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Abstract

A study of recurrent events for repairable systems is presented.
The basic model is the nonhomogeneous Poisson process with power
law intensity function. When several similar systems are under ob-
servation, the assumption that the corresponding processes are inde-
pendent and identically distributed is often questionable. In practice
there may be an unobserved heterogeneity among the systems. We
consider two seemingly different approaches for analysis of such differ-
ences, namely by using frailities and by using dynamic models. The
relation between the two approaches is investigated, both theoreti-
cally and in a simulation study. Detailed derivations of likelihood
functions are provided, and maximum likelihood is used as the infer-
ence tool throughout the paper. A possible conclusion is that the two
approaches are very similar, so that frailty models may be viewed as
an alternative to dynamic models.
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1 Notation

t Failure time
S Starting time
T Ending time
τj Ending time of observation for system j
nj Total number of failure per system
n Total number of failure
m Total number of system
w(t) Failure rate (ROCOF)
W (t) Cumulative failure rate (CROCOF)
N(t) Number of failure in (0, t)
E[N(t)] Expected number of failures in (0, t)
V ar[N(t)] Variance of number of failures in (0, t)
λ Parameter of Power law model
β Parameter of Power law model
δ Parameter of Fraility model
γ Parameter of LEYP model
z1(t) Hazard rate of T1

z2(t) Hazard rate of T2

z3(t) Hazard rate of T3

G1(t) Hazard rate of T1

G2(t) Hazard rate of T2

G3(t) Hazard rate of T3

2 Introduction

Survival analysis involves the modeling of time to event data. Classically,
death or failure are considered as ”events” in the survival literature, con-
sidering only single events, after which the individual or machine is dead
or broken. More recently, many concepts in survival analysis have been
modelled by counting process theory, which adds flexibility in that it allows
modeling, for example recurrent events.

In the reliability literature, systems are generally classified into non-repairable
and repairable. Non-repairable systems are those that do not get repaired
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when they fail. Thus, non-repairable system can fail only once, and a lifetime
model such as the Weibull distribution provides the distribution of the time
at which such a system fails. Most household products can be good examples
of non-repairable systems.

On the other hand, repairable systems are those systems (machines, indus-
trial plants, software, etc.) which, in the event of a failure, can be restored to
satisfactory operation by any action, including parts replacements or changes
to adjustable settings. A repairable system is often modeled by means of a
counting process. But, to what extent can the system perform after be-
ing returned back to its regular operation? We may have that the system’s
performance is in the same state that the system had at the start of the
operation, which means a renewal process or as good as new condition. Or,
its performance may be in the same state as before the failure, which leads
to a non-homogeneous Poisson process (NHPP), i.e. as bad as old condition.

NHPPs which is the main concern of this paper are useful due to their flexi-
ble assumption that events are occurring randomly in time at varying rates,
instead of events being just as likely to occur in all intervals of equal size,
which is the property of homogeneous Poisson processes (HPP).

There are three primary approaches to evaluating multivariate survival pro-
cesses: Marginal models, Frailty models and Dynamic models (see Aalen et.
al, 2008). We are focused on the last two due to the fact that marginal
models, unlike fraility and dynamic models, focus on parts of the avaliable
data instead of giving more realistic descriptions of the full data sets. For
each of these model types we consider parametric modelling and inference.
Although there is a fairly rich literature on the corresponding models and
methods, all their features and particularly their interrelations are yet not
fully understood nor fully investigated. The objective of the study is to per-
form such a study, by considering comparable models both theoretically and
in a simulation study.

2.1 Definition and Properties of NHPPs

A counting process is a non-homogeneous (or non-stationary) Poisson process
with rate function w(t) for t ≥ 0, if :
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1. N(0)=0.

2. Pr {N(t+ ∆t)−N(t) = 1} = w(t)∆t+o(∆t), for all t where O(∆t)
∆t
→ 0

as ∆t→ 0 and N(t) is the number of events occurring within (0, t]

3. Pr {N(t+ ∆t)−N(t) ≥ 2} = o(∆t), which means that the system will
not experience more than one failure at the same time.

The NHPP is fully characterized by ROCOF(rate of occurrence of failure)
and usually denoted by w(t). This function is also called the peril rate of the
NHPP.

Its cumulative rate of the process is

W (t) =
∫ t

0
w(s)ds

(later called the CROCOF)
Then, the probability of seeing n events in the interval (0, t] is

Pr[N(t) = n] =
[W (t)]n

n!
e−W (t)

for n = 0, 1, 2, ...

The mean number of failures in (0, t] is therefore

E[N(t)] = W (t)

and its variance is

V ar[N(t)] = W (t)

Likewise, the probability of seeing n events in the interval (t, t+ s] is

Pr[(N(t+ s)−N(t)) = n] = e−[W (t+s)−W (t)] [W (t+s)−W (t)]n

n!

What is said above is that N(t+s)−N(t) is Poisson distributed with expected
value

∫ t+s
t

w(s)ds where w(s) is the time dependent intensity function.

Another probabilistic property of NHPP which can help us to simulate the
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events of NHPP from that of HPP is stated as follows. If t1, t2, ... are event
times in a unit HPP, then W−1(t1),W−1(t2), ... are event times in an NHPP
with cumulative intensity function W (t). Let us use the CROCOF of power
law model to show how NHPP events are simulated from HPP. The CROCOF
of power law is,

W (t) = λtβ

Then, equate W(t) to the exponentially distributed random number having
parameter one, u ∼ exp(1).

u = λtβ

⇒ t = [u
λ
]
1
β

Graphically,

t1
t2

u1 = W-1(t1) u2 = W-1(t2)
NHPP events

HPP events

…

…

Figure 1: Simulation of NHPP events from HPP

The basic difference of NHPP from HPP is that the rate of occurrence
of failures varies with time rather than being a constant. This implies that
for an NHPP model the inter occurrence times are neither independent nor
identically distributed. In line with this, frequently NHPP is used to model
repairable systems that are subject to a minimal repair strategy, with neg-
ligible repair times. Minimal repair means that a failed system is restored
just back to functioning state and the system continues as if nothing had
happened.This implies that the likelihood of system failure is the same im-
mediately before and after a failure.
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2.2 Parametric Models of NHPPs

Several parametric models have been established to portray the ROCOF of
an NHPP, but here we are concerned to the most celebrated process model
which is the power law model. This model is favored for several reasons.The
first reason for the popularity of this model is that it has a very practical
foundation in terms of minimal repair. The second reason here is that if the
time to first failure follows the Weibull distribution, then each succeeding
failure is governed by the Power law model in the case of minimal repair.
From the aforementioned discussion we can say the Power law model is an
extension of the Weibull distribution.

In the power law model the ROCOF of the NHPP is defined as

w(t) = λβtβ−1 for λ ≥ 0, β ≥ 0 and t ≥ 0

Its cumulative rate of ocurrence of failure (CROCOF) is

W (t) =
∫ t

0
w(s)ds

= λtβ

This intensity function was introduced in Crow (1972) as a stochastic model
for the Duane reliability growth postulate. Moreover, it is referred to as a
Weibull Poisson Process or the Power law Poisson Process.

The parameter β in the Power law model can give information about the
system as follows:

If 0 < β < 1, then the system is improving(happy).
If β > 1, then the system is deteriorating(sad).
If β = 1, then the model is reduces to an HPP.
The case β = 2 is seen to give a linearly increasing ROCOF.

2.3 Maximum Likelihood Estimation of Power law model

Suppose that the number of systems under study is m and the jth system
is observed continuously from time Sj to time Tj, j = 1, 2, 3, ...,m. During
the period [Sj, Tj], let nj be the number of failures experienced by the jth

system and let ti,j be the age of this system at the ith occurrence of failure,
i = 1, 2, ..., nj.
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It is also possible that the system boundaries Sj and Tj may be observed
failure times for the jth system. If tnjj = Tj, then the data on the jth system
are said to be failure terminated and Tj is a random variable with nj fixed.
If tnjj < Tj, then the data on the jth system are said to be time terminated
with nj a random variable. Suppose that data are available from m indepen-
dent systems with the same intensity function w(t) and system j is observed
in the interval [Sj, Tj], j = 1, 2, ...,m, and the system j recurrence times are
denoted by t1j, t2j, ..., tnjj.

Then, the NHPP likelihood function is simply the product of the individ-
ual system likelihoods

L =
∏m

j=1

[∏nj
i=1 [w(tij)] exp {−[W (Tj)−W (Sj)]}

]
Due to the monotonicity characteristics of log transformation and for the-
oretical as well as technical reasons it is well recommended to work with
the logarithm of the likelihood function or with the negative logarithm of
it. Although the shape of these(likelihood and log-likelihood) functions are
different, they have their maximum point at the same value.

Hence,

The log-likelihood function of NHPP is

l = log(L)

=
m∑
j=1

[
nj∑
i=1

[logw(tij)]− [W (Tj)−W (Sj)]

]
.

The log-likelihood function of power law model with intensity function
w(t) = λβtβ−1 is,
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l = log(L)

=
m∑
j=1

[
nj∑
i=1

[
log(λβtβ−1

ij )
]
−
[
λT βj − λS

β
j

]]

=
m∑
j=1

[
nj∑
i=1

[log λ+ log β + (β − 1) log tij]−
[
λT βj − λS

β
j

]]

=
m∑
j=1

[
nj log λ+ nj log β + (β − 1)

nj∑
i=1

log tij − λ
[
T βj − S

β
j

]]

=
m∑
j=1

nj log λ+
m∑
j=1

nj log β + (β − 1)
m∑
j=1

nj∑
i=1

log tij − λ
m∑
j=1

[
T βj − S

β
j

]
= n log λ+ n log β + (β − 1)

m∑
j=1

nj∑
i=1

log tij − λ
m∑
j=1

[
T βj − S

β
j

]
=

m∑
j=1

nj log λ+
m∑
j=1

nj log β + (β − 1)
m∑
j=1

nj∑
i=1

log tij − λ
m∑
j=1

[
T βj − S

β
j

]
= n log λ+ n log β + (β − 1)

m∑
j=1

nj∑
i=1

log tij − λmT β

where n =
∑m

j=1 nj

In the last line above we set Sj = 0 i.e. all systems have the same intial
point which is zero and all Tj = T , where T is a constant number. The
standard, analytical method of finding the MLEs is to take the first partial
derivatives of the likelihood/log-likelihood function with respect to each pa-
rameter in the model and equate to zero.

Hence,

∂l

∂λ
=
n

λ
−mT β

λ̂ =
n

m[T β̂]

8



Similarly,

∂l

∂β
=
n

β
+

m∑
j=1

nj∑
i=1

log tij − λmT β[log(T )]

Setting this equal to zero and using the above λ̂ we get

β̂ =
n

n log(T )−
∑m

j=1

∑nj
i=1 log tij

This gives an explicit solution for β̂ which can afterwards be substituted in
the expression for λ̂.

We might consider the Fisher information matrix for the computation of
variances and covariances of the MLEs. Fisher information matrix is used
to measure the amount of information that the observed data carries about
the unknown parameters. The log-likelihood function is twice differentiable
with respect to each parameter,and

∂2l(λ, β)

∂λ2
=
−n
λ2

Similarly for β parameter

∂2l(λ, β)

∂β2
=
−n
β2
− λmT β(log(T ))

Second mixed-partial derivatives of the log-likelihood,

∂2l(λ, β)

∂λ∂β
= −mT β(log(T ))

Thus, the Fisher information matrix is

I (λ, β) =

 n
λ2

mT β(log(T ))

mT β(log(T )) n
β2 + λmT β(log(T ))


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For large sample size, maximum likelihood estimate have an approximate
normal distribution centered on the true parameter and the variance, which
is given by Fisher information matrix after substituting the maximum like-
lihood estimates for λ and β. Thus, asymptotically, maximum likelihood
estimator is normally distributed.

Once λ̂ and β̂ have been estimated, the maximum likelihood estimate of
the intensity function is given by:

w(t) = λ̂β̂tβ̂−1, t > 0

and then we can draw failure intensity versus time.

3 Frailties in NHPP

3.1 Definition and Parametric Model

The notion of fraility provides a convenient way to introduce random effects,
association and unobserved heterogeneity into models for survival variables.
It may be considered as unmeasured risk factors, where the relevant covari-
ates are not included in the model’s specification and unknown to exist. This
may otherwise be a problem in having inconsistent parameter estimates and
wrong standard estimate values.

The term fraility itself was introduced by Vaupel et al. (1979) for univariate
survival models, but was substantially promoted by applications to multivari-
ate survival data from around 1980. Fraility models extend popular models
such as the Cox model. Normally, survival analysis implicitly assumes a
homogeneous population to be studied. In many applications, however, the
study population can not be assumed to be homogeneous but must be con-
sidered as a heterogeneous sample.

Here we consider parametric models for NHPP, with a serious consideration
of frailties ( hidden heterogeneity) among systems. This is done in accor-
dance with the definition of frailties in connection with the power law model.
Recall that the CROCOF of power law model is
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W (t) = λtβ where λ > 0, β > 0 and t ≥ 0

With a consideration of frailties this model can be written as W (t) = aλtβ

where λ > 0, β > 0, t ≥ 0 and a is a gamma distributed random number
with mean 1 and variance δ. The idea is then that in the case of m systems,
each system has its own value of a, i.e. a1, a2, ..., am, which are assumed to
be independent and identically distributed with the distribution just given.

Although we have several potential frailty models to choose for the above
”a’s” we choose gamma frailties deliberately due to the following reason:There
is no physical justification to prefer gamma frailties instead of the other but
only in the line of computational and analytical aspect we prefer it. From a
computational and analytical perspective, it fits very well to failure data be-
cause it is easy to derive the closed form expressions of unconditional survival,
cumulative density and hazard function. This is due to the simplicity of the
Laplace transform. The density of the two-parameter gamma distribution is
given as

ha(a) = ak−1e−
a
θ

θkΓ(k)

where a ≥ 0, k is shape parameter and θ is scale parameter.
Moreover, E(a)=kθ and Var(a)=k θ2 But we want to have E(a)=1 and
Var(a)=δ. Thus we have k=1

δ
and θ=δ and density

ha(a) = a
1
δ
−1exp

−a
δ

Γ( 1
δ

)δ
1
δ
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Figure 2: Graph of Gamma Densities with expected value 1

3.2 Maximum Likelihood Estimation of Power law model
with gamma distributed frailty

We considered the likelihood function for m systems without consideration
of frailty but in this subsection we are eager to see the change in parameter
estimation with a consideration of frailty a. We use similar argument as be-
fore, but now with ”δ” as an additional parameter and CROCOF should be
multiplied with the frailty.

Individual system likelihood function is:

Lj(aj) =
∏nj

i=1 ajw(tij)exp [−aj [W (Tj)−W (Sj)]]

Since aj is a random variable we should find the expected value of Lj(aj)
with respect to the distribution of aj. In our case the distribution of aj is
gamma with expected value 1 and its probability density function is

h(aj) =
a
1
δ
−1

j e
−aj
δ

Γ( 1
δ

)δ
1
δ
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The expected value of Lj(aj) is

Lj = E [Lj(aj)]

=

∫
Lj(aj)h(aj)daj

=

∫ nj∏
i=1

ajw(tij)exp [−aj [W (Tj)−W (Sj)]]h(aj)daj

=

∫ nj∏
i=1

ajw(tij)exp [−aj [W (Tj)−W (Sj)]]
a

1
δ
−1

j e
−aj
δ

Γ(1
δ
)δ

1
δ

daj

=

∫ nj∏
i=1

aj

[
λβtβ−1

ij

]
exp

[
−aj

[
λT βj − λS

β
j )
]] a 1

δ
−1

j e
−aj
δ

Γ(1
δ
)δ

1
δ

daj

=

∫ ∞
0

a
nj
j λ

njβnj

(
nj∏
i=1

tij

)β−1

exp
[
−aj

[
λT βj − λS

β
j )
]] a 1

δ
−1

j e
−aj
δ

Γ(1
δ
)δ

1
δ

daj

=

[
λnjβnj

(∏nj
i=1 tij

)β−1

Γ(1
δ
)δ

1
δ

]∫ ∞
0

a
nj+

1
δ
−1

j exp

[
−aj

[
λT βj − λS

β
j +

1

δ

]]
daj

Let rj = nj + 1
δ
− 1 and sj = λT βj − λS

β
j + 1

δ

Then the above equation can be written as:

Lj =

[
λnjβnj

(∏nj
i=1 tij

)β−1

Γ(1
δ
)δ

1
δ

]∫ ∞
0

a
rj
j e
−ajsjdaj

To have the integrand expression of the above integration let us substitute
v = ajsj. After a certain mathematical operation we have the following
expression:

Lj =

[
λnjβnj

(∏nj
i=1 tij

)β−1

Γ(1
δ
)δ

1
δ

][
1

s
rj+1
j

∫ ∞
0

vrje−vdv

]
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But, 1

s
rj+1

j

∫∞
0
vrje−vdv equals 1

s
rj+1

j

Γ(rj + 1) by using gamma function

Hence,

Lj =
λnjβnj

(∏nj
i=1 tij

)β−1
Γ(nj + 1

δ
)

Γ(1
δ
)δ

1
δ

[
λT βj − λS

β
j + 1

δ

]nj+ 1
δ

Although power law model can have a potential to model systems that start
from any time t, we restrict to time zero as starting operation time of all
systems i.e Sj = 0 ∀j = 1, 2, ...,m in this study. Then, the aforementioned
individual likelihood function simplifies to

Lj =
λnjβnj

(∏nj
i=1 tij

)β−1
Γ(nj + 1

δ
)

Γ(1
δ
)δ

1
δ

[
λT βj + 1

δ

]nj+ 1
δ

Thus, the total likelihood function is

L =
m∏
j=1

Lj
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The log likelihood function is

l(λ, β, δ) = logL

= log

[
m∏
j=1

Lj

]

= log

 m∏
j=1

λnjβnj
(∏nj

i=1 tij
)β−1

Γ(nj + 1
δ
)

Γ(1
δ
)δ

1
δ

[
λT βj + 1

δ

]nj+ 1
δ


=

m∑
j=1

log

λnjβnj ( nj∑
i=1

tij

)β−1

Γ(nj +
1

δ
)

− log

[
Γ(

1

δ
)δ

1
δ

[
λT βj +

1

δ

]nj+ 1
δ

]
=

m∑
j=1

{
nj log λ+ nj log β + (β − 1) log

(
nj∑
i=1

tij

)
+ log Γ(nj +

1

δ
)

}

−
m∑
j=1

{
log Γ(

1

δ
) + (

1

δ
) log δ +

[
nj +

1

δ

]
log

[
λT βj +

1

δ

]}

= n log λ+ n log β + (β − 1)
m∑
j=1

log

(
nj∑
i=1

tij

)
+

m∑
j=1

log Γ(nj +
1

δ
)

−

[
m log Γ(

1

δ
) +m

1

δ
log δ +

m∑
j=1

[[
nj +

1

δ

]
log

[
λT βj +

1

δ

]]]

Hereafter, let all Tj=T and T=τ .

= n log λ+ n log β + (β − 1)
m∑
j=1

nj∑
i=1

log tij +
m∑
j=1

log Γ(nj +
1

δ
)

−

[
m log Γ(

1

δ
) +m

1

δ
log δ +

m∑
j=1

[[
nj +

1

δ

]
log

[
λT β +

1

δ

]]]

= n log λ+ n log β + (β − 1)
m∑
j=1

nj∑
i=1

log tij +
m∑
j=1

log Γ(nj +
1

δ
)

−
[
m log Γ(

1

δ
) +m

1

δ
log δ +

[
n+

m

δ

]
log[λT β +

1

δ
]

]
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Partial derivative of l (λ, β, δ) with respect to λ is

∂l (λ, β, δ)

∂λ
=
n

λ
−
[

τβ

λτβ + 1
δ

] [
n+

m

δ

]
Then,

∂l (λ, β, δ)

∂λ
= 0

⇒ n

λ
=

[
τβ

λτβ + 1
δ

] [
n+

m

δ

]

⇒ λ̂ =
n

mτ β̂

Similarly, Partial derivative of l (λ, β, δ) with respect to β is

∂l (λ, β, δ)

∂β
=
n

β
+

m∑
j=1

nj∑
i=1

log tij −
[
λτβ log(τ))

λτβ + 1
δ

] [
n+

m

δ

]

Hence,

∂l (λ, β, δ)

∂β
= 0

⇒ n

β
+

m∑
j=1

nj∑
i=1

log tij − n log (τ)

⇒ β̂ =
n

n log(τ)−
∑m

j=1

∑nj
i=1 log tij

Thus, λ̂ and β̂ are exactly the same as for the power law without frailities.

Likewise, using the digamma function ψ defined by

ψ(x) =
d

dx
log Γ(x) =

Γ
′
(x)

Γ(x)
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, the partial derivative of l (λ, β, δ) with respect to δ is

∂l (λ, β, δ)

∂δ
= − 1

δ2

m∑
j=1

ψ(nj +
1

δ
) +

m

δ2
ψ(

1

δ
)−m

[
− 1

δ2
log(δ) +

1

δ2

]
−
[
−m
δ2

log[λτβ +
1

δ
]− 1

δ2

[
n+ m

δ

λτβ + 1
δ

]]
= − 1

δ2

m∑
j=1

ψ(nj +
1

δ
) +

m

δ2
ψ(

1

δ
) +

m

δ2
log(δ)

− m

δ2
+
m

δ2
log[λτβ +

1

δ
] +

1

δ2

[
n+ m

δ

λτβ + 1
δ

]
=

[
−1

δ2

]{ m∑
j=1

ψ(nj +
1

δ
)−mψ(

1

δ
)−m log(δ) +m

}

−
[
−1

δ2

]{
m log

[
λτβ +

1

δ

]
−

n+ m
δ

λτβ + 1
δ

}
It might be difficult to have the explicit solution of this expression by equat-
ing to zero so that using an iterative procedure is recommendable. Therefore,
a function of δ will be utilized in The Newton-Raphson Method.

Since we have the explicit formula for λ and β estimate, which is independent
of δ, ∂l(λ,β,δ)

∂δ
is a function of δ only and we can denote it by, f(δ)

f(δ) =

[
−1

δ2

]{ m∑
j=1

ψ(nj +
1

δ
)−mψ(

1

δ
)−m log(δ) +m−m log

[
λτβ +

1

δ

]
−

n+ m
δ

λτβ + 1
δ

}

Note that in Matlab, psi means digamma function and psi(x) computes the
digamma function of x. Similarly, psi(k,x) computes the polygamma func-
tion of x, which is the kth derivative of the digamma function at x, denoted
by ψk(k, x) .
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4 Dynamic Models: Extending the NHPP

4.1 Introduction

In the previous section we concentrated on modeling recurrent events for
repairable systems by non-homogeneous Poisson processes with and without
frailty. But, it might be difficult to quantify the effect of the repair by an
amount proportional to the current intensity of the processes. Moreover, the
number of repair actions up to the current time may have a heavier impact
on failure intensity than aging. Due to this fact, in the following we are
interested in the dynamic aspect of repairable systems to make a comparison
between them.

4.2 Maximum Likelihood Estimation in dynamic model

Here we are considering maximum likelihood estimation of a dynamic model.
An intensity process that depends on previous repair actions is termed as
conditional intensity. The LEYP model (Linear Extension of Yule Process)
(Babykina and Couallier, 2009; Le Gat, 2013) assumes that the conditional
intensity evolves as

E[dNj(t)|Nt− ] = wj(t)dt,

where Nj(t) counts the number of events for process j, and the history Nt−

contains information on (fixed and time-dependent) covariates as well as
censoring and observed events in all counting processes prior to time t. Here
we look at the situation where

wj(t) = [1 + γNj(t)]λβt
β−1

We suppose that the data concerns m systems with a consideration of these
systems in a calender time interval [S,T] where S and T are the starting and
the ending time of observation.

The likelihood function for the jth process may be expressed as

Lj(θ) =

[
nj∏
i=1

wj (tij)

]
exp [−Wj(τj)] (∗)
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To write the explicit form of this likelihood function we should define the
ROCOF wj (tij) to be (1 + γNj(tij))w0(tij) where Nj(tij) is the number of
previous observed failures for process j and w0(tij) could be power law model

i.e w0(tij) = λβtβ−1
ij .

Next we show how to obtain W(t) for the LEYP model.

In fact we can use any positive number as a starting time of a single re-
current event process but for simplicity we consider t=0 as initial point. Let
0 ≤ T1 < T2 < ... denote the event times, where Tk and Tk+1 are the time
of the kth and (k + 1)th events, in respective order. In counting processes
[N(t), 0 ≤ t] records the cumulative number of events generated by the pro-
cess but while we look in depth on the processes, the counting processes can
be written as N(t) =

∑∞
k=1 I(Tk ≤ t) counting the number of events occuring

over the time interval [0, t].

t

1

2

3

N(t)

N(t)N(t)‐10 ... ...

Figure 3: Counting processes representation of data on recurrent events
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Now W(t) for LEYP model can derived as follows, being a function of
T1, T2, ..., TN(t)

W (t) =

∫ t

0

w(u)du

=

∫ t

0

(1 + γN(u))w0(u)du

=

N(t)−1∑
k=0

∫ Tk+1

Tk

(1 + γk))w0(u)du+

∫ t

TN(t)

(1 + γN(u)))w0(u)du

=

N(t)−1∑
k=0

(1 + γk)(W0(Tk+1)−W0(Tk)) + (1 + γN(t))(W0(t)−W0(TN(t)))

=

N(t)−1∑
k=0

(W0(Tk+1)−W0(Tk)) + (W0(t)−W0(TN(t)))

+ γ

N(t)−1∑
k=0

k(W0(Tk+1)−W0(Tk)) + γN(t)(W0(t)−W0(TN(t)))

By manipulating through all k values i.e k = 0, 1, 2, ..., N(t)− 1 we arrive at

W (t) = W0(t) + γ

N(t)W0(t)−
N(t)∑
k=1

W0(Tk)


Hence, from (*) on page 18,

Lj(θ) =

[
nj∏
i=1

(1 + γNj(tij))w0(tij)

]
exp [− [Wj(τj)]]

Substituting the ROCOF of power law model on the above equation is

Lj(θ) =

[
nj∏
i=1

(1 + γNj(tij)λβt
β−1
ij )

]
exp

[
−

[
λτβj + γ

[
N(τj)λτ

β
j −

nj∑
i=1

λtβij

]]]
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Thus, the total likelihood function is

L =
m∏
j=1

Lj(θ)

The log likelihood function is

l = logL

= log

[
m∏
j=1

Lj(θ)

]

= log

[
m∏
j=1

{[
nj∏
i=1

(1 + γNj(tij)λβt
β−1
ij )

]
exp

[
−

[
λτβj + γ

[
njλτ

β
j −

nj∑
i=1

λtβij

]]]}]

=
m∑
j=1

{[
nj∑
i=1

log(1 + γNj(tij)λβt
β−1
ij )

]
−

[
λτβj + γ

[
njλτ

β
j −

nj∑
i=1

λtβij

]]}

=
m∑
j=1

[
nj∑
i=1

[log(1 + γNj(tij)) + log λ+ log β + (β − 1) log(tij)]

]

−
m∑
j=1

[
λτβj + γ

[
njλτ

β
j −

nj∑
i=1

λtβij

]]

=
m∑
j=1

nj∑
i=1

log (1 + γNj(tij)) +
m∑
j=1

nj log λ+
m∑
j=1

nj log β + (β − 1)
m∑
j=1

nj∑
i=1

log (tij)

− λ
m∑
j=1

[
τβj + γ

[
njτ

β
j −

nj∑
i=1

tβij

]]

=
m∑
j=1

nj∑
i=1

log (1 + γ(i− 1)) + n log λ+ n log β + (β − 1)
m∑
j=1

nj∑
i=1

log (tij)

− λ
m∑
j=1

[
τβ + γ

[
njτ

β −
nj∑
i=1

tβij

]]

Note that Nj(tij) = i− 1 since before the event at tij we had i− 1 events.
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Recall property of gamma function:

Γ[k + 1] = kΓ[k]

So,

Γ[
1

γ
+ nj] = Γ[

1

γ
+ nj − 1 + 1]

= [
1

γ
+ nj − 1]Γ[

1

γ
+ nj − 1]

= [
1

γ
+ nj − 1][

1

γ
+ nj − 2]Γ[

1

γ
+ nj − 2]

= [
1

γ
+ nj − 1][

1

γ
+ nj − 2][

1

γ
+ nj − 3]Γ[

1

γ
+ nj − 3]

·
·
·

=
1

γnj
[[1 + γ(nj − 1)][1 + γ(nj − 2)][1 + γ(nj − 3)] · · · [1 + γ]] Γ[

1

γ
]

Hence,

log[Γ[
1

γ
+ nj]] = −nj log(γ) +

nj∑
i=1

log[1 + γ(i− 1)] + log[Γ(
1

γ
)]

Thus, for all systems,

m∑
j=1

log[Γ[
1

γ
+ nj]] = −

m∑
j=1

nj log(γ) +
m∑
j=1

nj∑
i=1

log[1 + γ(i− 1)] +
m∑
j=1

log[Γ(
1

γ
)]

⇒
m∑
j=1

nj∑
i=1

log[1 + γ(i− 1)] =
m∑
j=1

log[Γ[
1

γ
+ nj]] + n log(γ)−m log[Γ(

1

γ
)]
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Hence, complete likelihood function for dynamic model:

l = n log(λ) + n log(β) + (β − 1)
m∑
j=1

nj∑
i=1

log (tij) +
m∑
j=1

log

[
Γ(

1

γ
+ nj)

]

−m log

[
Γ

(
1

γ

)]
+ n log(γ) + γλ

m∑
j=1

nj∑
i=1

(tβij)− λτβ [m+ nγ]

Partial derivative of l (λ, β, γ) with respect to λ

∂l (λ, β, γ)

∂λ
=
n

λ
+ γ

m∑
j=1

nj∑
i=1

(tβij)− τβ [m+ nγ]

Second partial derivative of l (λ, β, γ) with respect to λ

∂2l (λ, β, γ)

∂λ2
=
−n
λ2

Mixed partial derivative of l (λ, β, γ) with respect to λ and then β

∂2l (λ, β, γ)

∂λ∂β
= γ

m∑
j=1

nj∑
i=1

(tβij log(tij))− τβ log(τ) [m+ nγ]

Mixed partial derivative of l (λ, β, γ) with respect to λ and then γ

∂2l (λ, β, γ)

∂λ∂γ
=

m∑
j=1

nj∑
i=1

(tβij)− nτβ

Partial derivative of l (λ, β, γ) with respect to β

∂l (λ, β, γ)

∂β
=
n

β
+

m∑
j=1

nj∑
i=1

log(tij) + λγ
m∑
j=1

nj∑
i=1

(tβij log(tij))− λτβ log(τ) [m+ nγ]
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Second partial derivative of l (λ, β, γ) with respect to β

∂2l (λ, β, γ)

∂β2
=
−n
β2

+ λγ

m∑
j=1

nj∑
i=1

(tβij [log(tij)]
2)− λτβ [log(τ)]2 [m+ nγ]

Mixed partial derivative of l (λ, β, γ) with respect to β and then λ

∂2l (λ, β, γ)

∂β∂λ
= γ

m∑
j=1

nj∑
i=1

(tβij log(tij))− τβ log(τ) [m+ nγ]

which is the same expression as

∂2l (λ, β, γ)

∂λ∂β

Mixed partial derivative of l (λ, β, γ) with respect to β and then γ

∂2l (λ, β, γ)

∂β∂γ
= λ

m∑
j=1

nj∑
i=1

(tβij log(tij))− nλτβ log(τ)

In mathematics, the trigamma function, denoted ψ1(x),is the second of the
polygamma functions, and is defined as

ψ1(x) =
d2

dx2
log Γ(x)

=
d

dx
ψ(x)

where ψ(x) = d
dx

log Γ(x) = Γ
′
(x)

Γ(x)
is the digamma function, which is the

logarithmic derivative of the gamma function. As stated before, in mat-
lab,digamma function at x, ψ(x), is psi(x).
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So, here after we will use thus facts in first and second derivative of l (λ, β, γ)
and l (β, γ) with respect to γ

Partial derivative of l (λ, β, γ) with respect to γ

∂l (λ, β, γ)

∂γ
= − 1

γ2

m∑
j=1

ψ(
1

γ
+ nj) +

m

γ2
ψ(

1

γ
) +

n

γ
+ λ

[
m∑
j=1

nj∑
i=1

tβij − nτβ
]

Second partial derivative of l (λ, β, γ) with respect to γ

∂2l (λ, β, γ)

∂γ2
=

1

γ4

m∑
j=1

[
ψ1(

1

γ
+ nj) + 2γψ(

1

γ
+ nj)

]
− m

γ4

[
ψ1(

1

γ
) + 2γψ(

1

γ
)

]
− n

γ2

Mixed partial derivative of l (λ, β, γ) with respect to γ and then λ

∂2l (λ, β, γ)

∂γ∂λ
=

m∑
j=1

nj∑
i=1

[
tβij

]
− nτβ

which is the same expression as

∂2l (λ, β, γ)

∂λ∂γ

Mixed partial derivative of l (λ, β, γ) with respect to γ and then β

∂2l (λ, β, γ)

∂γ∂β
= λ

m∑
j=1

nj∑
i=1

[
tβij log [tij]

]
− nλτβ [log(τ)]
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which is the same expression as

∂2l (λ, β, γ)

∂β∂γ

Since it is difficult to get the explicit solution of λ, β and γ the Newton-
Raphson method will be used.The Newton-Raphson method converges rela-
tively fast for most functions regardless of the initial value even if difficult to
set the best initial value. The steps that we should follow in the aforemen-
tioned method:
Step1: Set initial value for all the three parameter λ0,β0 and γ0.
Step2: Iterative formula:

 λi+1

βi+1

γi+1

 =

 λi
βi
γi

−


∂2l(λ,β,γ)
∂λ2

∂2l(λ,β,γ)
∂λ∂β

∂2l(λ,β,γ)
∂λ∂γ

∂2l(λ,β,γ)
∂β∂λ

∂2l(λ,β,γ)
∂β2

∂2l(λ,β,γ)
∂β∂γ

∂2l(λ,β,γ)
∂γ∂λ

∂2l(λ,β,γ)
∂γ∂β

∂2l(λ,β,γ)
∂γ2



−1 
∂l(λ,β,γ)

∂λ

∂l(λ,β,γ)
∂β

∂l(λ,β,γ)
∂γ



where the matrix H=


∂2l(λ,β,γ)

∂λ2
∂2l(λ,β,γ)
∂λ∂β

∂2l(λ,β,γ)
∂λ∂γ

∂2l(λ,β,γ)
∂β∂λ

∂2l(λ,β,γ)
∂β2

∂2l(λ,β,γ)
∂β∂γ

∂2l(λ,β,γ)
∂γ∂λ

∂2l(λ,β,γ)
∂γ∂β

∂2l(λ,β,γ)
∂γ2


is called Hessian Matrix.

It might be easier to find solution from profile likelihood so

∂l (λ, β, γ)

∂λ
= 0

⇒ λ =
n

τβ [m+ nγ]− γ
∑m

j=1

∑nj
i=1 t

β
ij

put in to complete likelihood function and then the profile likelihood function
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is:

l = n log(n) + n log(β)− n log

[
τβ [m+ nγ]− γ

m∑
j=1

nj∑
i=1

tβij

]
+ [β − 1]

m∑
j=1

nj∑
i=1

log [tij]

+
m∑
j=1

log

[
Γ

[
1

γ
+ nj

]]
−m log

[
Γ[

1

γ
]

]
+ n log(γ)− n

Partial derivative of l (β, γ) with respect to β

∂l (β, γ)

∂β
=
n

β
+

m∑
j=1

nj∑
i=1

log(tij)−
n
[
τβ log(τ) [m+ nγ]− γ

∑m
j=1

∑nj
i=1 log(tij)t

β
ij

]
τβ [m+ nγ]− γ

∑m
j=1

∑nj
i=1 t

β
ij

Second partial derivative of l (β, γ) with respect to β

∂2l (β, γ)

∂β2
=
−n
β2

−
n
[
τβ [log(τ)]2 [m+ nγ]− γ

∑m
j=1

∑nj
i=1 [log(tij)]

2 tβij

] [
τβ [m+ nγ]− γ

∑m
j=1

∑nj
i=1 t

β
ij

]
[
τβ [m+ nγ]− γ

∑m
j=1

∑nj
i=1 t

β
ij

]2

+
n
[
τβ log(τ) [m+ nγ]− γ

∑m
j=1

∑nj
i=1 t

β
ij log(tij)

]2

[
τβ [m+ nγ]− γ

∑m
j=1

∑nj
i=1 t

β
ij

]2

Mixed partial derivative of l (β, γ) with respect to β and then γ

∂2l (β, γ)

∂β∂γ
= −

n
[
nτβ [log(τ)]−

∑m
j=1

∑nj
i=1 [log(tij)] t

β
ij

] [
τβ [m+ nγ]− γ

∑m
j=1

∑nj
i=1 t

β
ij

]
[
τβ [m+ nγ]− γ

∑m
j=1

∑nj
i=1 t

β
ij

]2

+
n
[
τβ log(τ) [m+ nγ]− γ

∑m
j=1

∑nj
i=1 t

β
ij log(tij)

] [
nτβ −

∑m
j=1

∑nj
i=1 t

β
ij

]
[
τβ [m+ nγ]− γ

∑m
j=1

∑nj
i=1 t

β
ij

]2
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Partial derivative of l (β, γ) with respect to γ

∂l (β, γ)

∂γ
= −

n
[
nτβ −

∑m
j=1

∑nj
i=1 t

β
ij

]
[
τβ [m+ nγ]− γ

∑m
j=1

∑nj
i=1 t

β
ij

]
− 1

γ2

m∑
j=1

ψ(
1

γ
+ nj) +

m

γ2
ψ(

1

γ
) +

n

γ

Second partial derivative of l (β, γ) with respect to γ

∂2l (β, γ)

∂γ2
=

n
[
nτβ −

∑m
j=1

∑nj
i=1 t

β
ij

]2

[
τβ [m+ nγ]− γ

∑m
j=1

∑nj
i=1 t

β
ij

]2

+
1

γ4

m∑
j=1

[
ψ1(

1

γ
+ nj) + 2γψ(

1

γ
+ nj)

]
− m

γ4

[
ψ1(

1

γ
) + 2γψ(

1

γ
)

]
− n

γ2

Mixed partial derivative of l (β, γ) with respect to γ and then β

∂2l (β, γ)

∂γ∂β
= −

n
[
nτβ [log(τ)]−

∑m
j=1

∑nj
i=1 [log(tij)] t

β
ij

] [
τβ [m+ nγ]− γ

∑m
j=1

∑nj
i=1 t

β
ij

]
[
τβ [m+ nγ]− γ

∑m
j=1

∑nj
i=1 t

β
ij

]2

+
n
[
τβ log(τ) [m+ nγ]− γ

∑m
j=1

∑nj
i=1 t

β
ij log(tij)

] [
nτβ −

∑m
j=1

∑nj
i=1 t

β
ij

]
[
τβ [m+ nγ]− γ

∑m
j=1

∑nj
i=1 t

β
ij

]2

which is the same expression as

∂2l(β, γ)

∂β∂γ

Step in Newton Raphson’s method for profile likelihood function is: Step1:
Set initial value for all the three parameter β0 and γ0.
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Step2: Iterative formula:

[
βi+1

γi+1

]
=

[
βi
γi

]
−


∂2l(β,γ)
∂β2

∂2l(β,γ)
∂β∂γ

∂2l(β,γ)
∂γ∂β

∂2l(β,γ)
∂γ2


−1 

∂l(β,γ)
∂β

∂l(β,γ)
∂γ



where the matrix H=


∂2l(β,γ)
∂β2

∂2l(β,γ)
∂βγ

∂2l(β,γ)
∂γ∂β

∂2l(β,γ)
∂γ2


is called Hessian Matrix.

5 Interrelation between dynamic behaviour

and frailty model for Poisson processes

It is generally agreed that fraility represents an unmeasured risk factor that
eventually leads to wrong conclusions if not taken into account. Moreover,
there is even a misunderstanding in the concept itself. That is, it is hard to
differentiate between static and dynamic fraility.

So, the first and the critical point is a confirmation of whether there is fraility
or not. Second, is this fraility static or dynamic? Sometimes the current frail
may depend on the past. Thus, we are keenly interested to see the interrela-
tion between static/fixed fraility for each individual and dynamic/stochastic
processes that change over time (Aalen et al., 2008).

The idea of intensity functions and counting processes are vital for modelling
and statistical analysis of recurrent events. The event intensity function gives
the instantaneous probability of an event occuring at t, conditional on the
process history. The intensity is defined formally as

λ(t|H(t)) = lim∆t↓0
Pr[∆N(t)=1|H(t)]

∆t

where H(t) = [N(s) : 0 ≤ s < t] denote the history of the process at time t
(see e.g. Cook and Lawless, 2006).
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Just referenced to (Aalen et al., 2008), in this study, individual intensity
given the fraility variable aj is

λ(t) = aw(t)

where w(t) = λβtβ−1 is a common baseline intensity and fixed function,
that is, independent of the past, while aj, j = 1, 2, ...,m, are independent
identically distributed random variables give in the multiplicative factor that
determines the risk of an individual. Here we considered aj to be gamma
distributed with scale parameter δ and shape parameter 1

δ
.

Hence, the conditional intensity of the fraility model,

λ(t) = w(t)
1
δ

+N(t−)

δ+A(t)

where A(t) =
∫ t

0
w(u)du ≡ λtβ

Thus

λ(t) =

[
w(t)

δ[δ + A(t)]

]
[1 + δN(t−)]

=

[
λβtβ−1

δ[δ + λtβ]

]
[1 + δN(t−)]

Recall LEYP model:

λ(t) = w∗(t)[1 + γN(t−)]

Hence,

Fraility ⇔ LEY P : if w∗(t) = w(t)
δ[δ+A(t)]

This bi-implication shows us that fraility models may alternatively be viewed
as dynamic models. Hereafter, we are interested in confirming this theoretical
observation by a simulation study.
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6 Simulate m Systems with dynamic ROCOF

As mentioned before we suppose that the data concerns on m systems with a
consideration of these systems in a calender time interval [S,T] where S and
T are the starting and the ending time of observation. We might look the
system at the start of the operation i.e S=0 and up to T=10.

We can use ordinary power law model w(t) = λβtβ−1 to simulate failure
time T1 = S1; to simulate T2 in the interval [S1,∞) we might use the inten-
sity w(t) = (1 + γ)λβtβ−1; to simulate T3 from the interval [S2,∞) where
S2 = S1 +T2, we can consider the intensity w(t) = (1+2γ)λβtβ−1 and so on.

How to simulate T1? To generate the failure time T1 we can see the fol-
lowing procedures

Step 1: Let us take z1(t) = λβtβ−1 the hazard rate of T1. Its survival function

G1(t) = P (T1 > t) = e−
∫ t
0 z1(u)du. By integrating the intensity function the

survival function is G1(t) = e−λt
β

Step 2: Draw a random variable u1 ∼ u[0, 1] and equate to the survival
function G1(t) = e−λt

β

Thus,
e−λt

β

= u1

⇒ − log u1 = λT β1

⇒ S1 = T1 =

(
− log u1

λ

)1/β

How to simulate T2?

Claim: T2 has hazard rate z2(t) = (1 + γ)λβ(S1 + t)β−1, which is condi-
tional on S1. The survival function of T2 conditional on S1 is

G2(t) = P (T2 > t)

= e−
∫ t
0 z2(u)du
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= e−
∫ t
0 (1+γ)λβ(S1+u)β−1du

= e−(1+γ)λβ
∫ t
0 (S1+u)β−1du

= e−(1+γ)λβ
∫ S1+t
S1

xβ−1dx

= e−(1+γ)λ[(S1+t)β−Sβ1 ]

Let us draw a random variable u2 ∼ u[0, 1] and equate to the survival func-

tion u2 = e−(1+γ)λ[(S1+T2)β−Sβ1 ]

This implies that

u2 = e−(1+γ)λ[(S1+T2)β−Sβ1 ]

⇒ log u2 = −(1 + γ)λ
[
(S1 + T2)β − Sβ1

]
⇒ − log u2

(1 + γ)λ
= (S1 + T2)β − Sβ1

⇒ S1 + T2 =

(
Sβ1 −

log u2

(1 + γ)λ

)1/β

⇒ T2 =

(
Sβ1 −

log u2

(1 + γ)λ

)1/β

− S1

Thus,

S2 =

(
Sβ1 −

log u2

(1 + γ)λ

)1/β

How to simulate T3?
Claim: T3 has hazard rate z3(t) = (1+2γ)λβ(S2 + t)β−1, which is conditional
on S2. The survival function of T3 is
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G3(t) = P (T3 > t)

= e−
∫ t
0 z3(u)du

= e−
∫ t
0 (1+2γ)λβ(S2+u)β−1du

= e−(1+2γ)λβ
∫ t
0 (S2+u)β−1du

= e−(1+2γ)λβ
∫ S2+t
S2

xβ−1dx

= e−(1+2γ)λ[(S2+t)β−Sβ2 ]

Let us draw a random variable u3 ∼ u[0, 1] and equate to the survival func-

tion u3 = e−(1+γ)λ[(S2+T2)β−Sβ2 ]

This implies that

u3 = e−(1+2γ)λ[(S2+T3)β−Sβ2 ]

⇒ log u3 = −(1 + 2γ)λ
[
(S2 + T3)β − Sβ2

]
⇒ − log u3

(1 + 2γ)λ
= (S2 + T3)β − Sβ2

⇒ S2 + T3 =

(
Sβ2 −

log u3

(1 + 2γ)λ

)1/β

⇒ T3 =

(
Sβ2 −

log u3

(1 + 2γ)λ

)1/β

− S2

Thus,

S3 =

(
Sβ2 −

log u3

(1 + 2γ)λ

)1/β
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Similarly,

S4 =

(
Sβ3 −

log u4

(1 + 3γ)λ

)1/β

,

S5 =

(
Sβ4 −

log u5

(1 + 4γ)λ

)1/β

and so on. Graphically,

0S
1tβλβ −

1S 1(1 ) tβγ λβ −+ 2S 1(1 2 ) t βγ λβ −+ 3S 1(1 3 ) tβγ λβ −+ 4S …

10τ =

1T 2T 3T
4T

…

Figure 4: Relation between the interoccurrence times (Ti), caleander time Si
and intensity w(t) = (1 + iγ)λβtβ−1 where i = 0, 1, ....

If γ = 0, then LEYP process is an ordinary power law process.

S1 = T1 =

(
− log u1

λ

)1/β

S2 =

(
Sβ1 −

log u2

λ

)1/β

S3 =

(
Sβ2 −

log u3

λ

)1/β

and so on but stop while we are passing τ . So we can simulate ordinary
power law process from LEYP model by making γ = 0.
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We may describe it graphically as:

  
11t 21t

11nt 1T0 

  t t t T0



1 jt 2 jt
jn jt

jT0 



  
1mt 2mt

mn mt
mT0 

Figure 5: Observation of failure times of m systems.

Similarly, we can simulate power law with frailty from LEYP model. For
process ]1, draw an ”a1” from gamma distribution with expected value 1
and variance δ. Then the failure times are simulated as

S
(1)
1 = T

(1)
1 =

(
− log u1

λ · a1

)1/β

S
(1)
2 =

(
S

(1)β
1 − log u2

λ · a1

)1/β

S
(1)
3 =

(
S

(1)β
2 − log u3

λ · a1

)1/β

and so on.

For process ]2, draw an ”a2” from gamma distribution.
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S
(2)
1 = T

(2)
1 =

(
− log u1

λ · a2

)1/β

S
(2)
2 =

(
S

(2)β
1 − log u2

λ · a2

)1/β

S
(2)
3 =

(
S

(2)β
2 − log u3

λ · a2

)1/β

and so on. Graphically, provided β = 3
2
,
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Figure 6: Observation of failure times of m system with frailties a

7 Maximum Likelihood Estimation

Although the method of maximum likelihood is an efficient method once we
have an explicit likelihood function,it is a routine procedure for obtaining
estimators for unknown parameters from a set of data. It’s estimate for θ
is a value of θ which maximize the likelihood function over the parameter
space. It is a single parameter value which is most likely in light of what
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have been observed.

Definition:

1. The likelihood function is the joint probability (density) function of
observable random variables but it is viewed as the function of the pa-
rameters given the realized random variables.

Mathematically,let x1, x2, ..., xn be a random sample of size n from the
discrete pdf pX (x; θ). The likelihood function, L(θ), is the product of
the pdf evaluated at the n x

′
is. That is,

L (θ) = Πn
i=1pX (xi; θ)

Similarly,if x1, x2, ..., xn be a random sample of size n from a continuous
pdf, fX (x; θ). The likelihood function can be written as

L (θ) = Πn
i=1fX (xi; θ)

where θ is an unknown parameter in both cases. Moreover, let θl is the
value of the parameter such that L(θl) ≥ L(θ) for all possible values of
θ. Then θl is maximum likelihood estimate(MLE) θ.

2. The function l (θ) = lnL (θ) is the log likelihood function of x1, x2, ..., xn.

3. The function S (θ) = ∂
∂x
l (θ) is the score function of x1, x2, ..., xn.

4. The function I (θ) = − ∂2

∂x
l (θ) is the information matrix of x1, x2, ..., xn.

The Fisher information matrix is used to calculate the covariance matrices
associated with maximum-likelihood estimates so that we can easily estimate
the standard deviation of estimates.
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8 Preliminary Analysis

The main objective of the preliminary analysis is to give a simple overview
about simulation of a single process observed on the time interval [0,10].

8.1 Ordinary power law model

This is simulation of a single process observed on the interval [0,10], where
parameter values are λ = 2 and β = 1.5.
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Figure 7: Random failures time t Vs number of failure N(t)

8.2 Fraility

These are simulations of single processes observed on the interval [0,10] for
the same λ = 2 and β = 1.5 but varying δ values
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Figure 8: Random failures time t Vs number of failure N(t), δ=0.2
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Figure 9: Random failures time t Vs number of failure N(t), δ=0.4
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Figure 10: Random failures time t Vs number of failure N(t), δ=0.6
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Figure 11: Random failures time t Vs number of failure N(t), δ=0.8
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Figure 12: Random failures time t Vs number of failure N(t), δ=1

8.3 Dynamic Behaviour

These are simulations of single processes observed on the interval [0,10] for
the same λ = 2 and β = 1.5 but varying γ values
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Figure 13: Random failures time t Vs number of failure N(t), γ=0.001
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Figure 14: Random failures time t Vs number of failure N(t), γ=0.01
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Figure 15: Random failures time t Vs number of failure N(t), γ=0.02
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Figure 16: Random failures time t Vs number of failure N(t), γ=0.04
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Figure 17: Random failures time t Vs number of failure N(t), γ=0.06
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Figure 18: Random failures time t Vs number of failure N(t),γ=0.08
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Figure 19: Random failures time t Vs number of failure N(t), γ=0.1
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9 Simulation Study

9.1 Power Law Model

9.1.1 Maximum Likelihood Estimate

Maximum likelihood estimates of ordinary power law model for single simula-
tion with a given value m=20, λ=2, β=1.5. The ML estimates are λ̂=1.9926
and β̂=1.4999. This resulted in the Fisher information

I
(
λ̂, β̂

)
=

 0.0407 −0.0082

−0.0082 0.0018


From the Fisher information matrix we can further derive the standard de-
viation of λ̂ and β̂ to be 0.2018 and 0.0423 in respective order. Its maximum
likelihood,
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Figure 20: Maximum likelihood estimates of ordinary power law model
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Figure 21: Histogram of Number of failure Vs Systems; λ=2, β=1.5, 10000
data sets and m=20 systems per data sets
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Hereafter, average (Ave.)and standared deviation (St.D) are denoted as fol-
lows:

For estimate [λ̂, β̂, δ̂ and γ̂]: Average (Ave.) is the sum of all estimates
divided by number of data sets and standard deviation (St.D) is the average
distance between the estimates and the mean(Average of estimates).

For number of failures [n]: Average (Ave.) is the sum of all number of
failure per system divided by the product of number of system per data set
,and number of total data sets. Its standard deviation (St.D) is the square
root of the quadratic distance between the number of failures per process
and the mean(Average number of failures).

Data m True Value n Estimates

10000 20 λ β Average St.D λ̂ β̂

Average St.D Average St.D

2 1.5 63.2896 7.9675 2.0034 0.2042 1.5012 0.0424

1 19.9312 4.4597 2.0000 0.2495 1.0030 0.0504

0.75 11.2457 3.3483 2.0015 0.2619 0.7526 0.0497

Table 1: Power law data and power law estimates
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Data m True Value n Estimates

10000 20 λ β δ Average St.D λ̂ β̂

Average St.D Average St.D

2 1.5 0.2 62.5152 29.2594 1.9850 0.3041 1.5036 0.0488

0.4 63.0461 40.7118 1.9918 0.3623 1.5023 0.0486

0.6 62.6755 49.3998 1.9892 0.4078 1.5020 0.0485

0.8 63.1969 56.7187 1.9962 0.4543 1.5018 0.0485

1 61..5949 63.0386 1.9845 0.4952 1.5019 0.0494

1 0.2 19.9349 9.9328 2.0050 0.3188 1.0024 0.0508

0.4 19.9346 13.2303 1.9942 0.3754 1.0036 0.0504

0.6 20.0902 16.4537 1.9949 0.4270 1.0033 0.0512

0.8 20.0922 18.5500 1.9966 0.4700 1.0049 0.0520

1 19.9214 20.3878 1.9906 0.5143 1.0085 0.0533

0.75 0.2 11.3481 6.0628 1.9478 0.3118 0.7671 0.0469

0.4 11.2743 7.7920 1.9453 0.3678 0.7680 0.0462

0.6 11.5032 9.3936 1.9335 0.4249 0.7712 0.0479

0.8 11.3861 10.5682 1.9247 0.4760 0.7745 0.0499

1 11.5880 11.9995 1.9198 0.5246 0.7799 0.0523

Table 2: Fraility data and power law estimates

Table Summary
Case 1: β > 1
As δ increases: average number of failures per system are nearly constant but
the standard deviation (St.D) increases; average of λ estimates are nearly
constant but the standard deviation (St.D) increases; average and standared
deviation (St.D)of β estimates are fairly constant.

Case 2: β = 1
As δ increase: similar to case 1.

Case 3: β < 1
As δ increase: average number of failures per system are very nearly con-
stant but the standard deviation (St.D) increases; average of λ estimates are
slightly decrease but standard deviation of λ estimates are increases; average
and standared deviation (St.D)of β estimates are increases.
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Data m True Value n Estimates

10000 20 λ β γ Average St.D λ̂ β̂

Average St.D Average St.D

2 1.5 0.001 65.0923 8.2762 1.9566 0.2013 1.5256 0.0428

0.01 88.1634 12.6667 1.5068 0.1652 1.7700 0.0455

0.02 126.9190 21.5008 0.9970 0.1171 2.1080 0.0483

0.04 289.1689 59.6044 0.2704 0.0344 3.0315 0.0516

0.06 726.9944 180.2163 0.0356 0.0045 4.3109 0.0495

1 0.001 20.2509 4.5139 2.0015 0.2537 1.0073 0.0512

0.01 22.1547 5.1818 1.9607 0.2539 1.0558 0.0517

0.02 24.5958 6.0606 1.9192 0.2549 1.1105 0.0532

0.04 30.8249 8.4493 1.7955 0.2505 1.2356 0.0551

0.06 38.8179 11.3669 1.6233 0.2399 1.3812 0.0575

0.75 0.001 11.2690 3.3855 1.9966 0.2703 0.7562 0.0515

0.01 11.8937 3.5962 2.0140 0.2696 0.7743 0.0507

0.02 12.6623 4.0317 2.0249 0.2805 0.7978 0.0523

0.04 14.2409 4.7588 2.0406 0.2861 0.8462 0.0529

0.06 16.0941 5.5937 2.0576 0.3010 0.8961 0.0550

Table 3: Dynamic data and power law estimates

Table Summary
Case 1: β > 1
As γ increase: average and standard deviation (St.D) of number of failure
per system are highly increases; averages and standard deviation (St.D) of λ
estimates are highly decrease; average of β estimates increases but the stan-
dard deviations (St.D) fairly constant.

Case 2: β = 1
As γ increase: average and standard deviation (St.D) of number of failure
per system are increase; average of λ estimates are decrease and its standard
deviation (St.D) estimates are fairly constant; average of β estimates are in-
crease but the standard deviation (St.D) fairly constant.
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Case 3: β < 1
As γ increase: average and standard deviation (St.D) of number of failure
per system are slowly increases; average of λ estimates are fairly constant
but the standard deviations (St.D) slowly increases; average of β estimates
are slowly increase but standard deviation (St.D) fairly constant.

9.2 A gamma multiple(frailty)Power Law Model

9.2.1 Maximum Likelihood Estimate

Here we are keenly interested to estimate parameters λ, β and δ.
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Figure 22: Histogram of Number of failure Vs Systems; λ=2, β=1.5,
δ=0.2,10000 data sets and m=20 systems per data sets
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Figure 23: Histogram of Number of failure Vs Systems; λ=2, β=1.5,
δ=0.4,10000 data sets and m=20 systems per data sets
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Figure 24: Histogram of Number of failure Vs Systems; λ=2, β=1.5,
δ=0.6,10000 data sets and m=20 systems per data sets
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Figure 25: Histogram of Number of failure Vs Systems; λ=2, β=1.5,
δ=0.8,10000 data sets and m=20 systems per data sets
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Figure 26: Histogram of Number of failure Vs Systems; λ=2, β=1.5,
δ=1,10000 data sets and m=20 systems per data sets
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Data m True Value n Estimates

10000 20 λ β δ Ave. St.D λ̂ β̂ δ̂

Ave. St.D Ave. St.D Ave. St.D

2 1.5 0.0001 63.2373 7.8956 2.0062 0.2024 1.5005 0.0423 0.002 0.0037

0.01 63.4082 10.2008 2.0054 0.2071 1.5009 0.0422 0.0112 0.0097

0.1 63.0648 21.4421 2.0075 0.2456 1.5005 0.0421 0.0942 0.0352

0.2 63.2006 29.6606 2.0042 0.2853 1.5013 0.0425 0.1897 0.0651

0.4 63.0469 40.1756 2.0033 0.3450 1.5009 0.0426 0.3795 0.1208

0.6 63.3880 49.3983 2.0063 0.4033 1.5014 0.0431 0.5718 0.1750

0.8 63.0149 56.1749 2.0050 0.4452 1.5013 0.0430 0.7511 0.2223

1 63.4131 64.1655 2.0033 0.5023 1.5021 0.0432 0.9309 0.2610

1 0.001 19.9770 4.6594 2.0057 0.2559 1.0030 0.0511 0.0071 0.0137

0.2 19.9885 9.9238 1.9987 0.3231 1.0023 0.0509 0.1879 0.0774

0.4 20.2335 13.4745 2.0052 0.3802 1.0026 0.0508 0.3742 0.1305

0.6 19.8679 15.8587 1.9968 0.4285 1.0043 0.0514 0.5520 0.1769

0.8 20.1814 18.2127 1.9923 0.4691 1.0051 0.0518 0.7158 0.2107

1 20.4585 20.8251 1.9843 0.5149 1.0083 0.0524 0.8679 0.2421

0.75 0.001 11.2590 3.3240 2.0083 0.2626 0.7521 0.0513 0.0123 0.0231

0.2 11.8200 6.8717 2.0535 0.3142 0.7502 0.0493 0.1888 0.0924

0.4 11.2779 7.8143 1.9923 0.3934 0.7557 0.0519 0.3620 0.1381

0.6 11.1454 9.2048 1.9846 0.4330 0.7572 0.0522 0.5234 0.1763

0.8 11.1906 10.4320 1.9702 0.4873 0.7624 0.0539 0.6685 0.2054

1 11.1918 11.4700 1.959 0.5285 0.7663 0.0552 0.7917 0.2274

Table 4: Fraility data and fraility estimates

Table Summary
Case 1: β > 1
As δ increase: average number of failure per system are constant but its stan-
dard deviation (St.D) increases; average of λ estimates are fairly constant but
the standard deviation (St.D) slowly increase: average and standard devia-
tion (St.D) of β estimates are fairly constant; average and standard deviation
(St.D) of δ estimates are increase.

Case 2: β = 1
As δ increase: similar as Case 1
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Case 3: β < 1
As δ increase: average number of failure per system are fairly constant but
the standard deviation (St.D) increases; average of λ estimates are decrease
but the standard deviation (St.D) increases: average of β estimates are in-
crease but the standard deviations (St.D) constant; average and standard
deviation (St.D) of δ are increase.

Data m True V. n Estimates

10000 20 λ β Ave. St.D λ̂ β̂ δ̂

Ave. St.D Ave. St.D Ave. St.D

2 1.5 63.1451 8.0541 2.0059 0.2057 1.5008 0.0430 0.0021 0.0036

1 20.0288 4.4658 2.0051 0.2526 1.0019 0.0509 0.0064 0.0119

0.75 11.2920 3.3512 1.9992 0.2653 0.7535 0.0507 0.0116 0.0215

Table 5: Power law data and fraility estimates
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Data m True Value n Estimates

1000 20 λ β γ Ave. St.D λ̂ β̂ δ̂

Ave. St.D Ave. St.D Ave. St.D

2 1.5 0.00001 63.3176 8.0255 2.0030 0.2019 1.5017 0.0423 0.0020 0.0038

0.001 65.2978 8.2883 1.9562 0.1972 1.5254 0.0425 0.0026 0.0042

0.01 88.4093 12.8219 1.5084 0.1668 1.7694 0.0459 0.0111 0.0080

0.02 127.0301 21.0328 0.9979 0.1159 2.1078 0.0480 0.0229 0.0119

0.04 287.3850 61.2510 0.2698 0.0349 3.0325 0.0516 0.0387 0.0133

0.06 719.8430 176.3796 0.0354 0.0044 4.3141 0.0479 0.0569 0.0194

1 0.00001 19.9410 4.3837 2.0018 0.2592 1.0019 0.0513 0.0062 0.0114

0.001 20.4110 4.6004 1.9959 0.2521 1.0097 0.0509 0.0069 0.0118

0.01 21.9510 5.0593 1.9584 0.2518 1.0558 0.0514 0.0135 0.0174

0.02 24.5330 6.0879 1.9214 0.2596 1.1113 0.0537 0.0238 0.0221

0.04 30.8490 8.4581 1.8012 0.2496 1.2348 0.0551 0.0474 0.0296

0.06 37.9590 11.3169 1.6259 0.2481 1.3816 0.0589 0.0682 0.0334

0.08 50.1180 16.0797 1.4173 0.2131 1.5465 0.0587 0.0763 0.0305

0.1 64.0240 22.7574 1.1807 0.1888 1.7359 0.0616 0.0943 0.0361

0.2 269.6050 120.1785 0.2495 0.0397 3.0342 0.0576 0.1902 0.0602

0.75 0.00001 11.2950 3.3210 2.0022 0.2644 0.7536 0.0490 0.0117 0.0215

0.001 11.3640 3.5082 2.0046 0.2663 0.7550 0.0513 0.0126 0.0229

0.01 11.8860 3.5045 2.0044 0.2715 0.7769 0.0520 0.0164 0.0253

0.02 12.5950 4.1497 2.0310 0.2757 0.7970 0.0511 0.0261 0.0320

0.04 14.3780 4.8219 2.0294 0.2925 0.8478 0.0541 0.0441 0.0410

0.06 16.0900 5.8230 2.0615 0.3080 0.8961 0.0544 0.0668 0.0461

0.08 18.5330 7.1101 2.0409 0.3171 0.9561 0.0574 0.0942 0.0534

0.2 40.9700 19.5547 1.6950 0.2931 1.4002 0.0611 0.1937 0.0709

0.4 219.4870 136.0986 0.5884 0.1085 2.5791 0.0532 0.3823 0.1157

Table 6: Dynamic data and fraility estimates

Table Summary
Case 1: β > 1
As γ increase: average and standard deviation (St.D) of number of failures
per system are highly increases; average and standard deviation (St.D) of λ
estimates are highly decreases; average of β estimates are increases but the
standard deviation (St.D) fairly constant; average and standard deviation
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(St.D) of δ estimates are increases.

Case 2: β = 1
As γ increase: average and standard deviation (St.D) of failures per system
are increases; average and the standard deviation (St.D) decreases; average
of β estimates are increases but the standard deviations (St.D) fairly con-
stant; average and standard deviation (St.D) of δ estimates are increases.

Case 3: β < 1
As γ increase: average and standard deviation (St.D) of failure per system
are increases; average and standard deviation (St.D) of λ estimates are de-
creases; average of β estimates increase but the standard deviations (St.D)
fairly constant; average and standard deviation (St.D) of δ estimates are
increases.

9.3 A dynamic view of Power Law Model
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Figure 27: Histogram of Number of failure Vs Systems; λ=2,
β=1.5,γ=0.001,10000 data sets and m=20 systems per data sets
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Figure 28: Histogram of Number of failure Vs Systems; λ=2,
β=1.5,γ=0.01,10000 data sets and m=20 systems per data sets
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Figure 29: Histogram of Number of failure Vs Systems; λ=2,
β=1.5,γ=0.02,10000 data sets and m=20 systems per data sets
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Figure 30: Histogram of Number of failure Vs Systems; λ=2,
β=1.5,γ=0.04,10000 data sets and m=20 systems per data sets
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Figure 31: Histogram of Number of failure Vs Systems; λ=2,
β=1.5,γ=0.06,10000 data sets and m=20 systems per data sets

10 Conclusion

In this paper, interrelation between fraility and dynamic models have been
investigated. We have considered parameter δ as measure of fraility and γ as
measure of dynamic behaviour. Moreover, these, parameters are considered
as the main focus of the study and to see the difference from the baseline
model. We were forced to use a smaller γ than δ to have a reasonable number
of failures for dynamic behaviour. Unlike δ, as γ increases, a decrease in λ
is seen, but the converse for β due to the fact that higher number of failures
happen in system. Both features dynamic behaviour and frailty have great
impact on analyses, avoiding wrong conclusions occurring if they are not
taken into account. We have considered dynamic and fraility data sets and
estimate their parameters by the fraility likelihood function. Often the true
γ value and δ estimates are close to being equal. Hence, we can say that
fraility models may be viewed as an alternative to dynamic models.
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