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Abstract

This work is motivated by constructing a weather simulator for precipitation.
Temperature and humidity are two of the most important driving forces of precipi-
tation, and the strategy is to have a stochastic model for temperature and humidity,
and use a deterministic model to go from these variables to precipitation. Tem-
perature and humidity are empirically positively correlated. Generally speaking,
if variables are empirically dependent, then multivariate models should be consid-
ered. In this work we model humidity and temperature in southern Norway. We
want to construct bivariate Gaussian random fields (GRFs) based on this dataset.
The aim of our work is to use the bivariate GRFs to capture both the dependence
structure between humidity and temperature as well as their spatial dependencies.
One important feature for the dataset is that the humidity and temperature are not
necessarily observed at the same locations. Both univariate and bivariate spatial
models are fitted and compared. For modeling and inference the SPDE approach
for univariate models and the systems of SPDEs approach for multivariate models
have been used.

To evaluate the performance of the difference between the univariate and bivari-
ate models, we compare predictive performance using some commonly used scoring
rules: mean absolute error, mean-square error and continuous ranked probability
score. The results illustrate that we can capture strong positive correlation between
the temperature and the humidity. Furthermore, the results also agree with the
physical or empirical knowledge. At the end, we conclude that using the bivariate
GRFs to model this dataset is superior to the approach with independent univari-
ate GRFs both when evaluating point predictions and for quantifying prediction
uncertainty.

Keywords: Spatial statistics, SPDEs, bivariate random fields, covariance ma-
trix, Gaussian random fields, Gaussian Markov random fields
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1 Introduction

Using spatial statistical models for spatial datasets is of great importance in real-world
applications. There are many different approaches for modelling spatial datasets. For
instance, Cressie (1993) discussed many of the commonly used statistical methods in
spatial statistics. Some theories for kriging were discussed by Stein (1999). Diggle and
Ribeiro Jr (2006) gave a detailed discussion for geostatistical datasets from a model-based
perspective. A handbook for spatial statistics (Gelfand et al., 2010) gave a comprehensive
discussion on different methodologies in spatial statistics. A book written by Cressie and
Wikle (2011) was emphasized on discussing on statistics methods for spatio-temporal
data.

With the increasing requirement of prediction accuracy in spatial statistics, using
multivariate models to capture the dependence between the components in the dataset
is one of the common approaches to fulfill this requirement if the components are actually
or empirically dependent. Multivariate models have been under research for a long time.
For instance, Gneiting et al. (2010) and Hu et al. (2012b,a) proposed some methods to
build stationary and isotropic models, and Gelfand et al. (2004) and Apanasovich et al.
(2012) presented approaches to deal with nonstationarity in multivariate settings. There
are many applications for multivariate random fields, such as in economics (Gelfand
et al., 2004; Sain and Cressie, 2007), in the area of air quality (Brown et al., 1994; Schmidt
and Gelfand, 2003), weather forecasting (Courtier et al., 1998; Reich and Fuentes, 2007)
and quantitative genetics (Mcguigan, 2006; Konigsberg and Ousley, 2009).

Generally speaking, if the components in a dataset are empirically dependent, a
multivariate model should be taken into consideration. In this paper we model the
dataset with humidity and temperature from southern Norway. Since it is known that
temperature and humidity are empirically positively correlated, and they are two of the
most important driving forces of precipitation, we want to construct bivariate Gaussian
random fields (GRFs) for the dataset. The strategy is to have a stochastic model for
temperature and humidity, and use a deterministic model to go from these variables
to precipitation. The aim of paper is to use the bivariate GRFs to model not only
the marginal covariance functions for temperature and humidity but also the cross-
covariance function between the temperature and humidity. The posterior mean (given
the observations) surfaces of temperature and humidity are reconstructed which can
then be used for simulating the precipitation. One important feature of the dataset is
that the observations for humidity and temperature are not necessarily measured at the
same locations. The dataset is fully discussed in Section 2.

We use the approach proposed by Hu et al. (2012b) to construct bivariate Gaussian
random fields for humidity and temperature. With this approach systems of stochas-
tic partial differential equations (SPDEs) are used to build Gaussian random fields for
the dataset. There are two main advantages by using the proposed systems of SPDEs
approach (Hu et al., 2012b). The first advantage is that the notorious nonnegative
definiteness requirement for the covariance matrix is satisfied automatically since the
constructed covariance matrix of the GRF from this approach is symmetric positive
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Table 1: Number of observations for temperature and humidity

Year 2007 2008 2009 2010 2011

temperature 97 104 111 122 128

humidity 56 63 62 62 70

definite. The second advantage is that we can apply Gaussian Markov random field
(GMRF) approximation to the constructed GRF. Since GMRF models are usually com-
putationally efficient, this approach can be applied to large datasets. A brief introducton
to GMRF is given in Section 3.1, and a detailed discussion about the models with SPDE
approach is given in Section 3.2 - Section 3.4.

The rest of this paper is organized as followings. Section 2 describes the data. We
review the knowledge about the SPDE approach for spatial statistics and introduce the
spatial model for our dataset in Section 3. Section 4 discusses the evaluation procedure.
Results are given in Section 5. Section 6 ends the paper with discussion and conclusion.

2 Data

The dataset contains daily mean temperature in Celsius degree and humidity recorded
measured in mixing ratio for locations in southern Norway. The mixing ratio of humidity
is defined as the mass of water vapor contained in a unit mass of dry air, and hence has a
unit kg/kg. Two covariates are also included in the model: elevation at the measurement
location and the distance to the ocean from the location. Both covariates are in meters.
The dataset contains observations for temperature and humidity on 7th of December
from year 2007 to year 2011, i.e. for 5 years. It is important to point it out that
the observations are not necessarily at the same locations for all the 5 years. Most of
humidity observations are measured at a subset of locations of temperature. Figure 1(a)
and Figure 1(b) give an overview of locations for temperature and humidity. In addition,
the elevation and distance to ocean are available at all location on a 1km by 1km grid.
The elevation map of southern Norway and the distances to ocean are given in Figure
1(a) and Figure 1(b), respectively.

The dotted line is the base line for calculating the distance to ocean and the solid line
is the coast line of southern Norway. We can clearly see that the distance to ocean is not
the same as the distance to the coast. The cross marks (×) and the circle marks (◦) in
Figure 1 are locations for temperature and humidity observations on 7th of December in
2011, respectively. The number of observations of temperature and humidity in different
years is given in Table 1. Necessary pre-processing of the dataset has been done before
modelling. More information about the pre-processing of the dataset together with some
empirical data analysis can be found in Section 5.1.
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Figure 1: Locations of temperature and humidity observations on 7th of December in
2011 with elevation (a) and distances to ocean (b) on a 1km by 1km grid. The base
line for calculating the distance to ocean (dotted-line) and the coast line (solid line)
of southern Norway are also given. The cross marks (×) and the circle marks (◦) are
locations for temperature and humidity observations, repectively.

3 Model using the SPDE approach

In this section we discuss the construction of spatial models for temperature and humidity
using the SPDE approach and system of SPDEs approach. Three models are used and
fitted to the data. The first model is a univariate GRF model. In this model we
construct independent spatial random fields for temperature and humidity with the
approach proposed by Lindgren et al. (2011). The second and the third models are
bivariate models constructed with the approach proposed by Hu et al. (2012b), where we
model temperature and humidity jointly. Since GMRFs are the main tool for achieving
computational efficiency with models built by the SPDE approach, a brief introduction
to GMRF is given in Section 3.1. The SPDE approach for spatial modelling univariate
and multivariate GRFs are described in Section 3.2 and in Section 3.3, respectively. The
spatial models used to model temperature and humidity in this paper are presented in
Section 3.4.

3.1 Gaussian Markov random fields

A random vector x = (x1, x2, . . . , xn) ∈ Rn is a Gaussian random field with mean µ and
precision matrix Q > 0 (Q = Σ−1) if and only if its density is

π(x) =
1

(2π)n/2
|Q|1/2 exp

(
1

2
(x− µ)TQ(x− µ)

)
. (1)
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where x−ij denotes for x−{i,j}. Q > 0 denotes the precision matrixQ is positive definite.
A Gaussian Markov random fields is a GRF with Markov property

Qij = 0⇐⇒ xi ⊥ xj |x−ij , (2)

and hence the precision matrix Q for a GMRF is usually sparse. Therefore, numerical
algorithms for sparse matrices can be applied when doing computations. Rue and Held
(2005) gives a more detailed discussion on the theories for GMRFs. A condensed version
about GMRFs can be found in Gelfand et al. (2010, Chapter 12).

3.2 SPDE approach for univariate GRFs

The main idea of the newly proposed approach by Lindgren et al. (2011) is to use SPDEs
to construct GRFs for modelling spatial datasets. The SPDE used in this paper has the
form

b(κ2 −∆)α/2x(s) =W(s), s ∈ Rd, α = ν + d/2, ν > 0, (3)

where b is a parameter related to the variance of the random field x(s),W(s) is a standard
Gaussian white noise process, (κ2 −∆)α/2 is a pseudo (fractional) differential operator
and α must be a non-negative integer. ∆ is the standard Laplacian with definition

∆ =

d∑
i=1

∂2

∂x2i
.

With this approach the most important relationship is that the stationary solution x(s)
to the SPDE (3) is a GRF with a Matérn covariance function. The Matérn covariance
function has the form

M(h|ν, κ) =
σ221−ν

Γ(ν)
(κ‖h‖)νKν(κ‖h‖), (4)

where ν is the smoothness parameter, κ is the scaling parameter and Kν is the modified
Bessel function of second kind of order ν, ‖h‖ denotes the Euclidean distance in Rd and
σ2 is the marginal variance. The closed form for σ2 of random field x(s) constructed
from Equation (3) is

σ2 =
Γ(ν)/Γ(ν + d/2)

(4π)d/2b2κ2ν
.

The Matérn covariance function is isotropic and it is widely used in spatial statistics
(Stein, 1999; Diggle and Ribeiro Jr, 2006; Simpson et al., 2010; Lindgren et al., 2011;
Bolin and Lindgren, 2011; Ingebrigtsen et al., 2013; Hu et al., 2012b,a). We call a GRF
with a Matérn covariance function a Matérn random field. Lindgren et al. (2011) pointed
out that there was an explicit link between GRFs and GMRFs. They showed that GRFs
can be represented by GMRFs. By using this technique, we can build the models the-
oretically with GRFs but doing computations with GMRFs. We use the finite element
methods (FEMs) to solve the SPDE (3), and then apply the GMRF approximation to
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the solution in order to obtain computationally efficient GMRF models for fast inference.
Bolin and Lindgren (2009) showed that the differences between the exact FEM repre-
sentation and the GMRFs approximation are negligible. We refer to Zienkiewicz et al.
(2005) and Bathe (2008) for more information on FEMs. Fuglstad (2011) and Ingebrigt-
sen et al. (2013) extended the SPDE approach to nonstationary GRFs. Nested SPDEs
were proposed by Bolin and Lindgren (2011) for constructing a larger class of models for
spatial datasets. Hu et al. (2012b) have extended the approaches from Lindgren et al.
(2011) to construct multivariate GRFs. Hu et al. (2012a) proposed to use systems of
SPDEs to construct multivariate GRFs with oscillating covariances functions.

Since the smoothness parameter ν is poorly identifiable (Diggle and Ribeiro Jr, 2006;
Lindgren et al., 2011), we fix α11 = 2 and α22 = 2 when we do inference. With this
univariate model for modelling humidity and temperature independently we have 4 pa-
rameters θ = {κ11, κ22, b11, b22}. The results for this model are given in Section 5.

3.3 Multivariate GRFs with systems of SPDEs

Hu et al. (2012b) extended the approach given by Lindgren et al. (2011) and proposed a
new approach for constructing a multivariate GRF using a system of SPDEs. Hu et al.
(2012b) claimed that this approach for constructing multivariate GRFs inherits both
theoretical and computational advantages from the approach for univariate GRFs given
by Lindgren et al. (2011). The system of SPDEs for constructing a multivariate GRF
has the form 

L11 L12 . . . L1p
L21 L22 . . . L2p

...
...

. . .
...

Lp1 Lp2 . . . Lpp



x1(s)
x2(s)

...
xp(s)

 =


ε1(s)
ε2(s)

...
εp(s)

 , (5)

where Lij = bij(κ
2
ij −∆)αij/2 are similar differential operators as given in Equation (3)

with {αij = 0 or 2; 1 ≤ i, j ≤ p}, {εi(s); i, j = 1, . . . , p} are Gaussian noise processes
which are independent but not necessarily identically distributed. It was shown by
Hu et al. (2012b) that the solution x(s) = (x1(s), x2(s), . . . , xp(s)) to the system of
SPDE (5) is a multivariate GRF. The parameters {κij ; i, j = 1, . . . , p} and {νij ; i, j =
1, . . . , p} are scaling parameters and smoothness parameters, respectively. {bij ; i, j =
1, . . . , p} are related to both the marginal covariance functions of the fields and the cross-
covariance functions among the GRFs. On the theoretical side, similarly as discussed
by Lindgren et al. (2011), the precision matrix Q for the multivariate GRF constructed
from the system of SPDEs (5) satisfies the positive definite constraint automatically.
Hu et al. (2012b) demonstrated that the link between the GMRFs and GRFs could be
used, and hence we can construct models with GRFs but use GMRFs for computations.
The precision matrix Q of the multivariate GMRF x(s) is sparse. Therefore, on the
computational side, numerical algorithms for sparse matrices can be applied for sampling
and fast inference. These are the main reasons why we have selected this approach for
modelling the dataset with temperature and humidity in this paper.
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The system of SPDEs we have actually chosen has the form(
L11
L21 L22

)(
x1(s)
x2(s)

)
=

(
W1(s)
W2(s)

)
, (6)

where {Wi(s); i = 1, 2} are standard Gaussian white noise processes. This is a special
case of (5) with L12 = 0 and {εi(s) = Wi(s); i = 1, 2} when p = 2. This system of
SPDEs is called triangular system of SPDEs by Hu et al. (2012b,a). The advantage
with a triangular systems of SPDEs is that this simplification makes both computations
and interpretation easier. We refer to Hu et al. (2012b,a) for a detailed discussion on
the triangular system of SPDEs. The smoothness parameters {νij ; i, j = 1, 2} are poorly
identifiable, and we fix {αij = 2; i, j = 1, 2, i > j} (Diggle and Ribeiro Jr, 2006; Lindgren
et al., 2011; Hu et al., 2012b,a).

With this setting we know that x1(s) is a Matérn random field and x2(s) is generally
not a Matérn random field, but close to a Matérn random field (Hu et al., 2012b). This
implies that the order of the random fields matters. Generally speaking, we need to
choose the order of the random fields x1(s) and x2(s) for temperature and humidity,
and this is usually done by a model selection test. Fit models with both orders and pick
the one that minimizes some criterion, such as minimizing prediction error. In this paper
we first set the first field x1(s) as temperature and the second field x2(s) as humidity.
Then we switch the order of the fields, i.e., we set the first field x1(s) as humidity and
the second field x2(s) as temperature.

Using the triangular system of SPDEs (6) for constructing a bivariate GRF, we have
6 parameters to estimate θ = {κ11, κ21, κ22, b11, b21, b22} from the system of SPDEs when
we model the temperature and humidity jointly.

Hu et al. (2012b) showed that the sign of cross-correlation between the humidity and
temperature is only related to the product b21b22 with a triangular system of SPDE.
In the extreme case, if b21 is zero, i.e., x1(s) and x2(s) are independent, then b22 can
only be positive value. So restricting b22 to be only positive value is a natural choice.
Therefore, the sign of the cross-correlation between the two random fields is only related
to the sign of b21. When b21 < 0, x1(s) and x2(s) are positively correlated, and when
b21 > 0, x1(s) and x2(s) are negatively correlated. This setting is chosen in this paper.
All results and corresponding discussion are given in Section 5.

3.4 Spatial model for temperature and humidity

As mentioned in Section 2, the dataset contains observations on 7th of December from
year 2007 to year 2011 for both temperature and humidity in southern Norway. These
observations are not necessary measured at the same locations in each year. We use a
model of the following form

yijk = vijk + ξijk + εijk, (7)

where i denotes the index of the observation, j denotes the index of the year, k denotes
the index of field, vijk is the fix effect, ξijk is the spatial effect and εijk is the noise or
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the measurement error. The noise terms {εijk; i = 1, 2, . . . , nk, j = 1, 2, . . . , 5, k = 1, 2}
are independent and identically distributed (iid) with Gaussian distribution N (0, τ2εk),
and are independent of the fix effect and spatial effect. {nk; k = 1, 2} denote the number
of observations in all years for temperature and humidity, and {τ2εk; k = 1, 2} are the
measurement error variances for temperature and humidity. Since we assume that the
noise processes for temperature and humidity are independent, the precision matrix Qε

for the noise processes is a diagonal matrix. Model (7) can be written in vector form

y = v +Aξ + ε, (8)

where v = Xβ is the fixed effect with coefficients β and design matrix X, and it consists
of effect from covariates and from the year, i.e the year effect. The matrix A links
the dense spatial fields to the observations. ξ is a spatial process with mean zero and
precision matrixQ. The precision matrixQ is constructed using the system of SPDEs (6)
for bivariate model. For the univariate model the precision matrices for temperature and
humidity are constructed by Equation (3) independently. ε is the unexplained random
effects for humidity and temperature. This model can be formulated as a Bayesian
hierarchical model, and it can be stated explicitly as

• Data model: yijk|ηijk ∼ N
(
ηijk, τ

2
εk

)
. We assume that {τ2εk; k = 1, 2} are known;

• Process model: η = Xβ + Aξ, where ξ ∼ N
(
0,Q−1

)
. As discussed above,

the precision matrix Q is constructed by the system of SPDEs (6) and the SPDE
(3) for bivariate model and univariate model, respectively. Here we denote ξ ∼
BSPDE(b,κ) which means that the spatial effects are construct by (6) for bivari-

ate model, and correspondingly, we use ξ ∼ USPDE(b,κ) for univariate model
constructed from (3). We assume that the fixed effects from the covariates, i.e.,
elevation and distance to ocean, are the same for all 5 years with coefficients
{β11, β12, β21, β22}. However, each year has different yearly effect for temperature
and humidity

{
β10j , β20j ; j = 1, 2, . . . , 5

}
in order to capture the multi-year effect.

• Parameter model: Specify the prior for parameters θ = {b11, b21, b22, κ11, κ21, κ22}
from the spatial effects for the bivariate model, and correspondingly for the univari-
ate model θ = {b11, b22, κ11, κ22}. We also need to specify the prior distributions
for the coefficients of the covariates {β11, β12, β21, β22} and for the yearly effects{
β10j , β20j ; j = 1, 2, . . . , 5

}
for both the bivariate model and the univariate model.

The prior distributions of parameters are assumed to be independent and have the
following distributions (if the parameter is included in the model),

•
{
β10j , β20j ; j = 1, 2, . . . , 5

}
: Gaussian distributions

• {β11, β21, β21, β22}: Gaussian distributions

• {bii, i = 1, 2}: Log-Gaussian distributions

• b21: Gaussian distribution
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• {κ11, κ21, κ22}: Log-Gaussian distributions

This model formulation is similar to the ones in Hu et al. (2012b) and Hu et al. (2012a).

3.5 Statistical inference

We point out that since the coefficient parameters for the covariates can be modelled with
Gaussian distributions, we can treat the coefficients βj as the latent field together the
spatial process x(s) and model them jointly instead of treating the coefficient parameters
as hyper-parameters. Thus the hyper-parameters only contains the parameters from
the systems of SPDEs, θ = {b11, b21, b22, κ11, κ21, κ22} for bivariate model and θ =
{b11, b22, κ11, κ22} for univariate model, since we fix the values of {αij ; i, j = 1, 2} for

both the models. The latent field in this case is z = (x,β)T, where T denotes the
transpose of a vector or a matrix. This can speed up the optimization considerably since
there are much few parameters in the numerical optimization. This is the commonly
used setting in Rue et al. (2009).

LetQ(θ) denote the precision matrix for the random fields constructed by the system
of SPDEs (6) for the bivariate GRFs or the precision matrix for the univariate random
fields with SPDE (3) with hyper-parameters θ. With the univariate model we construct
the precision matrix Q(θ) as a block diagonal precision matrix, then inference for this
two univariate random fields can be done simultaneously. In this case we can use the
same program for the bivariate model, and the univariate model has only one more
constraint b21 = 0. Hu et al. (2012b) have shown that from the well known Bayesian
formula

π(y,θ) =
π (θ, z,y)

π (z|y,θ)
. (9)

We can derive the posterior distribution for hyper-parameters

log (π (θ|y)) = Const. + log (π (θ)) +
1

2
log (|Q(θ)|)

− 1

2
log (|Qc(θ)|) +

1

2
µT
c (θ)Qc(θ)µc(θ),

(10)

with µc = Q−1c C
TQεy, Qc(θ) = Q(θ) + CTQεC, and C = (A,X). A is a sparse

matrix which links the sparse observations of temperature and humidity to our bivariate
GRF or univariate GRFs. X is the design matrix.

4 Evaluation

In this section we explain the evaluation schemes for comparing the results for three
different settings given in Section 4.2 with three different models. We have two bivariate
models. In the first one we set the first random field as temperature and the second
random field as humidity. In the second one we switch the order of the random fields, i.e.,
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we set the first random field as humidity and set the second random field as temperature.
We also have one univariate model for comparison. Some commonly used scoring rules
described in Section 4.1 are chosen in order to compare the predictive performances.

4.1 Scoring rules

In order to evaluate the results, scoring rules are used to compare the predictive per-
formance between the univariate model and the bivariate model for temperature and
humidity with different settings. In this paper the commonly used scoring rules mean
absolute error (MAE), mean-square error (MSE) and the average of the continuous
ranked probability score (CRPS) are used. Let ŷijk denote the prediction for the obser-
vations yijk for the observation i in year j for the kth field, and then the MAE and MSE
for the kth field have the following definitions

MAEk =
1

nk

∑
j

∑
i

|yijk − ŷijk|,

MSEk =
1

nk

∑
j

∑
i

(yijk − ŷijk)2,

The CRPS is also a commonly used scoring rule to evaluate the probabilistic forecasts,
and it is the integral of the Brier scores for a continuous predictand at all possible
threshold values p (Hersbach, 2000; Gneiting et al., 2005). We refer to Toth et al. (2003,
Section 7.3.2) for detailed discussion about the Brier scores. Let F denote the predictive
cumulative distribution function (CDF) and H(p − y) be the Heaviside function with
value 1 whenever p−y > 0 and value 0 otherwise. Then the continuous ranked probability
score is defined as

crps(F, y) =

∫ ∞
−∞

(F (p)−H(p− y))2dp. (11)

Gneiting et al. (2005) pointed out that if F is the CDF of a Gaussian distribution, then a
closed form of the continuous ranked probability score can be obtained, and this form is
usually used in applications. The average of continuous ranked probability score which
is denoted as CRPS then has the form

CRPSk =
1

nk

∑
j

∑
i

crps(Fijk, yijk). (12)

We refer to Gneiting et al. (2005) for more information on scoring rules.

4.2 Cross validation scheme

In this section we explain the cross validation scheme for comparing the results from
bivariate models with the results from univariate model. Three different settings have
been chosen. We only consider the locations where both observations for temperature
and humidity are presented in all settings.
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Setting 1
In this setting we only predict the second field x2(s) at 20 locations removed from the

dataset for each year from 2007 to 2011. The remaining observations from the second
fields x2(s) together with all observations in the first field x1(s) are used to estimate
parameters.

Setting 2
This setting is similar as the Setting 1. With this setting, however, 20 locations in

each year in the first field x1(s) are left out for prediction and all observations in the
second field x2(s) together with the rest of observations in the first field x1(s) are used
to estimate the parameters.

Setting 3
In this setting we have left out observations at 20 locations from both fields x1(s)

and x2(s) in each year for prediction. The rest of the observations are used to estimate
the parameters.

The scoring rules defined in Section 4.1 are calculated for different models for each
of these settings for both univariate and bivariate models. The results are presented in
Section 5.

5 Results

Results from different models with the three different settings are discussed in this sec-
tion. Before modelling the dataset, some empirical data analysis have been conducted
in Section 5.1. Inference results of the parameters are given in Section 5.2. Reconstruc-
tion of fields for temperature and humidity are shown in Section 5.3. The results for
predictive performance are given in Section 5.4.

5.1 Empirical data analysis

Since the observations of humidity are positive, they are preprocessed with the widely
used Box-Cox family of transformations given by Box and Cox (1964), in order to trans-
form them to be approximately Gaussian distributed. We use the original observations
of temperature. The Box-Cox family of transformations has the form

Ŷ =

{(
Y λ − 1

)
/λ if λ 6= 0

log(Y ) if λ = 0
. (13)

The estimated values of λ for humidity for the Box-Cox transform is λ = 0.66, and
the histograms for the humidity before the transformation and after the transformation
are given in Figure 2(a) and Figure 2(b), respectively. From these two histograms, we
can notice that the transformed humidity seems more reasonable to be modelled with
Gaussian distribution. For more information about the Box-Cox transformation and
other transformation methods, see, for example, Sakia (1992) and Diggle and Ribeiro Jr
(2006).

11



0 1 2 3 4 5 6 7
0

10

20

30

40

50

60
histogram of humidity original

(a)

−1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
0

10

20

30

40

50

60
histogram of humidity transformed

(b)

Figure 2: Histograms of original humidity observations(a) and transformed humidity
observations (b).

The empirical variograms of both temperature and humidity have been calculated
and fitted to theoretical variograms. In the theoretical variograms, we choose to fit
the Matérn model. We only include the results for the dataset in 2011 and omit the
others since they are similar. The empirical variograms and the corresponding fitted
theoretical variograms for this year are shown in Figure 3. This analysis suggest the
smoothness parameters for both the fields with ν = 1 are reasonable, and hence fixing
α = 2 in our analysis is also reasonable. For a detailed discussion on variograms, we
refer to Diggle and Ribeiro Jr (2006) and Banerjee et al. (2004). The nugget effects
or the measurement error variances for temperature and humidity are assumed known
and are fixed to τ1 = 0.1 and τ2 = 0.01,respectively, for both the bivariate model and
univariate model.

5.2 Inference results of parameters

With Equation (10) together with the priors discussed in Section 3.4, the estimates, with
the standard deviations given in the brackets, for the parameters for univariate model
and for bivariate model are presented in Table 2 when we set x1(s) as temperature and
x2(s) as humidity. When we switch the order of the fields, i.e., we set x1(s) as humidity
and x2(s) as temperature, the corresponding results are given in Table 3. From Table 2
and Table 3 we can notice that temperature and humidity are positively correlated since
b21 < 0 for both models.

With x1(s) as temperature and x2(s) as humidity, the correlations within tempera-
ture and humidity together with the cross-correlation between temperature and humidity
can be calculated from the precision matrix Q for the bivariate model, and are given in
Figure 4 (solid lines). The correlations within temperature and humidity for the univari-
ate model can be obtained similarly, and are included in Figure 4 (dash-dot lines). From
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Figure 3: Empirical variograms for temperature and humidity (broken lines with circles)
with fitted theoretical variograms (solid lines) for temperature (a) and humidity (b).

Figure 4 we can notice that the cross-correlation between temperature and humidity at
the same location is γth = 0.6351. When we set x1(s) as humidity and x2(s) as temper-
ature, the corresponding results for the correlations within humidity and temperature
and cross-correlation between them are given in Figure 5 (solid lines). From Figure
5 we can get that the cross-correlation between the temperature and humidity at the
same location is γht = 0.6613, which is slightly higher than the previous model. From
these results we notice that the cross-correlation between temperature and humidity are
relatively high and indeed needed to be considered.

We define the correlation range as the correlation near 0.1 at distance ρ. The results
of the correlation ranges for the above mentioned two models are given in Table 4 and
Table 5. From these two tables we can notice that the correlation range for the temper-
ature has been increased when we set x1(s) as the humidity. The same conclusion can
be drawn for the range of the cross-correlation between the humidity and the tempera-
ture with x1(s) as humidity. The correlation range for the humidity, however, has been
decreased when we set x1(s) as the humidity. These differences indicates that we might
need to investigate how to set the order of the fields in real-world applications when we
used the triangular system of SPDEs (6). We return to this issue in Section 5.4.

As pointed out in Section 3.4, we treat the coefficients for the covariates and the

yearly effects of temperature and humidity as parts of the latent field z = (x,β)T. It
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Table 2: Estimated hyper-parameters for bivariate model and for univariate model with
x1(s) as temperature and x2(s) as humidity

Bivariate Univariate

b11 0.0104 (8.106× 10−4) 0.0104 (8.134× 10−4)
b21 −0.0219 (2.512× 10−3)
b22 0.3132 (2.035× 10−2) 0.2149 (1.460× 10−2)
κ11 7.6867 (0.6428) 7.6721 (0.6427)
κ21 3.2291 (0.6037)
κ22 2.7981 (0.401) 3.1969 (0.2659)

Table 3: Estimated hyper-parameters for bivariate model and for univariate model with
x1(s) as humidity and x2(s) as temperature

Bivariate Univariate

b11 0.1711 (1.787× 10−2) 0.2149 (1.460× 10−2)
b21 −0.2230 (2.875× 10−2)
b22 0.0198 (2.843× 10−3) 0.0104 (8.134× 10−4)
κ11 3.9537 (0.4118) 3.1969 (0.2659)
κ21 2.5362 (0.5917)
κ22 5.6358 (0.7176) 7.6721 (0.6427)

Table 4: Correlation ranges for bivariate model and univariate model with x1(s) as
temperature and x2(s) as humidity.

ρt ρh ρth
Bivariate Model 39.4km 90.7km 35.2km

Univariate Model 39.4km 94.9km

Table 5: Correlation ranges for bivariate model and univariate model with x1(s) as
humidity and x2(s) as temperature.

ρt ρh ρht
Bivariate Model 43.7km 76.7km 43.8km

Univariate Model 39.4km 94.9km
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Figure 4: Correlations within temperature and humidity and cross-correlation between
temperature and humidity for bivariate model together with the correlations within
temperature and humidity for the univariate model when we set x1(s) as temperature
and x2(s) as humidity. “BM” means Bivariate model. “UM” means univariate model.
“Temp” means correlation within temperature. “Humi” means correlation within humid-
ity. “Temp-Humi” means the cross-correlation between the temperature and humidity.
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Figure 5: Correlations within temperature and humidity and cross-correlation between
temperature and humidity for bivariate model together with the correlations within
temperature and humidity for the univariate model when we set x1(s) as humidity and
x2(s) as temperature.. “BM” means Bivariate model. “UM” means univariate model.
“Temp” means correlation within temperature. “Humi” means correlation within humid-
ity. “Humi-Temp” means the cross-correlation between the temperature and humidity.
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Table 6: Estimated yearly effects for different years with bivariate model and univariate
model with x1 as temperature and x2 as humidity

Model Parameter 2007 2008 2009 2010 2011

Bivariate
β10

8.808 −0.025 8.566 −5.981 0.894
(0.546) (0.541) (0.532) (0.525) (0.519)

β20
3.037 1.817 2.859 1.153 1.665

(0.112) (0.112) (0.111) (0.111) (0.110)

Univariate
β10

8.794 −0.045 8.537 −6.004 0.874
(0.547) (0.542) (0.532) (0.526) (0.519)

β20
3.081 1.844 2.899 1.171 1.698

(0.118) (0.118) (0.117) (0.117) (0.116)

can be shown that

π(z|y,θ) ∝ π(z,y|θ)

= π(z|θ)π(y|z,θ)

∝ exp

(
−1

2

[
zT(Q(θ) +CTQnC)z − 2zTCTQny

])
,

(14)

and
z|y,θ ∼ N (µc(θ),Qc(θ)) , (15)

with µc, Qc and C given in Section 3.4. From Equation (14) we can get the estimates
for the yearly effects and for the coefficients of the covariates. When we set x1 as
temperature and x2 as humidity, the estimates for the yearly effects are given in Table 6
with the standard deviations given in the brackets. Table 6 shows that the yearly effects
are quite different. This explains the high temperature in 2007 but low temperature in
2010. The estimates of the coefficients of the covariates are given in Table 7. We can
notice that the two covariates give negative contribution to both fields. When we set
x1 as the humidity and x2 as the temperature, the corresponding results for the yearly
effects and the coefficients for the covariates are given in Table 8 and Table 9. Similar
conclusions can be drawn from Table 8 and Table 9 as from Table 6 and Table 7. These
results agree with the empirical results, and we summarize as follows.

• The higher the elevation, the lower the temperature;

• The higher the elevation, the lower the humidity.

• The longer the distance to ocean, the lower the temperature;

• The longer the distance to ocean, the lower the humidity;
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Table 7: Estimated coefficients for covariates and standard deviations with x1 as tem-
perature and x2 as humidity

Model Parameter Estimate Std. dev.

Bivariate

β11 −6.825 0.683
β12 −9.859 0.721
β21 −0.199 0.092
β22 −1.460 0.128

Univariate

β11 −6.832 0.683
β12 −9.815 0.721
β21 −0.493 0.107
β22 −1.438 0.138

Table 8: Estimated yearly effects for different years with bivariate model and univariate
model with x1 as humidity and x2 as temperature

Model Parameter 2007 2008 2009 2010 2011

Bivariate
β10

3.031 1.819 2.852 1.158 1.663
(0.101) (0.100) (0.099) (0.099) (0.098)

β20
8.843 0.048 8.634 −5.891 0.948

(0.586) (0.581) (0.572) (0.565) (0.558)

Univariate
β10

3.081 1.844 2.899 1.171 1.698
(0.118) (0.118) (0.117) (0.117) (0.116)

β20
8.794 −0.045 8.537 −6.004 0.874

(0.547) (0.542) (0.532) (0.526) (0.519)

Table 9: Estimated coefficients for the covariates and standard deviations with x1 as
humidity and x2 as temperature

Model Parameter Estimate Std. dev.

Bivariate

β11 −0.212 0.093
β12 −1.438 0.138
β21 −6.467 0.656
β22 −10.108 0.764

Univariate

β11 −0.493 0.107
β12 −1.438 0.138
β21 −6.832 0.683
β22 −9.815 0.721
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5.3 Reconstruction of fields

With the estimates given in Section 5.2, we can reconstruct the fixed effects {vj ; j =
1, 2, . . . , 5}, the spatial effects {ξj ; j = 1, 2, . . . , 5} and the posterior mean of temperature
and humidity vj + ξj for different years j. We show the fixed effect vj for year 2008 in
Figure 6(a) and Figure 6(b) for the bivariate model with 1km by 1km resolution when
we set x1(s) as temperature and x2(s) as humidity. Figure 6(c) and Figure 6(d) give
the corresponding results for the univariate model. The way for reconstructing the fixed
effects with 1km by 1km resolution is that we first estimate the relevant parameters
with the lower resolution model, and then plug in the estimates into the 1km by 1km
resolution model. The fixed effects for other years are omitted since they are just shifted
versions of each other because they just have different yearly effects but share the same
coefficients from the two covariates. The corresponding results for the fixed effects with
x1(s) as humidity and x2(s) as temperature are given in Figure 9(a) and Figure 9(b).

Using the same approach as the fixed effects, we can get the spatial effects {ξj ; j =
1, 2, . . . , 5} on high resolution with the estimates given in Table 2. Figure 7(a) and
Figure 7(b) illustrate the spatial effects with 1km by 1km resolution for the bivariate
model and Figure 7(c) and Figure 7(d) for the univariate model, respectively. The
corresponding results for spatial effects with x1(s) as humidity and x2(s) as temperature
are given in Figure 9(c) and Figure 9(d). As discussed in Section 3.4, the spatial effects
are constructed by using the SPDEs or the systems of SPDEs with the same hyper-
parameters. In other words, they are just different realizations of the same latent fields.
We only show the results for year 2008 but emphasize that they are different from year
to year.

With the fixed effects {vj ; j = 1, 2, . . . , 5} and spatial effects {ξj ; j = 1, 2, . . . , 5}
given in Figure 6 and Figure 7, we can get the posterior mean of temperature and
humidity {ηj = vj + ξj ; j = 1, 2 . . . , 5}, and Figure 8(a) and Figure 8(b) illustrate
the results for year 2008 for the bivariate model and Figure 8(c) and Figure 8(d) for
the univariate model, respectively, with x1(s) as temperature and x2(s) as humidity.
When we set x1(s) as humidity and x2(s) as temperature, we can get the posterior
mean of temperature and humidity shown in Figure 10(a) and Figure 10(b) for bivariate
model. We notice that the fixed effects, the spatial effects and the posterior mean for
temperature and humidity in these two different bivariate models are not the same but
quite similar.

5.4 Predictive performance

In this section the predictive performance for both the bivariate models and the uni-
variate model with different settings, using the cross validation schemes given in Section
4.2, are discussed for both temperature and humidity. Using the left-out observations
in different settings together with the scoring rules discussed in Section 4.1, we compare
the values of scoring rules MAE, MSE and CRPS.

Table 10 illustrates the results for the scoring rules when we set x1(s) as temperature
and x2(s) as humidity. In this table and the tables thereafter, “UM” means the results
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Figure 6: Fixed effects for bivariate model (a) - (b) and for the univariate model (c) -
(d) of temperature and humidity in 2008 with 1km × 1km resolution. We set x1(s) as
temperature and x2(s) as humidity.
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Figure 7: Spatial effects for bivariate model (a) - (b) and for univariate model (c) -
(d) of temperature and humidity in 2008 with 1km × 1km resolution. We set x1(s) as
temperature and x2(s) as humidity.
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Figure 8: Posterior mean of temperature and humidity in 2008 for bivariate model (a)
- (b) ad for univariate model (c) - (d) with 1km × 1km resolution. We set x1(s) as
temperature and x2(s) as humidity.
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Figure 9: Fixed effects (a) - (b) and spatial effects (c) - (d) for bivariate model in 2008
with 1km× 1km resolution. We set x1(s) as humidity and x2(s) as temperature.
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Figure 10: Posterior mean of temperature (a) and humidity (b) in 2008 for bivariate
model with 1km× 1km resolution. We set x1(s) as humidity and x2(s) as temperature.

are from the univariate model. “BM (Setting 3)” means the results are from the bivariate
model with Setting 3, i.e., there are 20 locations left-out both for temperature and
humidity in each year. “ BM” means the results are from bivariate model with Setting
1 or Setting 2, i.e., there are 20 locations left-out from only temperature or humidity
in each year. “T” and “H” denote the temperature and humidity, respectively. From
Table 10 we can notice that the bivariate model performances uniformly better than
the univariate model for humidity. We can also notice that “BM” outperforms the
“BM(Setting 3)” uniformly, which means the observations from another field at the
same locations improve the prediction accuracy. The scoring rules with “BM” is also
uniformly better than the“UM” for temperature. However, the MSE and CRPS of
temperature for bivariate model with Setting 3 is slightly higher than the corresponding
results from univariate model.

Table 11 shows the predictive performance with x1(s) as humidity and x2(s) as
temperature. We can notice that the bivariate model with “BM” performs uniformly
better than the univariate model for temperature. But the bivariate model with Setting
3 perform a little worse than the univariate model for temperature. We can also notice
that the bivariate model with Setting 3 performs uniformly better than the univariate
model for the humidity. However, the bivariate model with “BM” performs the worst
for the humidity.

Deeper analysis releases the reasons. We find that there is due to some “outliers” in
the temperature observations in year 2009. Figure 11 has illustrated the left-out obser-
vations in year 2009. We can see that there are 5 locations with very high temperature
but rather low humidity. The bivariate model has difficulties at these locations not only
for predicting the temperature itself but also for humidity since the information from
temperature leads the prediction of humidity in the wrong direction. The results of the
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Table 10: Scoring rules for bivariate model and univariate model for temperature and
humidity with x1(s) as temperature and x2(s) as humidity

Scoring rules for temperature (T) and humidity (H)

MAE MSE CRPS

T H T H T H

UM 1.7485 0.2039 6.1102 0.0722 1.3524 0.1487
BM(Setting 3) 1.7463 0.1918 6.1164 0.0639 1.3539 0.1396

BM 1.5862 0.1501 4.3089 0.0352 1.1464 0.1060

scoring rules without year 2009 are given in Table 12 and 13. From these two tables,
we can notice that the bivariate model performs uniformly better than the univariate
model. Furthermore the bivariate model with “BM” performs uniformly better than
the bivariate model with Setting 3. In addition, from Table 12 and Table 13, we can
notice that we get better predictive performances when we setting the temperature as
the second field when we need to predict temperature. This is also true with humidity.

The posterior standard deviations for temperature and humidity in 2011 with the
bivariate model and the univariate model are presented in Figure 12(a) - Figure 12(b)
and in Figure 12(c) - Figure 12(d), respectively, when we set x1(s) as temperature
and x2(s) as humidity. With the bivariate model, we can notice that the posterior
standard derivations for locations where we have the temperature observations but not
the humidity observations are lower than the corresponding univariate models. Same
conclusion can be drawn from Figure 13(a) and Figure 13(b), when we set x1(s) as
humidity and x2(s) as temperature. The results for other years are similar and omitted
here.

From all these results, we can notice that the bivariate models give better prediction
accuracy than the univariate model. When the observations in one field is presented, it
does not only improve the prediction accuracy but also have lower posterior standard
deviations. We can also conclude that the order of the field has some influence for the
prediction. The generally suggestion is that if we want to predict humidity or tempera-
ture, we should set it as the second field when we have enough time and computational
resources. If time or computational resources is limited, then we do not need to consider
about the order of fields, since the bivariate model can provide satisfiable results with
both the orders.

6 Discussion and conclusion

We have modelled temperature and humidity in southern Norway based on the obser-
vations on 7th of December from 2007 to 2011. Three different models are used in this
paper: two bivariate models for modelling them jointly and one univariate model for
modelling them independently. The system of SPDEs approach proposed by Hu et al.
(2012b) is chosen for constructing bivariate GRFs and the SPDE approach given by
Lindgren et al. (2011) is chosen for constructing univariate GRFs. Three different set-
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Figure 11: The observations of humidity and temperature for predictions at year 2009.

Table 11: Scoring rules for bivariate model and univariate model for temperature and
humidity with x1(s) as humidity and x2(s) as temperature

Scoring rules for temperature (T) and humidity (H)

MAE MSE CRPS

T H T H T H

UM 1.7485 0.2039 6.1102 0.0722 1.3524 0.1487
BM(Setting 3) 1.7949 0.1929 6.2014 0.0638 1.3665 0.1402

BM 1.5564 0.2215 4.4149 0.0845 1.1579 0.1579

Table 12: Scoring rules for bivariate model and univariate model for temperature and
humidity with x1(s) as temperature and x2(s) as humidity without year 2009

Scoring rules for temperature (T) and humidity (H)

MAE MSE CRPS

T H T H T H

UM 1.7842 0.2095 6.7240 0.0791 1.4031 0.1553
BM(Setting 3) 1.7671 0.2055 6.6736 0.0737 1.3985 0.1481

BM 1.4693 0.1426 3.7366 0.0318 1.0677 0.1006
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Table 13: Scoring rules for bivariate model and univariate model for temperature and
humidity with x1(s) as humidity and x2(s) as temperature without year 2009

Scoring rules for temperature (T) and humidity (H)

MAE MSE CRPS

T H T H T H

UM 1.7842 0.2095 6.7240 0.0791 1.4031 0.1553
BM(Setting 3) 1.7961 0.2010 6.5859 0.0713 1.3940 0.1467

BM 1.3837 0.1940 3.4967 0.0596 1.0513 0.1365
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Figure 12: Posterior standard deviation for temperature and humidity in 2011 by bi-
variate model (a) - (b) and by univariate model (c) - (d). We set the first field x1(s) as
temperature and the second field x2(s) as humidity.
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Figure 13: The posterior standard deviation for temperature (a) and humidity (b) in
2011 by bivariate model. We set x1(s) as humidity and x2(s) as temperature.

tings are chosen in order to compare the predictive performance between the bivariate
model and the univariate model with different settings. Computational efficiency is ob-
tained by using the link between the GRFs and GMRFs. All our models are constructed
with GRFs theoretically and all computations are conducted with GMRFs. The results
illustrate that there is a strong positive correlation between temperature and humidity.
The other results agree with the physical and empirical knowledge. We conclude that
using a bivariate GRF to model temperature and humidity jointly is superior to model
them independently using univariate GRFs, not only in term of prediction accuracy, but
also in term of quantifying prediction uncertainty.

The results also illustrate that the order of fields seems relevant from the prediction
point of view when we use a triangular system of SPDEs for constructing a bivariate
field. However, since the results from both orders are satisfiable, we do not need to
consider it if the computational resources or time is limited. There might be some other
covariates, such as wind speed and solar radiation which needs to be included in our
analysis. However, this is beyond the scope of this paper and we leave it for future
research.
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