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Abstract

In this paper a new approach for constructing multivariate Gaussian random
fields (GRFs) using systems of stochastic partial differential equations (SPDEs) has
been introduced and applied to simulated data and real data. By solving a sys-
tem of SPDEs, we can construct multivariate GRFs. On the theoretical side, the
notorious requirement of non-negative definiteness for the covariance matrix of the
GRF is satisfied since the constructed covariance matrices with this approach are
automatically symmetric positive definite. Using the approximate stochastic weak
solutions to the systems of SPDEs, multivariate GRFs are represented by multi-
variate Gaussian Markov random fields (GMRFs) with sparse precision matrices.
Therefore, on the computational side, the sparse structures make it possible to use
numerical algorithms for sparse matrices to do fast sampling from the random fields
and statistical inference. Therefore, the big-n problem can also be partially resolved
for these models. These models out-preform existing multivariate GRF models on
a commonly used real dataset.
Keywords: Multivariate Gaussian random fields; Gaussian Markov random fields;
covariance matrix; stochastic partial differential equations; sparse matrices

1 Introduction

Gaussian random fields (GRFs) have a dominant role in spatial modelling and there
exists a wealth of applications in areas such as geostatistics, atmospheric and environ-
mental science and many other fields (Cressie, 1993; Stein, 1999; Diggle and Ribeiro Jr,
2006). GRFs are practical since the normalizing constant can be computed explicitly.
They also process good properties since they can be explicitly specified through the mean
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function µ(·) and covariance function C(·, ·). In R
d, with s ∈ R

d, x(s) is a continuously
indexed GRF if all the finite subsets (x(si))

n
i=1 jointly have Gaussian distributions. A

GRF is said be stationary or homogeneous if the mean function µ(·) is constant and
the covariance function C(·, ·) is a function only of the distance between the coordinates
(Adler and Taylor, 2007). It is common to use covariance functions that are isotropic.
The isotropic covariance functions are functions of just the Euclidean distance between
two locations.

1.1 Matérn covariance functions and Multivariate GRFs

The Matérn family of covariance functions is a class of commonly used isotropic covari-
ance functions introduced by Matérn (Matérn, 1986). This family of covariance functions
is usually parametrized by σ2M(m,n|ν, a), where, M(m,n|ν, a) is the Matérn correla-
tion function between locations m, n ∈ R

d and has the form

M(h|ν, a) = 21−ν

Γ(ν)
(a‖h‖)νKν(a‖h‖), (1)

where σ2 is the marginal variance. ‖h‖ denotes the Euclidean distance between m and
n. Kν is the modified Bessel function of second kind and a > 0 is a scaling parameter.
The order ν is the smoothness parameter. It defines the critical concerns in spatial sta-
tistical modelling and simulation (Stein, 1999), such as the differentiability of the sample
paths and the Hausdorff dimension (Handcock and Stein, 1993; Goff and Jordan, 1988).
We follow the common practice to fix the smoothness parameter ν because it is poorly
identifiable from data (Ribeiro Jr and Diggle, 2006; Lindgren et al., 2011). The range
ρ connects the scaling parameter a and the smoothness parameter ν. Throughout the
paper, the simple relationship ρ =

√
8ν/a is assumed from the empirically derived defi-

nition (Lindgren et al., 2011). We refer to Matérn (1986), Diggle et al. (1998), Guttorp
and Gneiting (2006) and Lindgren et al. (2011) for detailed information about Matérn
covariance functions. One can show that the Matérn covariance function can be reduced
to the product of a polynomial and an exponential function when the smoothness pa-
rameter ν is equal to an integer m plus 1

2 (Gneiting et al., 2010). The Matérn covariance
function nests the popular exponential model since M(h|12 , a) = exp(−a‖h‖).

Analogously to the univariate case, we need to specify a mean vector function µ(s)
and a covariance function C(‖h‖) that assigns to each distance ‖h‖ a p× p symmetric
non-negative definite covariance matrix in order to specify an isotropic p-dimensional
multivariate Gaussian random field x(s). It is known that it is quite difficult to construct
flexible covariance functions C(·) that satisfy this requirement.

Gneiting et al. (2010) presented an approach for constructing multivariate random
fields using matrix-valued covariance functions, where each constituent component in
the matrix-valued covariance function is a Matérn covariance function. Define x(s) =
(x1(s), x2(s), · · · , xp(s))T, with s ∈ R

d, so that each location consists p components.
T denotes the transpose of a vector or a matrix. Assume the process is second-order

2



stationary with mean vector zero and matrix-valued covariance function of the form

C(h) =











C11(h) C12(h) · · · C1p(h)
C21(h) C22(h) · · · C2p(h)

...
...

. . .
...

Cp1(h) Cp2(h) · · · Cpp(h)











, (2)

where,
Cii(h) = σiiM(h|νii, aii), (3)

is the covariance function Cii(h) = E(xi(s+ h)xi(s)) within the field xi(s) and

Cij(h) = ρijσijM(h|νij , aij) (4)

is the cross-covariance function Cij(h) = E(xi(s+h)xj(s)) between the fields xi(s) and
xj(s). ρij is the co-located correlation coefficient, σii ≥ 0 is the marginal variance, and
σi and σj are the corresponding standard deviations, 1 ≤ i 6= j ≤ p. We use the following
notations through out the paper

σii = σiσi,

σij = σiσj .
(5)

Gneiting et al. (2010) presented some conditions to ensure the matrix-valued co-
variance function in Equation (2) is symmetric and non-negative definite, with focus
on the bivariate case. They claimed that the parameters in the parametric family of
matrix-valued covariance function given in Equation (2) for multivariate random fields
are interpretable in terms of smoothness, correlation length, variances of the processes
and co-located coefficients. It was shown that a parsimonious bivariate Matérn model,
with fewer parameters than the full bivariate Matérn model, is preferred to the tra-
ditional linear model of coregionalization (LMC) (Gelfand et al., 2004). Even though
the GRFs have convenient analytical properties, the covariance-based models for con-
structing GRFs are hindered by computational issues, or the so-called “big-n problem”
(Banerjee et al., 2004). This is because inference with these models requires the fac-
torization of dense n × n covariance matrices, which requires O(n2) storage and O(n3)
floating point operations. It follows that this kind of model is not suitable for problems
with realistically large amounts of data.

Statistical inference for large datasets within feasible time is still a challenge in mod-
ern spatial statistics. The size of modern datasets typically overwhelm the traditional
models in spatial statistics and a great deal of effort has been expended trying to con-
struct good models that scale well computationally. In this paper, we extend the models
proposed by Lindgren et al. (2011), which exploited an explicit link between GRFs and
GMRFs through stochastic partial differential equations (SPDEs). They showed that
for some univariate Gaussian fields with Matérn covariance functions, it is possible to
do the modelling with GRFs, but do the computations using GMRFs.

A GMRF is a discretely indexed Gaussian random field x(s) with the property that
its full conditional distributions {π(xi|x−i); i = 1, . . . , n}, only depend on the set of
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neighbors ∂i to each node i. It is obvious that if i ∈ ∂j then j ∈ ∂i from consistency.
Rather than parameterizing GMRFs through their covariance matrix, they are usually
parametrized through their precision matrix (the inverse of the covariance matrix). The
Markov property implies that the precision matrix Q is sparse due to the fact that
Qij 6= 0 ⇐⇒ i ∈ ∂j ∪ j (Rue and Held, 2005). This allows for the use of numerical
methods for sparse matrices for fast sampling and also for fast statistical inference (Rue,
2001; Rue and Held, 2005; Lindgren et al., 2011). The general cost of factorizing the
precision matrix Q for a spatial Markovian structure is O(n) in one dimension, O(n3/2)
in two dimensions and O(n2) in three dimensions (Rue and Held, 2005).

Lindgren et al. (2011) pointed out that using the link between the GRFs and GMRFs
can open new doors to modelling difficult problems with simple models. The SPDE ap-
proach can be extended to Gaussian random fields on manifolds, non-stationary random
fields, random fields with oscillating covariance functions and non-separable space-time
models.

1.2 Matérn covariance models through SPDEs

In this paper we use the following characterization of Matérn random fields, originally
due to Whittle (1954, 1963), that formed the basis for the methods of Lindgren et al.
(2011). A GRF x(s) with the Matérn covariance function can be described as a solution
to the linear fractional SPDE (Whittle, 1954, 1963; Lindgren et al., 2011)

(κ2 −∆)α/2x(s) = W(s), (6)

where (κ2 −∆)α/2 is a pseudo-differential operator and α = ν + d/2, κ > 0, ν > 0. The

innovation process W(s) is a spatial standard Gaussian white noise. ∆ =
∑d

i=1
∂2

∂x2

i

is

the Laplacian on R
d. Applying the Fourier transform to the (fractional) SPDE given in

R
d in (6) yields

{

F (κ2 −∆)α/2φ
}

(k) =
(

κ2 + ‖k‖2
)α/2

(Fφ) (k), (7)

where F denotes the Fourier transform, φ is a smooth, rapidly decaying function in R
d.

See for example, Lindgren et al. (2011) for detailed description. Equation (7) is used in
Section 3 for model comparison. One might think that the Matérn covariance function
seems rather restrictive in statistical modelling, but it covers the most commonly used
models in spatial statistics (Lindgren et al., 2011). Stein (1999, Page 14) has a practical
suggestion “use the Matérn model”. For more information about the Matérn family, see,
for example Diggle et al. (1998, Section 3.4.1) and Stein (1999, Section 2.6).

1.3 Outline of the paper

The rest of the paper is organized as follows. In Section 2 we discuss the construction of
multivariate GRFs using systems of SPDEs, we call this approach the SPDEs approach.
Additionally, a brief introduction of how to construct the multivariate GRFs using the
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covariance-based models is also included in this section. Section 3 contains a detailed
model comparisons between the SPDEs approach and the covariance-based models pre-
sented by Gneiting et al. (2010). Section 3.4 discusses how to sample from these models,
and statistical inference for simulated data and real dataset is presented in Section 4.
The paper ends with a general discussion in Section 5.

2 Model construction

In this section we discuss how to use the SPDEs approach to construct multivariate
GRFs. One of the appealing properties of this approach is that the SPDE specification
automatically constructs valid covariance functions. This means that if the solution to
a system of SPDEs exists, then it will construct a matrix-valued covariance function
which fulfills the symmetric non-negative definiteness property. The parameters in the
parametric model from the SPDEs approach are interpretable in terms of co-located
correlation coefficients, smoothness, marginal variances and correlations. And there is a
correspondence to the parameters in the covariance matrix based models.

2.1 Multivariate GRFs and the SPDEs approach

A zero mean d–dimensional multivariate (or d–dimensional p-variate) GRF is a collection
of continuously indexed multivariate normal random vectors

x(s) ∼MVN(0,Σ(s)),

where Σ(s) is a non-negative definite matrix that depends on the point s ∈ R
d. Define

the system of SPDEs











L11 L12 . . . L1p

L21 L22 . . . L2p
...

...
. . .

...
Lp1 Lp2 . . . Lpp





















x1(s)
x2(s)

...
xp(s)











=











f1(s)
f2(s)
...

fp(s)











, (8)

where {Lij = bij(κ
2
ij − ∆)αij/2; αij = 0 or 2, 1 ≤ i, j ≤ p}, are differential operators

and {fi(s); 1 ≤ i, j ≤ p} are independent but not necessarily identically distributed
noise processes. It turns out that the solution to (8) defines a multivariate GRF x =
(x1(s), x2(s), · · · , xp(s))T. Define the operator matrix

L =











L11 L12 . . . L1p

L21 L22 . . . L2p
...

...
. . .

...
Lp1 Lp2 . . . Lpp











(9)

and
f(s) = (f1(s), f2(s), · · · , fp(s))T,
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and then the system of SPDEs (8) can be written in compact matrix form as

L (θ)x(s) = f(s), (10)

where θ = {α,κ, b} denotes the collection of parameters. Similarly as Equation (7) we
apply Fourier transforms to Equation (10), and it yields

H (θ)x̂(k) = f̂(k), (11)

where k is the frequency, x̂(k) = F (x(s)) and f̂(k) = F (f(s)) are the Fourier trans-
forms of the random fields and the noise processes, respectively, and H (θ) is the matrix
formed from the Fourier transforms of the operator matrix L (θ). Each element has the
form Hij(θij) = bij(κ

2
ij+‖k‖2)αij/2 with θij = {αij , κij , bij}, 1 ≤ i, j ≤ p. From Equation

(11) one can find the spectral process as x̂(k) = H −1(θ)f̂(k). The corresponding power

spectrum is defined as Sx(k) = E

(

x̂x̂H
)

, where H denotes the Hermitian transpose of

a matrix. Simple calculations using the above mentioned formulas yield

Sx(k) = H
−1(θ)Sf (k)H

−H(θ), (12)

where H −H denotes the inverse of the Hermitian transpose of Fourier transform of the
operator matrix L . The Equation (12) can be written explicitly as

Sx(k) =











Sx11
(k) Sx12

(k) · · · Sx1p
(k)

Sx21
(k) Sx22

(k) · · · Sx2p
(k)

...
...

. . .
...

Sxp1
(k) Sxp2

(k) · · · Sxpp(k)











. (13)

Let Sf (k) denote the power spectrum matrix of the noise processes, Sf (k) = E

(

f̂ f̂
H
)

.

If the noise processes are mutually independent, Sf is a diagonal matrix and we write
it as

Sf (k) = diag(Sf11 , Sf22 , · · · , Sfpp),

where {Sfi = E

(

f̂if̂i
H
)

; i = 1, · · · , p}. This means it is easy to obtain this matrix.

In general, with Equations (8) to (12) we can compute all the components in (13). We
show how to do this for bivariate random fields in Section 3.1.

2.2 Covariance-based model for multivariate GRFs

It is also possible to construct a multivariate GRF using the covariance-based model, but
the notorious non-negative definiteness restriction makes it hard. Gneiting et al. (2010)
discussed one such approach in detail. The main aim of their approach is to find the
proper constrains for νij, aij , ρij which result in valid matrix-valued covariance functions
for second-order stationary multivariate GRFs with a covariance function of the form
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in Equation (2), that is, a symmetric non-negative definite covariance function. Some
useful theorems for constructing the covariance functions for bivariate case are presented
in Gneiting et al. (2010, Section 2.2).

In this covariance-based model, the components Cij(h) in the matrix-valued covari-
ance function C(h) given in Equation (2) are modelled directly. Gneiting et al. (2010)
try to find conditions on the parameter space which result in valid multivariate Matérn
models. In the bivariate case when p = 2, a full characterization of the parameter space
is achieved. For p ≥ 3 Gneiting et al. (2010) suggested that a parsimonious model
should be used in practice. This kind of model has more restrictions on the smoothness
parameter and the scale parameters, such that aij = a, where a > 0 is the common scale
parameter and νij =

1
2(νi + νj) for 1 ≤ i 6= j ≤ p. We refer to Gneiting et al. (2010) for

more information about different kinds of conditions that yield the valid matrix-valued
covariance functions.

Assume that the components of the covariance matrix are known. The power spec-
trum can also be obtained from in this covariance-based approach. This can in turn
be used to compare parameters with the SPDEs approach. The covariance matrix of
a second-order stationary multivariate Matérn GRF was given in Equation (2). The
power spectrum in R

d of the cross-covariance function for xi(s) and xj(s) is defined as
Rxij

(k) = F (Cov(xi (s), xj(s))), 1 ≤ i, j ≤ p, which is given by

Rxij
(k) =

1

(2π)d

∫

Rd

e−ikhCij(‖h‖)dh. (14)

Applying the Fourier transform to the covariance matrix in Equation (2) yields

R(k) =











Rx11
(k) Rx12

(k) · · · Rx1p
(k)

Rx21
(k) Rx22

(k) · · · Rx2p
(k)

...
...

. . .
...

Rxp1
(k) Rxp2

(k) · · · Rxpp(k)











. (15)

The comparison between the covariance-based approach and the SPDEs approach in
Section 3 is based on the following fact: if Sxij

(k) = Rxij
(k), for each 1 ≤ i, j ≤ p, then

the multivariate GRFs constructed through the SPDEs approach (8) and through the
covariance-based model (2) are equivalent.

2.3 GMRF approximations to GRFs

It is known that spatial Markovian GMRFs have good computational properties since
the precision matrix Q is sparse. The Markov structure here means that xi(s) and
xj(s) are independent conditioned on x−ij(s), when i and j are not neighbors, where
x−ij(s) means for x−{i,j}(s). In other words, Qij = 0 if and only if xi(s) and xj(s)
are independent conditioned x−ij(s). So it is possible to read off whether xi and xj are
conditionally independent or not from the elements of Q. Note that the precision matrix
Q should also be non-negative definite. The sparse structure of the precision matrix Q
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is crucial with our models in Bayesian inference methods on large datasets. We refer to
Rue and Held (2005, Chapter 2) for more information on the theory for GMRFs.

Rue and Tjelmeland (2002) demonstrated that most of the GRFs in geostatistics can
be approximated with GMRFs. Hartman and Hössjer (2008) proposed to use GMRFs
instead of GRFs, from a computational point of view, when doing spatial prediction
using Kriging. This approach can also be used for spatio-temporal models (Allcroft and
Glasbey, 2003). In this paper we follow the approach presented in Lindgren et al. (2011)
for GMRF approximations to GRFs in order to partially resolve the “big n problem”
with our models. Lindgren et al. (2011) mainly considered univariate GRFs with Matérn
covariance functions. In this case the GMRF representation was constructed explicitly
through the SPDE, and the solution to the SPDE driven by the Gaussian white noise is
a GRFs with Matérn covariance function. They showed how to build a GRF model with
a covariance matrix Σ theoretically from SPDE, and then use the GMRF to represent
the GRF, which means the precision matrix of the GMRF fulfills the condition Q−1 ≃
Σ on some predefined norm. Fuglstad (2011) considered a modification of the SPDE
with a diffusion matrices to control the covariance structure of the GRF, and create
inhomogeneous GRFs, but the GMRF representation is still the main ingredient for
computations.

With our SPDEs approach we use two steps to construct the multivariate GRFs. The
first step is to construct the precision matrices for the noise processes in Equation (8), and
the second step is to solve the system SPDEs (8) with the constructed noise processes.
We focus on the noise processes, if they are not white noise processes, generated by the
SPDE given as follows

(κ2ni
−∆)αni

/2fi(s) = Wi(s), αni
= νni

+ d/2, i = 1, 2, . . . , p, (16)

with the requirements that κni
> 0 and νni

> 0. κni
and νni

are the scaling parameter
and smoothness parameter for noise process fi(s). {Wi(s); i = 1, 2, . . . , p} are stan-
dard Gaussian white noise processes. The generated noise processes in this way are
independent but not necessarily identically distributed.

The first step in constructing the GMRF representation for the noise process fi(s)
on the triangulated lattice is to find the stochastic weak formulation of Equation (16)
(Kloeden and Platen, 1999). In this paper Delaunay triangulation is chosen, and we
refer to Hjelle and Dæhlen (2006) for detailed discussion about Delaunay triangulations.
Denote the inner product of functions h and g as

〈h, g〉 =
∫

h(s)g(s)d(s), (17)

where the integral is over the region of interest. We can find the stochastic weak solution
of SPDE (16) by requiring that

{

〈φk, (κ2ni
−∆)αni

/2fi〉
}M

i=1

d
= {〈φk,Wi〉}Mi=1 . (18)

In the second step we need to construct a finite element representation of the solution
to the SPDE. We refer to Zienkiewicz et al. (2005) and Bathe (2008) for more information

8



about finite element methods. The finite element representation of the solution to SPDE
(16) is

fi(s) =
N
∑

k=1

ψk(s)ωk, (19)

where ψk(s) is some chosen basis function, ωk is some Gaussian distributed weight, and
N is the number of the vertexes in the triangulation. The basis function ψk(s) is chosen
to be piecewise linear with value 1 at vertex k and 0 at all other vertexes. This means
that a continuously indexed solution is approximated with a piecewise linear function
defined through the joint distribution of {ωk; k = 1, 2, . . . , N} (Lindgren et al., 2011).
The chosen basis functions ensure that the local interpolation on a triangle is piecewise
linear.

The third step is to choose the test functions. In this paper we follow the setting
used by Lindgren et al. (2011). With M = N the test functions are chosen as φk =
(κ2ni

−∆)1/2ψk for αni
= 1 and φk = ψk for αni

= 2, which are denoted as a least squares
and a Galerkin solution, respectively. When αni

≥ 3, the approximation can be obtained
by setting αni

= 2 at the left-hand side of Equation (16) and replacing the right hand
side of Equation (16) with a field generated with αni

− 2 and let φk = ψk. This iteration
procedure terminates when αni

= 1 or 2. This is the essence of the recursive Galerkin
formulation. More detailed description can be found in Lindgren et al. (2011). αni

can
only be integer-valued currently. When αni

is not an integer, different approximation
methods must be used and this is beyond the scope of our discussion. Response to the
discussion to Lindgren et al. (2011) discussed fractional α. We define the required N×N
matrices C, and G with entries

Cmn = 〈ψm, ψn〉, Gmn = 〈∇ψm,∇ψn〉, m, n = 1, 2, . . . , N, (20)

and
(Kκ2

ni
) =

(

κ2ni
C +G

)

. (21)

Finally, by using these matrices given in (20) and (21) together with the Neumann
boundary conditions (zero normal derivatives at the boundaries), the precision matrices
Qfi for noise process fi(s) can be obtained,















Q1,κ2
ni

= Kκ2
ni
, for αni

= 1,

Q2,κ2
ni

= KT
κ2
ni

C−1Kκ2
ni
, for αni

= 2,

Qαni
,κ2

ni
= KT

κ2
ni

C−1Qαni
−2,κ2

ni
C−1Kκ2

ni
, for αni

= 3, 4, · · · .
(22)

As pointed out by Lindgren et al. (2011) the inverse of C, i.e., C−1, is usually a dense
matrix. This causes the precision matrix Qfi to be dense and ruins all the effort we have

made. So we actually used a diagonal matrix C̃, where C̃ii = 〈ψi, 1〉, instead of C. This
diagonal matrix results in a sparse precision matrix and hence sparse GMRFs models
can be obtained. Using the diagonal matrix C̃ii yields a Markov approximation to the
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FEM solution. The effects of the Markov approximation have been studied by Bolin and
Lindgren (2009). They claimed that the difference between the exact representation by
the finite element method and the Markov approximation is negligible.

Move to our multivariate GRFs constructed by systems of SPDEs (8). In this case
we take the same set of basis functions {ψk; k = 1, 2, . . . ,M} and construct a basis for
the solution space for (x1, x2, . . . , xp)

T as

p





























ψ1

0
...
0











, . . . ,











ψM

0
...
0











,











0
ψ1

...
0











, . . . ,











0
ψM

...
0











, . . . ,











0
0
...
ψ1











, . . . ,











0
0
...
ψM











, (23)

where there are a total of Mp basis functions {ψi} which are numbered in the order
listed above. The weak solution of the system of SPDEs (8) requires

[〈ψi,Lx〉]Mp
i=1

d
= [〈ψi,f〉]Mp

i=1 , (24)

with L defined in Equation (9). The finite element representation to the solution of the
system of SPDEs is

x(s) =

Mp
∑

i=1

ψi(s)ωi (25)

In order to find the precision matrix for the solution we need to define the following
matrices,

D =











C̃

C̃
. . .

C̃











, K =











K11 K12 · · · K1p

K21 K22 · · · K2p
...

...
. . .

...
Kp1 Kp2 · · · Kpp











,

Qf =











Qf1
Qf2

. . .

Qfp











,

(26)

where D and Qf are block diagonal matrices with p blocks on the diagonal. {Kij =
bij(κ

2
ijC +G); i, j = 1, 2, . . . , p} for αij = 2 and {Kij = bijIM×M ; i, j = 1, 2, . . . , p} for

αij = 0.
We summarize the results for multivariate GRFs with our systems of SPDEs approach

in Main result 1.

Main result 1. Let Q be the precision matrix for the Gaussian weights ωi in the system
of SPDEs (8), then the precision matrix of the multivariate GMRF is

Q =KD−1QfD
−1K (27)

with D and K defined in (26).

10



The form of the Main result 1 is similar to the discussion in Lindgren et al. (2011,
Appendix C.4). With our approach the precision matrices for the multivariate GRFs
are sparse and the smoothness of the fields is mainly controlled by the noise processes.
This sparse precision matrix is used for sampling the multivariate GRFs in Section 3.4
and statistical inference with simulated data and real data in Section 4.

3 Model comparison and sampling the GRFs

In this section we focus on the construction of the bivariate GRF, i.e., p = 2 in R
d using

the SPDEs approach and then compare with the covariance-based approach presented
by Gneiting et al. (2010). As discussed in Section 2.2, the SPDEs approach can construct
the same multivariate GRFs as the covariance-based models if Sxij

(k) = Rxij
(k) for all

1 ≤ i, j ≤ q. The comparison for the univariate GRF is trivial and the multivariate GRF
when p > 2 can be done in a similar way.

3.1 Bivariate GRF with SPDEs

When p = 2 in the system of SPDEs (8), we can construct bivariate GRFs when b12 6=
0 or b21 6= 0. In this case, the system of SPDEs has the following form

b11(κ
2
11 −∆)α11/2x1(s) + b12(κ

2
12 −∆)α12/2x2(s) = f1(s),

b22(κ
2
22 −∆)α22/2x2(s) + b21(κ

2
21 −∆)α21/2x1(s) = f2(s),

(28)

and the solution x(s) = (x1(s), x2(s))
T to the system of equations (28) is a bivariate

random field. Since it is convenient to study the properties of the bivariate GRFs in the
spectral domain, the Fourier transform is applied,

b11(κ
2
11 + ‖k‖2)α11/2x̂1(k) + b12(κ

2
12 + ‖k‖2)α12/2x̂2(k) = f̂1(k),

b22(κ
2
22 + ‖k‖2)α22/2x̂2(k) + b21(κ

2
21 + ‖k‖2)α21/2x̂1(k) = f̂2(k).

(29)

The matrix form of the differential operator in the spectral domain can be written as

H (θ) =

(

H11(θ11) H12(θ12)
H21(θ21) H22(θ22)

)

. (30)

If the noise processes are mutually independent (but not necessarily identically dis-
tributed), the power spectrum matrix of the noise processes is a block diagonal matrix
with the form

Sf (k) =

(

Sf1(k) 0
0 Sf2(k)

)

, (31)

where Sf1(k) and Sf2(k) are the power spectra in R
d for the noise processes f1(s) and

f2(s), respectively. If the noise processes are white, then the problems is simplified and
the corresponding power spectra have the forms SW1

(k) = (2π)−dσ2n1
and SW2

(k) =

11



(2π)−dσ2n2
, where σn1

and σn2
are the standard deviations for the white noise processes

W1 andW2, respectively. However, these two parameters are confounded with {bi,j ; i, j =
1, 2} and we fix σn1

= 1 and σn2
= 1. The conclusion is also valid with other types of

noise processes. Notice that we have used the new notation {SWi
; i = 1, 2}, because it is

also possible to use more interesting noise processes which are not only the simple white
noise. For instance, we can use the noise processes with Matérn covariance functions.
These kinds of noise processes can be generated (independently) from the SPDEs

(κ2n1
−∆)αn1

/2f1 = W1,

(κ2n2
−∆)αn2

/2f2 = W2,
(32)

where W1 and W2 are standard Gaussian white noise processes and κn1
and κn2

are
scaling parameters. αn1

and αn2
are related to smoothness parameters νn1

and νn2
for

f1 and f2 and αni
= νni

+ d/2. Apply the Fourier transform to (32) and use a similar
procedure as defined in Equation (10) - Equation (13), and then the power spectra for
the noise processes generated from SPDEs (32) can be obtained and they have the forms

Sf1(k) =
1

(2π)d
1

(κ2n1
+ ‖k‖2)αn1

,

Sf2(k) =
1

(2π)d
1

(κ2n2
+ ‖k‖2)αn2

.
(33)

The power spectrum matrix of the GRFs presented in (13) can also be simplified further
and has the form

Sx(k) =

(

Sx11
(k) Sx12

(k)
Sx21

(k) Sx22
(k)

)

. (34)

By using (12) together with the exact formula for the differential operators (30) and
the spectra for the noise processes as defined in (33), we can get an exact symbolic
expressions for all the elements in the power spectrum matrix (34)

Sx11
=

Sf1 |H2
22|+ Sf2 |H2

12|
|(H11H22 −H12H21)2|

,

Sx12
= −H22Sf1 |H2

21|H11 +H12Sf2 |H2
11|H21

|(H11H22 −H12H21)2|H21H11
,

Sx21
= −H21Sf1 |H2

22|H12 +H11Sf2 |H2
12|H22

|(H11H22 −H12H21)2|H22H12
,

Sx22
=

Sf1 |H2
21|+ Sf2 |H2

11|
|(H11H22 −H12H21)2|

.

(35)

In order to simply the problem, we make the operator matrix in the spectral domain
a lower triangular matrix by setting H12(θ12,k) = 0, or equivalently, by setting b12 = 0.
The system of SPDEs in the spectral domain becomes

b11(κ
2
11 + ‖k‖2)α11/2x̂1(k) = f̂1(k), (36)

b22(κ
2
22 + ‖k‖2)α22/2x̂2(k) + b21(κ

2
21 + ‖k‖2)α21/2x̂1(k) = f̂2(k). (37)

12



This means expression (35) becomes

Sx11
=

Sf1
|H2

11|
, Sx21

= − H̄21Sf1
H̄22|H11|2

,

Sx12
= − Sf1H21

H22|H11|2
, Sx22

=
|H21|2Sf1 + |H11|2Sf2

|H11|2|H22|2
,

(38)

where H̄ij denotes the conjugate of Hij . This is called the triangular version of SPDEs
in this paper. If the operators H12 and H21 are real, we obtain Sx12

(k) = Sx21
(k). In

other words, we have an imposed symmetry property on the cross-covariance in this case.
With the triangular version of the SPDEs, under some extra conditions, the properties of
the multivariate GRFs is easy to interpret. We will see more about this in Section 4. In
this paper we focus on the triangular version of the SPDEs. However, the full version of
the SPDEs could be handled analogously to the triangular version of the SPDEs. If there
is no constraint on the operator matrix, i.e., bij 6= 0 for all i, j = 1, 2, it is called the full
version of the SPDEs. In general, Sx12

(k) and Sx21
(k) are not necessarily equal. This

can release the constraint shared by the Matérn model proposed by Gneiting et al. (2010)
and the Linear model of coregionalization (LMC), namely that the cross-covariance has
an imposed symmetry property, i.e., Cij(h) = Cji(h). This does in general not hold as
discussion by Wackernagel (2003, Chapter 20). We refer to Goulard and Voltz (1992),
Wackernagel (2003, Chapter 14) and Gelfand et al. (2004) for more information about
LMC. In this paper we assume that all the operators are real which simplifies calculations
and discussion. We reorganize (38) and find

Sx12

Sx11

= −H21

H22
,

Sx22

Sx11

=
|H2

21|
|H2

22|
+

|H2
11|

H2
22

Sf2
Sf1

,

Sx22

Sx12

= −
( |H2

11|
H21H22

)

Sf2
Sf1

− H21

H22
.

(39)

From the results given in (35) and (39), we can notice that Sx12
and Sx11

only depend
on the power spectrum of the noise process f1 and Sx22

(k) depends on the noise process
power spectra Sf1(k) and Sf2(k). The ratio between the power spectra Sx12

and Sx11
is

independent of both the noise processes.
When {fi(s); i = 1, 2} are mutually independent and generated from (32), the ele-

ments in the power spectrum matrix (34) can be written down explicitly by using (33)
and (38),
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Table 1: Parameter values for asymptotic behaviors of the power spectra for bivariate
GRFs

case 1 case 2

α κ b α κ b

α11 = 2 κ11 = 0.15 b11 = 1 α11 = 2 κ11 = 0.15 b11 = 1
α12 = 0 κ12 = 0 b12 = 0 α12 = 0 κ12 = 0 b12 = 0
α21 = 2 κ21 = 0.5 b21 = −1 α21 = 2 κ21 = 0.5 b21 = −1
α22 = 2 κ22 = 0.3 b22 = 1 α22 = 2 κ22 = 0.3 b22 = 1
αn1

= 0 κn1
= 0.15 αn1

= 1 κn1
= 0.15

αn1
= 0 κn2

= 0.3 αn2
= 1 κn2

= 0.3

case 3 case 4

α κ b α κ b

α11 = 2 κ11 = 0.15 b11 = 1 α11 = 2 κ11 = 0.15 b11 = 1
α12 = 0 κ12 = 0 b12 = 0 α12 = 0 κ12 = 0 b12 = 0
α21 = 2 κ21 = 0.15 b21 = −0.5 α21 = 2 κ21 = 0.5 b21 = −1
α22 = 2 κ22 = 0.3 b22 = 1 α22 = 2 κ22 = 0.3 b22 = 1
αn1

= 0 κn1
= 0.15 αn1

= 0 κn1
= 0.15

αn1
= 0 κn2

= 0.3 αn2
= 0 κn2

= 0.3

Sx11
(k) =

1

(2π)d(κ2n1
+ ‖k‖2)αn1 b211

(

κ211 + ‖k‖2
)α11

,

Sx12
(k) = − b21(κ

2
n1

+ ‖k‖2)−αn1 (κ221 + ‖k‖2)α21/2

(2π)d
(

b22(κ222 + ‖k‖2)α22/2b211(κ
2
11 + ‖k‖2)α11

) ,

Sx22
(k) =

b2
21
(κ2

21
+‖k‖2)α21

(2π)d(κ2
n1

+‖k‖2)αn1
+

b2
11
(κ2

11
+‖k‖2)α11

(2π)d(κ2
n2

+‖k‖2)αn2

(

b211(κ
2
11 + ‖k‖2)α11

) (

b222(κ
2
22 + ‖k‖2)α22

) .

(40)

The asymptotic behavior of the power spectra for the bivariate GRF can be obtained
from (40). For some selected parameter values defined in Table 1, the power spectra are
shown in Figure 1. From these figure, we can notice that the parameters {bij ; i, j =
1, 2, i > j} controls the correlation between the two fields. When a smaller absolute
value of b21 is chosen, the correlation between these two fields decreases rapidly. We
can also show that the sign of b21 · b22 is related the sign of the correlation between the
two GRFs. Obviously, bij are also related to the variance of the GRFs. The parameters
κij are related to the range of the two fields. αij and αni

are related to the smoothness
of the two GRFs. The asymptotic behavior is curial when dealing with the real-world
applications.
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Figure 1: Asymptotic behaviors of the power spectra corresponding to case 1 (a), case
2 (b), case 3 (c) and case 4 (d) with parameter values given in Table 1.
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3.2 Bivariate GRF with the covariance-based model

As presented by Gneiting et al. (2010), a multivariate GRFs can be constructed using a
covariance-based model. In the bivariate setting, the matrix-valued covariance function
for the bivariate GRF contains 4 elements and the corresponding power spectrum matrix
becomes

R(k) =

(

Rx11
(k) Rx12

(k)
Rx21

(k) Rx22
(k)

)

. (41)

Applying integral given in Equation (14), together with the expression for the marginal
variances in Equation (3) and cross-covariance in Equation (4), we can find closed form
for the elements in the power spectrum matrix,

Rxii
(k) =

1

(2π)d

[

a2νiiii (
√
4π)d

σiiΓ(νii + d/2)

(a2ii + ‖k‖2)νii+d/2Γ(νii)

]

,

Rxij
(k) =

1

(2π)d

[

a
2νij
ij (

√
4π)d

ρijσiσjΓ(νij + d/2)

(a2ij + ‖k‖2)νij+d/2Γ(νij)

]

.

(42)

Notice that if d = {2, 4, ...}, then the expressions in (42) can be simplified even further
by (recursively) using the well-known formula

Γ(ν + 1) = νΓ(ν).

Since all the components {Cij ; i, j = 1, 2} in the matrix-valued covariance matrix C
are from Matérn family, as defined in Equation (3) and Equation (4) (Gneiting et al.,
2010), the power spectra of the marginal covariance functions {Cii; i = 1, 2} and the
cross covariance functions {Cij ; i, j = 1, 2, i 6= j} have similar forms as indicated in (42).

3.3 Parameter matching

As mentioned in Section 2.2, the model comparison in this paper is based on the fact that
if Sij(k) = Rij(k), for each 1 ≤ i, j ≤ p, and then the multivariate GRFs constructed
from the SPDEs approach (8) and from the covariance-based model (2) will be equivalent.

By comparing each element in (40) and (42), we can get the results given as follows,

0 = ρ12 − ρ21,

κ11 = κ21 = κ22 = κn1
= κn2

= a11 = a12 = a21 = a22,

α11 + αn1
= ν11 +

d

2
,

α11 +
α22

2
+ αn1

− α21

2
= ν12 +

d

2
,

(43)
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and

1

b211
=

(4π)d/2a2νn1

11 σ11Γ(ν11 + d/2)

Γ(ν11)
,

− b21
b22b211

=
(4π)d/2a2ν1212 Γ(ν12 + d/2)ρ12σ1σ2

Γ(ν12)
,

b221 + b211
b211b

2
22

=
(4π)d/2σ22a

2ν22
22 Γ(ν22 + d/2)

Γ(ν22)
.

(44)

More equalities can be obtained based on the relationship between α21 +αn2
and α11 +

αn1
. When α21 + αn2

≤ α11 + αn1
, we can get

αn2
+ α22 = ν22 +

d

2
. (45)

When α21 + αn2
≥ α11 + αn1

, we can get

α11 + α22 + αn1
− α21 = ν22 +

d

2
. (46)

The Equation (45) and Equation (46) are critical when discussing about the asymptotic
behaviors of bivariate GRF and the corresponding power spectra. From (43), we can
notice that in order to construct equivalent models to the ones as discussed by Gneiting
et al. (2010), we need to have the constraint that all the scaling parameters should be
equal in addition to some constraints for the smoothness parameters given in the third
and the fourth equations in (43) and one more conditional equality given in (45) or (46).
From the first equation in (43), we notice the extra symmetry restriction discussed in
Gneiting et al. (2010, Section 4) also must be fulfilled. Additionally, from the second
equation in (44), we notice that there is one important relationship

ρ12b22b21 ≤ 0, (47)

between the co-located correlation coefficient ρ12 and b21 and b22. It shows that the cor-
relation ρ12 must have opposite sign to the product of b21 and b22. This is an important
information not only for sampling from the bivariate GRFs but also for interpreting the
results from inference.
From the results given in (44), we can obtain the following results

−b22
b21

=
aν1111 σ1Γ(ν11 + d/2)/Γ(ν11)

aν1212 ρσ2Γ(ν12 + d/2)/Γ(ν12)
,

b222
b211 + b221

=
aν1111 σ11Γ(ν11 + d/2)/Γ(ν11)

aν2222 σ22Γ(ν22 + d/2)/Γ(ν22)
.

(48)

Notice that when a11 = a21 = a22 and ν11 = ν21 = ν22, the above results in (48) can be
simplified to the following form
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−b22
b21

=
σ1
ρσ2

,

b222
b211 + b221

=
σ11
σ22

.

(49)

These results show that the parameters {bij ; i, j = 1, 2} are not only connected to the
correlation between these two fields, but also connected with the marginal variance of
the GRF. From the results given in (43) to (49), we can notice that the parameters in
the system of SPDEs have similar interpretations as the parameters from the covariance-
based model.

From these results we see that it is possible to construct multivariate GRFs through
the SPDEs approach as the covariance-based approach proposed by Gneiting et al.
(2010). Additionally, there are three main advantages for our SPDEs approach. The
first advantage is that our new approach does not explicitly depend on the theory of
positive definite matrix. We do not need to worry about the notorious requirement of
positive definite covariance matrices. The second advantage is that we can remove the
symmetry property which is shared by the covariance-based approach and the LMC ap-
proach (Gelfand et al., 2004; Gneiting et al., 2010). The third advantage, which has not
yet been discussed, is that we can construct multivariate GRFs on manifolds, such as the
sphere S

2, by simply reinterpret the systems of SPDEs to be defined on the manifold.
Lindgren et al. (2011, Section 3.1) discussed the theoretical background in the univariate
setting, which is basically the same as for our multivariate setting.

Furthermore, we can actually go even future for the multivariate GRFs, such as
multivariate GRFs with oscillating covariance functions and non-stationary multivariate
GRFs. These kinds of multivariate GRFs are under development but are beyond the
scope of this paper.

3.4 Sampling bivariate GRFs and trivariate GRFs

As presented in Section 2.3 we can construct multivariate GRFs by the SPDEs approach
theoretically, but do the computations using the GMRF representation. The precision
matrix Q is usually sparse and the sparseness of the precision matrices enables us to
apply numerical linear algebra for sparse matrices for sampling from the GRFs and for
fast statistical inference. We now assume that the multivariate GMRF has mean vector
µ and precision matrix Q, i.e., x ∼ N (µ,Q−1). When sampling from the GMRF, the
forward substitution and backward substitution is applied by using the Cholesky triangle
L, where by definition Q = LLT. The commonly used steps for sampling a GRF are as
follows.

1. Calculate the Cholesky triangle L from the Cholesky factorization;

2. Sample z ∼ N (0, I), where I is the identity matrix with the same dimensions as
the precision matrix Q;
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Table 2: Parameters for sampling bivariate GRFs

positively correlated GRFs negatively correlated GRFs

α κ b α κ b

α11 = 2 κ11 = 0.15 b11 = 1 α11 = 2 κ11 = 0.15 b11 = 1
α12 = 0 κ12 = 0 b12 = 0 α12 = 0 κ12 = 0 b12 = 0
α21 = 2 κ21 = 0.5 b21 = −1 α21 = 2 κ21 = 0.5 b21 = 1
α22 = 2 κ22 = 0.3 b22 = 1 α22 = 2 κ22 = 0.3 b22 = 1
αn1

= 0 κn1
= 0.15 αn1

= 0 κn1
= 0.15

αn2
= 0 κn2

= 0.3 αn2
= 0 κn2

= 0.3

3. Solve the linear system of equations Lv = z for v. Then v has the correct precision
matrix Q, and v ∼ N (0,Q−1);

4. Finally correct the mean by computing x = µ+ v.

Then x is a sample of the GMRF with correct mean µ and precision matrix Q. If Q
is a band matrix, a band-Cholesky factorization can be used with the algorithm given
by Rue and Held (2005, Algorithm 2.9, Page 45). Different types of parametrization
of GMRFs and their corresponding sampling procedures can be found in Rue and Held
(2005). If the mean of the field is 0, the Step 4 is not needed and v is a sample from
the GMRF.

With white noise at the right hand of SPDEs (28), and the parameters from the
differential operators given in Table 2, we can get samples for positively correlated
random fields with b21 < 0 and negatively correlated random fields with b21 > 0. These
two samples are shown in Figure 2 and Figure 3. Choosing the reference points in the
middle of the two GRFs for these two cases, we can get the corresponding marginal
correlations within each of the GRFs and the cross-correlations between the two GRFs.
The results are shown in Figure 4 and Figure 6. We can see that the random fields are
isotropic and have the same correlation range. This is because we have chosen almost
the same parameters for our cases, except the signs of b21.

From Figure 2 - Figure 6 and many more samples from the bivariate GRFs which
we have simulated, we can notice that the sign of b21 · b22 is related to the sign of the
correlation between these two GRFs, which corresponds to the comparison result in (47).
The smoothness of the GRFs are related to the values αij. These results also verify the
conclusion given in (43).

We can also notice that the first GRF is a Matérn random field when we use the
white noise process as the driving process or under the condition that κn1

= κ11 with
the triangular systems of SPDEs. The second field, in general, is not a Matérn random
field, but it can be relatively close to a Matérn random field. With additional conditions,
the second random fields could also be a Matérn random field, but this is not focused in
this paper. With the triangular system of SPDEs, together with some other conditions,
the correlation range which was mentioned in Section 1 for the first random field can be
calculated by the empirically derived formula ρ =

√
8ν/κ but not for the second random
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Figure 2: One simulated realization from the bivariate Gaussian Random Field with
positive correlation with parameters α11 = 2, α12 = 0, α21 = 2, α22 = 2, αn1

= 0, αn2
= 0,

κ11 = 0.15, κ22 = 0.3, κ21 = 0.5, κn1
= 0.15, κn2

= 0.3, b11 = 1, b12 = 0, b22 = 1 and
b21 = −1.
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Figure 3: One simulated realization from the bivariate Gaussian Random Field with
negative correlation with parameters α11 = 2, α12 = 0, α21 = 2, α22 = 2, αn1

= 0, αn2
=

0, κ11 = 0.15, κ22 = 0.3, κ21 = 0.5, κn1
= 0.15, κn2

= 0.3, b11 = 1, b12 = 0, b22 = 1 and
b21 = 1.
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Figure 4: Marginal correlations (diagonal direction) and cross-correlations (anti-diagonal
direction) with the reference points in the middle of the two GRFs for the positively
correlated random fields.
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Figure 5: Marginal correlations and cross-correlations with the reference points in the
middle of the two GRFs for the positively correlated random fields. ’corr11’ means
the marginal correlation within random field 1. ’corr22’ means the marginal correlation
within random field 2. ’corr12’ means the cross-correlation between random fields 1 and
2.
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Figure 6: Marginal correlations (diagonal direction) and cross-correlations (anti-diagonal
direction) with the reference points in the middle of the two GRFs for the negatively
correlated random fields.
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middle of the two GRFs for the negatively correlated random fields. ’corr11’ means
the marginal correlation within random field 1. ’corr22’ means the marginal correlation
within random field 2. ’corr12’ means the cross-correlation between random fields 1 and
2.
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Table 3: Parameters for sampling trivariate GRFs

α κ b

α11 = 2 κ11 = 0.5 b11 = 1
α12 = 0 κ12 = 0 b12 = 0
α13 = 0 κ13 = 0 b13 = 0
α21 = 2 κ21 = 0.6 b21 = 0.8
α22 = 2 κ22 = 0.4 b22 = 1
α23 = 0 κ23 = 0 b23 = 0
α31 = 2 κ31 = 0.5 b31 = 1
α32 = 2 κ32 = 1 b32 = 0.9
α33 = 2 κ33 = 0.3 b33 = 1
αn1

= 1 κn1
= 0.5

αn2
= 1 κn2

= 0.4
αn3

= 1 κn3
= 0.3

field. In general we need to find the correlation ranges for the random fields numerically.
For trivariate GRFs the sampling procedure is exactly the same as for bivariate

GRFs. We use the triangular system of the SPDEs. The true values given in Table 7 are
used. One sample from the trivariate GRFs is shown in Figure 8 with the corresponding
correlation functions given in Figure 9. From these figures, we notice that the trivariate
random fields have similar interpretation as the bivariate random fields, but are more
complicated. Since the triangular version of the system of SPDEs has been used, the
sign of b21 · b22 is related to the sign of the correlation between the first two GRFs. But
for the third fields, it is not only related to the sign of b32 · b33 but also the influence
from the sign of b21 · b22. By choosing a different parametrization, we can end up with
more interesting models such as the random field 1 and random field 3 are positively
correlated in some locations and negatively correlated in other locations. We are not
going to discuss these issues here since this is ongoing research.

4 Examples and applications

In order to illustrate how to use the SPDEs approach for constructing multivariate GRFs
and the usefulness of our approach, some examples both with simulated data and real
data are chosen. First, some basic theory on inference with multivariate GMRFs is
given. We focus on the triangular system of SPDEs in this paper.

We use the bivariate GMRFs as an example. The multivariate GMRFs can be done
analogously. Assume that we have used N triangles in the discretization for each random
field xi(s)|θi, i = 1, 2. For the bivariate case x(s) = (x(s)1, x(s)2)

T has a 2N -dimensional
multivariate Gaussian distribution with probability density function

π(x|θ) =
(

1

2π

)2N

|Q(θ)|1/2 exp
(

−1

2
xTQ(θ)x

)

, (50)
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Figure 8: One simulated realization from the trivariate Gaussian Random Fields with
parameters given in Table 3.
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Figure 9: Marginal correlation matrices (diagonal) and cross-correlation matrices (off-
diagonal) with each of the reference point in the middle of the three GRFs.

where Q(θ) is the precision matrix of the bivariate GMRF with the parameters θ.
Furthermore, we assume the length of the data y = (y1, y2)

T is t = k1 + k2 where y1 is
the observation of x1(s) with length k1 and y2 is the observation of x2(s) with length
k2. Then y is a t-dimensional random variable with probability density function

π(y|x, θ) =

(

1

2π

)t

|Qn|1/2 exp
(

−1

2
(y −Ax)TQn(y −Ax)

)

, (51)

where Qn is defined in Section 2.3 with size t × t, and A is a t × 2N matrix which
links the sparse observations to our bivariate GMRFs. Notice that the density function
π(y|x,θ) is independent of θ. Hence we can write the probability density function as
π(y|x). We first find the probability density function of x|y,θ from (50) - (51)

π(x|y,θ) ∝ π(x,y|θ)
= π(x|θ)π(y|x,θ)

∝ exp

(

−1

2

(

xT(Q(θ) +ATQnA)x− 2xTATQny
)

)

.

(52)

Let µc(θ) = Q
−1
c (θ)ATQny, and Qc(θ) = Q(θ) +ATQnA, and then π(x|y,θ) can be

denoted as
x|y,θ ∼ N

(

µc(θ),Q
−1
c (θ)

)

,
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Figure 10: Marginal correlation matrices and cross-correlation matrices with each of the
reference point in the middle of the three GRFs. ’corr11’ means the marginal correlation
within random field 1. ’corr22’ means the marginal correlation within random field 2.
’corr33’ means the marginal correlation within random field 3. ’corr12’ means the cross-
correlation between random fields 1 and 2. ’corr13’ means the cross-correlation between
random fields 1 and 3. ’corr23’ means the cross-correlation between random fields 2 and
3.
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or in the canonical parametrization as

x|y,θ ∼ Nc (bc,Qc(θ)) ,

with bc = A
TQny. Thus x|y,θ is a 2N -dimensional multivariate Gaussian distribution.

The canonical parametrization for a GMRF is useful with successive conditioning (Rue
and Held, 2005). For more information about the canonical parametrization for the
GMRFs, we refer to Rue and Held (2005, Chapter 2.2.3).

The probability density function (52) can be used to integrate out x from the joint
density of x, y and θ,

π(y,θ) =
π(θ,x,y)

π(x|θ,y)

=
π(θ)π(x|θ)π(y|x, θ)

π(x|y,θ) ,

(53)

where π(θ) is the prior distribution of θ. With (53), the posterior distribution of θ can
be obtained as

π(θ|y) ∝ π(θ)
|Q(θ)|1/2|Qn|1/2

|Qc(θ)|1/2
exp

(

−1

2
xTQ(θ)x

)

× exp

(

−1

2
(y −Ax)TQn(θ)(y −Ax)

)

× exp

(

1

2
(x− µc(θ))

TQc(θ)(x− µc(θ))

)

.

(54)

The quadratic terms in the exponential functions in (54) can be simplified by using µc(θ)
and Qc(θ). It is also convenient to use the logarithm of the posterior distribution of θ.
Reorganize (54) to get the formula which will be used for inference

log(π(θ|y)) = Const + log(π(θ)) +
1

2
log(|Q(θ)|)

− 1

2
log(|Qc(θ)|) +

1

2
µc(θ)

TQc(θ)µc(θ).
(55)

From (55) we can see that it is difficult to handle the posterior distribution of θ ana-
lytically since both the determinants and the quadratic terms are hard to handle. Thus
numerical methods should be applied for the statistical inference in this paper.

Furthermore, even though it is not the topic for our paper, we point out that it is
also possible to obtain the probability density function π(x|y) by integrate out θ. But
this is difficult and needs to be obtained numerically using the following expression (56)

π(x|y) =
∫

Rm

π(x|θ,y)π(θ|y)dθ (56)

where m is the dimension of θ. When the dimension of θ is large, then this integration
might be infeasible in practice.
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4.1 Statistical inference with simulated data

First, we illustrate how to do the statistical inference for simulated data with the SPDEs
approach with known true parameter values. These datasets both contain one realization
with 2000 observations at different locations. The parameters used for generating the
simulated data are presented in Table 4. To make it simpler, the nugget effects are
assumed to be known, τ1 = τ2 = 0.001. As discussed in Section 1 it is hard to estimate
the smoothness parameters, so we fix {αij ; i, j = 1, 2} in the system of SPDEs to the
known values. The smoothness parameters αn1 and αn2

for the noise processes are also
fixed to the known values due to the same reason. The scaling parameters κn1

and κn2

for the noise processes are restricted with κn1
= κ11 and κn2

= κ22 for the simulated
data. Thus in the simulated data examples, only θ = {κ11, κ21, κ22, b11, b21, b22} needed
to be estimated. Since κ11, κ21 and κ22 have to take positive values, we a priori assign
log-normal distributions with mean zero and large variances for each of the parameters.
b11, b21 and b22 are given normal priors with mean zero and large variances.

In the first example, the two GRFs are negatively correlated and the realizations are
shown in Figure 11(a) and Figure 11(b). The corresponding estimated conditional mean
for the negatively correlated GRFs are given in Figure 11(c) and Figure 11(d). We can
notice that there are no large differences between the estimated conditional mean for
the GRFs and the true bivariate GRFs. The estimates for the parameters are given in
Table 5 with their standard derivations. From this table, we notice that the estimates
for all the parameters are quite accurate with accuracy to 2 digits. The true values of
the parameters are within 1 standard deviation from the estimates.

The second example with the simulated data uses two GRFs that are positively
correlated, and the realizations are shown in Figure 12(a) and Figure 12(b). The cor-
responding estimated conditional mean for the bivariate GRFs are illustrated in Figure
12(c) and Figure 12(d). From Figure 12(a) to Figure 12(d), we can again notice that
the estimated conditional mean for the positively correlated bivariate GRFs are almost
the same as the true bivariate GRFs. The estimates are accurate and the true values of
the parameters are within 1 standard deviation from the estimates.

The third example uses a trivariate GRF. We reuse the parameters given in Table
7 as true parameters for the simulated data. One realization from the trivariate GRF
is given in Figure 8 in Section 3.4. The nugget effects are assumed to be known as
τ1 = τ2 = τ3 = 0.01. In this example, we also fix {αij ; i, j = 1, 2} and {αni

, i = 1, 2, 3}.
The scaling parameters for the noise processes are fixed with similar settings as the
bivariate GRFs {κni

= κii; i = 1, 2, 3}. Therefore we have 12 parameters to be estimated.
They are bij and {κij ; i, j = 1, 2, 3, i ≥ j}. The estimates for these parameters are given
in Table 7. We can notice that the estimates are accurate in this example since all the
estimated are accurate to 2 digits, and the true values of the parameters are within 2
standard deviations from the corresponding estimates. The estimated conditional mean
for the trivariate GRF are given in Figure 13(a) - Figure 13(c). Comparing the results
given in Figure 13 with the corresponding fields given in Figure 8, we can see that there
are no large differences between the true random fields and the estimated conditional
mean. From the examples we can notice that our approach works well not only for
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Table 4: Parameters for simulating the bivariate GRFs

dataset 1 dataset 2

α κ b α κ b

α11 = 2 κ11 = 0.3 b11 = 1 α11 = 2 κ11 = 0.15 b11 = 1
α12 = 0 κ12 = 0 b12 = 0 α12 = 0 κ12 = 0 b12 = 0
α21 = 2 κ21 = 0.5 b21 = 1 α21 = 2 κ21 = 0.5 b21 = −1
α22 = 2 κ22 = 0.4 b22 = 1 α22 = 2 κ22 = 0.3 b22 = 1
αn1

= 1 κn1
= 0.3 αn1

= 0 κn1
= 0.15

αn1
= 0 κn2

= 0.4 αn2
= 0 κn2

= 0.3

Table 5: Inference with simulated dataset 1
Parameters True value Estimated Standard deviations

κ11 0.3 0.295 0.019
κ21 0.5 0.471 0.044
κ22 0.4 0.380 0.020
b11 1 1.009 0.069
b21 1 1.032 0.064
b22 1 0.997 0.059

bivariate GRFs but also for multivariate GMRFs.

4.2 Inference with real data

We illustrate how to use the SPDEs approach for multivariate data in real application
in this section. The meteorological dataset used by Gneiting et al. (2010) is analyzed in
this paper. This meteorological dataset contains one realization consisting of 157 obser-
vations of both temperature and pressure in the north American Pacific Northwest, and
the temperature and pressure are always observed at the same locations. It contains the
following data: pressure errors (in Pascal) and temperature errors (in Kelvin), measured
against longitude and latitude. The errors are defined as the forecasts minus the obser-
vations. The data are valid on 18th, December of 2003 at 16:00 local time, at a forecast
horizon of 48 hours. For information about the data, see, for example, Eckel and Mass

Table 6: Inference with simulated dataset 2
Parameters True value Estimated Standard deviations

κ11 0.15 0.139 0.124
κ21 0.5 0.487 0.059
κ22 0.3 0.293 0.061
b11 1 0.991 0.017
b21 -1 -1.002 0.033
b22 1 1.011 0.018
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Figure 11: The true bivariate GRFs (a) - (b) and the estimated conditional mean for
the bivariate GRFs (c) - (d) for simulated dataset 1.
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Figure 12: The true bivariate GRFs (a) - (b) and the estimated conditional mean for
the bivariate GRFs (c) - (d) for simulated dataset 2.
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Figure 13: The estimated conditional mean for the trivariate GRFs.
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Table 7: Inference for the trivariate GRF
Parameters True value Estimated Standard deviations

b11 1 1.002 0.014
b21 0.8 0.807 0.024
b22 1 0.984 0.013
b31 1 0.958 0.031
b32 0.9 0.878 0.026
b33 1 0.986 0.012
κ11 0.5 0.481 0.022
κ21 0.6 0.582 0.044
κ22 0.4 0.393 0.021
κ31 0.5 0.564 0.050
κ32 1 1.008 0.034
κ33 0.3 0.286 0.012

(2005) and Gneiting et al. (2010). Gneiting et al. (2010) have chosen this dataset with
the aim of doing probabilistic weather field forecasting, which is a big research area (Gel
et al., 2004; Berrocal et al., 2007; Sloughter et al., 2007; Berrocal et al., 2008). One of
the main focuses in this area is to fit and sample spatially correlated error fields. This
aim fits our motivation well since the SPDEs approach can be applied to construct mul-
tivariate random fields in order to capture the dependence structures not only within
the fields but also between the fields.

The main aim of this example is to illustrate how to fit a bivariate random field
with the SPDEs approach for pressure and temperature errors data. This bivariate
random field can be used to explain the features of the two random fields as in Gneiting
et al. (2010). The constructed bivariate spatial random fields are used to represent the
error fields for temperature and pressure. It is known that the temperature and the
pressure are negatively correlated (Courtier et al., 1998; Ingleby, 2001). As pointed out
by Gneiting et al. (2010), the forecast fields are usually smooth fields. The observation
field for the pressure is smooth. However, the observation field for temperature is rough.
So the model should set up to give the same type of behavior. Without any confusion,
we will call the temperature error field the temperature and the pressure error field the
pressure. In general, we need to choose the order of the fields at the modelling stage.
The simple way is fitting the data with both the orders and selecting the best one using
some predefined scoring rules. For more information about the scoring rules, see for
example, Gneiting et al. (2005). In this paper we will set the first field x1(s) as the
pressure and the second field x2(s) as the temperature.
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The bivariate random field with our approach is constructed with a system of SPDEs,

(κ2n1
−∆)αn1

/2f1(s) = W1(s),

(κ2n2
−∆)αn2

/2f2(s) = W2(s),

b11(κ
2
11 −∆)α11/2x1(s) = f1(s),

b22(κ
2
22 −∆)α22/2x2(s) + b21(κ

2
21 −∆)α21/2x1(s) = f2(s).

(57)

Since the main purpose of this example is to illustrate that we can construct the same
(or similar) model as the covariance-based approach presented by Gneiting et al. (2010),
only the models which can result in similar models as theirs have been chosen from
the parameter matching results given in Section 3.3. We assume that κn1

= κ11 and
κn2

= κ22. This particular setting corresponds to the first random field x1(s) being a
Matérn random field and the second random field x2(s) being close to a Matérn random
field. These settings make the model constructed through our SPDEs approach closer
to the Gneiting et al. (2010) approach.

The results for the estimates with the SPDEs approach are given in Table 8. From
the table we can notice that we can capture the negative dependence structure between
temperature and pressure since b21 > 0. The estimated co-located correlation coefficient
ρpt = −0.53 which is quite similar as the result from Gneiting et al. (2010). The standard
deviations for pressure and temperature are σP = 202.1 Pascal and σT = 2.76 Celsius
degrees. In order to compare the predictive perform between our approach and approach
proposed by Gneiting et al. (2010), we randomly leave out 25 observations from each
field and use only 132 observations for parameters estimation. The relative error E has
been chosen to compare the predictions and is defined as

E =
‖ŷ − y‖2
‖ŷ‖2

.

where ‖·‖2 denotes the 2-norm. ŷ denotes the vector of predictions for the observations
y. The predictive performances for these two approaches are given in Figure 14. We can
notice that the results from our SPDEs approach and the approach in Gneiting et al.
(2010) are quite similar. Table 9 shows the corresponding predictive errors for these
two approaches. From this table, we can notice that our model gives slightly better
results than the covariance-based model but the difference is not statistically significant.
Another merit with our approach which has not been discussed until now is that the
SPDEs approach in general is much more computationally efficient since the precision
matrix Q is sparse. The conditional mean in 3D and 2D for the bivariate GRF are
shown in Figure 15 and Figure 16 for our approach, respectively. The corresponding
results for the covariance-based approach are shown in Figure 17 and Figure 18. As we
can see from the 3D and 2D figures, the bivariate GRFs from our approach and from
the covariance-based approach give quite similar results.

For the nugget effects (measurement error variances) of pressure and temperature
τ = (τ1, τ2)

T, we are going to use an iterative bias correction to estimate them. This is
based on formula

σ2ij = τ2i + Vij, i = 1, 2, j = 1, . . . , n, (58)
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Table 8: Estimated parameters for the SPDEs approach

κ11 κ21 κ22 b11 b21 b22
6.353 × 10−3 0.413 2.243 × 10−2 0.2165 1.298 × 10−4 5.458

Table 9: Predictive relative errors for the SPDEs approach and the covariance-based
models

relative errors

Models random field 1 random field 2

SPDEs approach 0.777 0.690

Covariance-based model 0.821 0.716

where i indicates the pressure with i = 1 and the temperature with i = 2. σ2ij =
Var(yij− ŷij) is the variance which contains the nugget effects and the kriging variances.
{τ2i = Var(yij − xij); i = 1, 2, j = 1, . . . , n} are the nugget effects for the pressure when
i = 1 or temperature when i = 2. {Vij = Var(xij − ŷij); i = 1, 2, j = 1, . . . , n} are the
kriging variances and they are from the model bias. n denotes the total number of data
points in each field. yij denotes the observed value at data point for each field. ŷij is the
predicated values from a given model and xij denotes the true value which is unknown.
See Appendix for a simple proof of (58).

One simple way is to use Equation (59) where we just subtract the kriging variance
Vij from the empirical variance σ̂2ij to get the estimate of nugget effect τ̂2i for each field

τ̂2i =
1

n

∑

j

(σ̂2ij − Vij), (59)

where σ̂2ij = (yij − ŷij)
2. But another preferable way which we have used in this paper

is with the formula
τ̂2i =

∑

j

{

wij

(

σ̂2ij − Vij
)}

, (60)

where wij =
1/(τ2i +Vij)

∑
j(1/(τ2i +Vij))

. This can give an unbiased estimator of nugget effects. See

Appendix for the proof. The initial values are chosen to be similar to the results given
in Gneiting et al. (2010), and the results from the bias correction approach are shown
in Table 10. The convergence curves of the nugget effects for the fields are illustrated in
Figure 19.

Table 10: The nugget effects for pressure and temperature

initial values estimated values

τ1 68.4 81.1

τ2 0.01 0.53
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Figure 14: The predictive performances of SPDEs approach (a) and the covariance-based
approach (b)
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Figure 15: Estimated conditional mean for bivariate GRFs for SPDEs approach in 3D.

5 Discussion

Spatial modelling of multivariate data are of demand in many areas, such as weather
forecasting (Courtier et al., 1998; Reich and Fuentes, 2007), air quality (Brown et al.,
1994; Schmidt and Gelfand, 2003), economics (Gelfand et al., 2004; Sain and Cressie,
2007). The important issue for modelling spatial multivariate data is that the approach
can not only model the marginal covariances within each field, but also has the ability
to model the cross-covariances between the random fields. In addition, we need to solve
the theoretical challenge for the positive definite constraint of the covariance functions
and the computational challenge for large dataset.

The main aim of this work is to illustrated the possibility of constructing multivari-
ate GRFs through the SPDEs approach. We notice that the parameters in the SPDEs
approach is interpretable and can link our approach to the covariance-based approach.
By using the approximate weak solution of the corresponding system of SPDEs, we can
represent multivariate GRFs by GMRFs. Since the precision matrices of the GMRFs
are sparse, numerical algorithms for sparse matrices can be applied, and therefore fast
sampling and inference are feasible. Our approach inherited the properties from the
approach discussed by Lindgren et al. (2011). There are three main advantages for our
newly proposed SPDEs approach. The first advantage is that our new SPDEs approach
does not depend on direct construction of positive definite matrix. The notorious re-
quirement of positive definite covariance matrix is fulfilled automatically. The second
advantage is that we can remove the symmetry property constraint shared by both the
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Figure 16: Estimated conditional mean for bivariate GRFs for SPDEs approach in 2D.
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Figure 17: Estimated conditional mean for bivariate GRFs for covariance-based model
in 3D.

covariance-based approach Gneiting et al. (2010) and the LMC approach (Gelfand et al.,
2004; Gneiting et al., 2010). The third advantage is that we can construct the multivari-
ate GRFs on manifolds, such as on the sphere S

2. The extension follows the discussion
given by Lindgren et al. (2011). We just need to reinterpret the systems of SPDEs to
be defined on the manifold.

One issue that needs to be pointed out is that we have chosen κn1
= κ11 and κn2

=
κ22 in the model. This restriction used in this paper is to make the model closer to
the models presented by Gneiting et al. (2010) and also make the inference easier. This
may not be needed in other applications and κn1

and κn2
can be estimated from the

data. However, κn1
and κ11 might be not distinguishable with the triangular systems of

SPDEs. So one suggestion is that if we are use the triangular systems of SPDEs, then
we fix κn1

based on some other information or set κn1
= κ11 when doing inference.

Another issue that needed to be pointed out is that we have prosecuted the full
version of the SPDEs approach but have not used in all the examples. This version could
give us more flexibility to construct multivariate GRFs. The modelling procedures and
the inference are the same as for the triangular version of the SPDEs which were used
and discussed extensively in this paper.

We also want to point out that the proposed approach costs effort during the im-
plementation and pre-processing stages since we need to build the system of SPDEs,
discretize the fields and do the approximation to obtain a GMRF representation. But
we believe, as pointed out by Lindgren et al. (2011), that “ such costs are unavoidable
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Figure 18: Estimated conditional mean for bivariate GRFs for covariance-based model
in 2D.
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when efficient computations are required”.
Similarly, as pointed out by Lindgren et al. (2011), although the SPDEs approach

presented here is not generally applicable for all covariance functions, it covers many
useful model in spatial statistics. And it is possible to extend our approach to construct
even richer class of models by following the discussion given by, for instance, Bolin
and Lindgren (2011) and Fuglstad (2011). Our approach extends the applicability of
multivariate GRFs in practical applications since we can build and interpret the model
using GRFs but do computation with GMRFs. It is further possible to include this
approach in the integrated nested Laplace approximation (INLA) framework (Rue et al.,
2009). These extensions are under study.

Appendix

In order to prove Equation (58), we need to write down the expression explicitly. Let
yij denote the observed value for each field, ŷij the predicated value from a given model,
and xij the true value. Then we have

Var(yij − ŷij) = Var ((yij − xij) + (xij − ŷij))

= Var (yij − xij) + Var (xij − ŷij)

+ 2Cov (yij − xij, xij − ŷij)

= Var (yij − xij) + Var (xij − ŷij) ,

(61)

since

Cov (yij − xij, xij − ŷij) = E ((yij − xij)(xij − ŷij))

= E [E ((yij − xij)(xij − ŷij)|y)]
= E [(yij − ŷij)× 0]

= 0.

(62)

So Equation (58) is established.

Now we show that with the weights wij =
1/(τ2i +Vij)∑

j(τ
2

i +Vij)
, the estimator in Equation

(60) is an unbiased estimator for the nugget effects. Using Equation (61), we know that
(yij − ŷij) ∼ N (0, τ2i + Vij). Then

Var
(

(yij − ŷij)
2
)

= E
(

(yij − ŷij)
4
)

−
(

E
(

(yij − ŷij)
2
))2

= 3(τ2i + Vij)
2 − (τ2i + Vij)

2

= 2(τ2i + Vij)
2

(63)

and thus the estimator is unbiased since the scaling constant cancels in the weight
coefficient.
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