.8 64.5 60.8 76.3 50.4
0.4 1.0 1.0 1.5 0.6 0.6 1.1 0.0 0.5 0.5

Balanced 60.6 76.4 100.0 91.2 69.9 89.4 80.2 71.9 92.0 54.6
−0.2 1.1 2.0 2.9 1.3 2.2 3.1 0.9 1.7 0.8

Unbalanced 68.6 76.9 100.0 82.9 60.8 75.5 67.3 58.0 67.4 49.6
0.3 1.3 1.3 1.6 0.9 1.0 1.3 0.1 0.3 0.3
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regression are available (Mehta and Patel, 1995), but to our knowledge MAX3 methods
with covariates are not available for conditional (exact) inference.

An alternative strategy to including covariates in a logistic regression (with the as-
sumption that covariates have a multiplicative effect on the odds ratio) is to divide the
data into partial tables, e.g. based on sex and age categories, and compute the MAX3
test statistic and p-values with e.g. E◦M or C◦M for each partial table. This might
be used when the assumption of multiplicative effects of covariates is violated, or if for
example there is only an association between genotype and phenotype for one of the sexes
or one of the age groups. If the effects of genotype are similar between the partial tables,
it might be possible to combine the MAX3 test statistics for each partial table in the
fashion of the CochranMantelHaenszel statistic, or to combine p-values from the partial
tables using Fisher’s (1950) method.

Population substructure Violation of the assumption of independence between in-
dividual observations in a study may occur if population substructure is present in the
data, and may be dealt with using the method of scaling with a variance inflation factor
(Devlin and Roeder, 2004) as is done in Sladek and others (2007). This may easily be
done for the C and M methods presented here, by externally estimating one scaling factor
for each genetic model to be applied to each CATT statistic before the maximum is taken.
However, this requires that data for more than one biallelic maker are present, and that
the sample size is large enough so that the scaling factors can be estimated consistently.

Larger sample sizes In GWA studies sample sizes are on the order of thousands of
cases and controls, and ten thousands of genetic markers are studied. For these sample
sizes the unconditional methods (E and M) will be too computationally intensive. Even
for 100 cases and 100 controls, the number of possible outcomes is more than 27 million,
and without smart algorithms and parallel programming this would be infeasible for use.
However, conditional methods are easily applicable even for very large sample size (see
Bakke and Langaas, 2012).

7 Conclusions

We have presented conditional (C), unconditional (E and M) and asymptotic (A) meth-
ods, and combinations thereof, and have used the robust MAX3 test statistic as a model
statistic. It is well known that the A and E methods may produce invalid p-values, while
the C and M methods will produce valid p-values. This applies to any test statistic.
Specifically we have found that for small sample sizes for the MAX3 statistic (for all
sample sizes studied in this presentation, that is, on the order of tens) the E and A
method should not be used since they give invalid p-values. For the MAX3 test statistic
we advocate using the E◦M and C◦M methods, which are more powerful than the M, C
and A◦M methods in the scenarios we have investigated (recessive, additive, dominant
and overdominant genetic models).

Furthermore, we in general advocate the use of an M step as a post processing step.
The M step does not change the order of the test statistic over the sample space, makes
an invalid p-value valid, and always improves a valid p-value (or leaves it unchanged).
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The M step has been criticized for giving a conservative p-value, however, viewed as a
post processing step this is not true. Applying the M step to a valid p-value will increase
power, as shown in Theorem 1.

In the literature on 2× 2 tables there has been an emphasis on comparing the condi-
tional (C) and unconditional (M) method. However, if there are computational resources
available to perform an M step, the C◦M method will always be preferable to the C
method, so that the comparison should then be between the M and the C◦M methods.
If a power study has been conducted and the C◦M method is found to be more powerful
than the M method this will be a motivation to look for a better test statistic.
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