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Fully Bayesian binary Markov random field

models: Prior specification and posterior

simulation

Petter Arnesen and H̊akon Tjelmeland

We propose a flexible prior model for the parameters of a binary Markov random field
(MRF) defined on a rectangular lattice and with k×l cliques. The prior model allows higher-
order interactions to be included in the MRF. We also define a reversible jump Markov chain
Monte Carlo (RJMCMC) algorithm to sample from the associated posterior distribution.
The number of possible parameters for an MRF with k × l cliques becomes high even for
small values of k and l. To get a flexible model which may adapt to the structure of a
particular observed image we do not put any absolute restrictions on the parametrization.
Instead we define a parametric form for the MRF where the parameters have interpretation as
potentials for the various clique configurations, and limit the effective number of parameters
by assigning apriori discrete probabilities for events where groups of parameter values are
equal.

To run our RJMCMC algorithm we have to cope with the computationally intractable
normalizing constant of MRFs. For this we adopt a previously defined approximation for
binary MRFs, but we also briefly discuss other alternatives. We demonstrate the flexibility
of our prior formulation in two examples with simulated data and in one real data example.

Key words: Approximate inference; Ising Model; Markov random fields; Reversible jump
MCMC.

1. INTRODUCTION

Markov random fields (MRF) are frequently used as prior distributions in spatial statistics.

A common situation is that we have an observed or latent field x which we model as an MRF,

p(x|θ), conditioned on a vector of model parameters θ. The most common situation in the

literature is to consider θ as fixed, see for instance examples in Besag (1986) and Hurn et al.

(2003), but several articles have also considered a fully Bayesian approach by assigning a prior

on θ. A fully Bayesian model is computationally simplest when x|θ is a Gaussian Markov

random field (GMRF) and this case is therefore especially well developed. A flexible imple-
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mentation of the GMRF case is given in the integrated nested Laplace approximation (INLA)

software, see Rue et al. (2009) and Martins et al. (2013). The case when the components of

x are discrete variables is computationally much harder and therefore less developed in the

literature. However, some articles have considered the fully Bayesian approach also in this

case, see in particular the early Heikkinen and Högmander (1994) and Higdon et al. (1997)

and the more recent Møller et al. (2006), Friel et al. (2009), Austad (2011), McGrory et al.

(2012) and Tjelmeland and Austad (2012).

Discrete MRFs contain a computationally intractable normalizing constant and this

makes the fully Bayesian approach problematic. Three classes of approaches have been

proposed to circumvent or solve this problem. The first is to replace the MRF likelihood

with a computationally tractable approximation. The second alternative is to use an esti-

mate of the normalization constant obtained by some Markov chain Monte Carlo (MCMC)

procedure prior to simulating from the posterior for θ, and the third approach is to include

an auxiliary variable sampled from the MRF p(x|θ) in the posterior simulation algorithm.

Of the references cited above, Heikkinen and Högmander (1994), Friel et al. (2009), Austad

(2011), McGrory et al. (2012) and Tjelmeland and Austad (2012) fall into the first class.

The first of these five articles are using the pseudo-likelihood as approximation, Friel et al.

(2009) and McGrory et al. (2012) are using a reduced dependency approximation (RDA),

while the two remaining papers are using theory for pseudo-Boolean functions to construct

approximations for binary MRFs. The strategy adopted in Higdon et al. (1997) falls into the

second class defined above. Møller et al. (2006) is the first article using the third approach,

and the exchange algorithm in Murray et al. (2006) is another member of this class. The

three approaches all have their advantages and disadvantages. First of all, only the third

approach is without approximations in the sense that it defines an MCMC algorithm with
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limiting distribution exactly equal to the posterior distribution of interest. However, for this

approach to be feasible perfect sampling from p(x|θ) must be possible, and computationally

reasonably efficient, for all values of θ. The strategy used in the second class requires in

practice that the parameter vector θ is low dimensional. The approximation strategy does

not have restrictions on the dimension of θ and perfect sampling from p(x|θ) is not needed.

In that sense this approach is more flexible, but of course the approximation quality will

typically depend on the value of θ.

In this article we consider the fully Bayesian approach and for simplicity we limit the

attention to the case where the components of x are binary. Our focus is on the specification

of a prior distribution for θ and on simulation from the associated posterior distribution.

The articles discussed above are only considering the Ising model and the closely related au-

tologistic model in their example sections, and very simple prior distributions are adopted.

In this article we assume x|θ to be an MRF with k × l cliques and allow also higher order

interactions. For such a model the number of parameters becomes quite high even for small

values of k and l, but to get a flexible prior model which may adapt to the structure of the

particular observed image we do not put any absolute restrictions on the parametrization.

Instead we limit the effective number of parameters by adopting a prior for θ with discrete

probabilities for some parameter values to be equal. To simulate from the resulting posterior

distribution we construct a reversible jump MCMC (RJMCMC) algorithm (Green 1995).

One should note that with our choice of prior this algorithm effectively act as a model selec-

tion procedure. To run the RJMCMC algorithm we have to cope with the computationally

intractable normalizing constant of the MRF. In principle any of the approaches discussed

above may be used, but the complexity of the parameter space makes the prior estimation

of the normalization constant approach impractical. Moreover, the accuracy of the pseudo-
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likelihood approximation is known to be quite poor, and in simulation exercises we found

that perfect sampling from p(x|θ) was extremely computational intensive for some values

of θ. We are therefore left with the RDA approach and the approximation strategy based

on pseudo-Boolean functions. In our simulation examples we adopt the latter of these, but

RDA could equally well have been used.

The article has the following organization. In Section 2 we discuss possible parametriza-

tion of binary MRFs, and in particular we identify the maximal number of free parameters

for a model with k × l cliques. We define our prior for θ in Section 3, and describe our

RJMCMC algorithm for simulating from a posterior distribution in Section 4. In Section 5

we present results for two simulated data examples and for one real data example. Finally,

some closing remarks are provided in Section 6.

2. MRF

In this section we give a brief introduction to MRFs, see Cressie (1993) and Hurn et al. (2003)

for more details, and in particular we focus on binary MRFs and the parametrization in this

case. We close with two examples of binary MRFs. This section provides the theoretical

background needed in order to understand the construction of our prior distribution in

Section 3, and the RJMCMC algorithm given in Section 4.

2.1 Binary MRF

Assume a rectangular lattice of dimension n×m, and let the nodes be numbered lexicograph-

ically from 1 to nm. To each node i ∈ S = {1, ..., nm} associate a binary variable xi ∈ {0, 1},

and let x = (x1, ..., xnm) be the vector of these binary variables. Let xΛ = (xi|i ∈ Λ) denote
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the binary variables with indices belonging to an index set Λ ⊆ S. We will also use the

notation x−i = xS\{i}. Let N = {N1, ...,Nnm} be a neighborhood system where Ni ⊆ S \{i}

is the set of neighbor nodes of node i. We assume symmetry so if i ∈ Nj, then j ∈ Ni. Now,

x is a binary MRF if p(x) > 0 for all x, and p(xi|x−i) fulfills the Markov property

p(xi|x−i) = p(xi|xNi
) for all i.

A clique is defined to be a set Λ ⊆ S, where i ∈ Nj for all distinct i, j ∈ Λ, and we denote

the set of all cliques by L. Note that by this definition sets containing only one node and

the empty set are cliques. A maximal clique is defined to be a clique that is not a subset

of another clique, and we denote the set of all maximal cliques by Lm. According to the

Hammersley-Clifford theorem (Clifford 1990), the most general form the distribution p(x) of

an MRF can take is

p(x) = c exp

(

∑

Λ∈Lm

UΛ(xΛ, θ)

)

, (1)

where c is a computationally demanding normalizing constant, UΛ(xΛ, θ) is a potential func-

tion for a given maximal clique Λ, and θ is a parameter vector.

To simplify the definition of a prior for the parameter vector θ of an MRF we first limit

the attention to stationary MRFs defined on an n×m lattice with torus boundary conditions,

and assume the neighborhood system to be such that the set of maximal cliques, Lm, are

equal to all k × l blocks of nodes on the torus. The torus assumption means that nodes

close to the boundary have neighbors on the opposite boundary, and we get nm maximal

cliques. To obtain this set of maximal cliques the set of neighbors Ni to any node i must

clearly be the set of all nodes, except node i, lying within the (2k + 1) × (2l + 1) block of

nodes centered at node i. The assumption of stationarity implies that the potential function

UΛ(·, ·) must be translational invariant in that the function must be equal for all Λ ∈ Lm. We
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can thereby simplify the notation by replacing UΛ(xΛ, θ) with U(xΛ, θ). Later in the article

we consider also the situation when the MRF is defined on a lattice with free boundaries,

and in particular we discuss how our prior for θ can be adapted to this situation.

Consider a stationary MRF defined on a torus as defined above. Before defining a prior

on θ in Section 3, we will in the following identify a parametric form for U(xΛ, θ) which

makes the corresponding p(x) identifiable, but otherwise is as general as possible given our

assumptions about stationarity and torus boundary conditions. For a maximal clique Λ ∈ Lm

there is clearly 2kl possible xΛ, and we refer to these as configurations. We obtain a naive

parametrization of U(xΛ, θ) by introducing one parameter θy to each possible configuration

y ∈ {0, 1}k×l and defining

U(xΛ, θ) =
∑

y∈{0,1}k×l

θyI(xΛ = y) = θxΛ, (2)

where xΛ and y are k × l matrices of zeros and ones, and I(·) is one when the argument is

true and zero otherwise. When k = l = 2 we have in particular that

θ =
(

θ
00
00, θ

10
00, ..., θ

11
11

)

∈ R
16. (3)

We refer to the elements of θ as configuration parameters. It is a well known fact that this

model is not identifiable, meaning that several different choices of θ give the same model. For

example, adding the same value to all configuration parameters will not change the model,

as this will be compensated by a corresponding change in the normalizing constant. A less

obvious way to change the parameter vector without changing the model, when k = l = 2, is

for example to add some value to θ
10
00 and subtract the same value from θ

01
00, θ

00
10 or θ

00
01. In the

following we present an alternative representation of p(x) that is clearly always identifiable

and use this to find a minimal number of restrictions that needs to be put on θ to make the

above parametric model identifiable as well.
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Following Tjelmeland and Austad (2012), we note that U(xΛ, θ) is a pseudo-Boolean

function and thereby p(x) can be represented as

p(x) = c exp

(

∑

Λ∈L

βΛ
∏

i∈Λ

xi

)

, (4)

where βΛ is referred to as the interaction parameter for clique Λ, which is said to be of

|Λ|’th order. More details on pseudo-Boolean functions and their properties can be found in

Grabisch et al. (2000) and Hammer and Holzman (1992). Since this representation consists

of linearly independent functions of x, it is clear that the model is identifiable when, for ex-

ample, β∅ is fixed. This model represents the most general form of a binary MRF, meaning

that all binary MRFs can be represented on this form. To find sufficient restrictions on θ, we

first note that the interaction parameters are also translational invariant under the station-

ary and torus boundary condition assumptions. A proof is included in the supplementary

materials of this paper. Next, we establish a one-to-one relation between the θ parameters

in (2) and the β parameters in (8).

Let β be the vector of interaction parameters. For instance in the 2 × 2 clique case we

have

β =
(

β∅, β , β , β , β , β , β , β , β , β , β
)

,

where for instance β denotes the parameter for all horizontally adjacent nodes. Note

that we order the elements in this vector by increasing order of |Λ|. Remembering that

one restriction must be put on the β parameters to obtain identifiability we see that 10

free parameters are used in this parametrization, compared to the 24 = 16 configuration

parameters in (3). The maximal number of free parameters Nkl to be used for maximal

cliques of size k × l for some values of k and l is given in Table 1. In this table we see

that the number of free parameters quickly grows as a function of the clique size. Since
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k × l 2kl Nkl

1× 2 4 2
2× 2 16 10
2× 3 64 44
3× 3 512 400
3× 4 4096 3392
4× 4 65536 57856

Table 1: The number of free parameters for different k × l cliques. Also the number of

configurations are shown in each case.

the functional spaces of (2) and the exponent of (8) is the same, and the latter model is

identifiable, some restrictions must be put on the configuration parameters to make model

(7) identifiable as well. In the following we define such a sufficient set of restrictions, and

we start, for the 2 × 2 cliques case, by representing all interaction parameters as functions

of the configuration parameters. Later we will see that these restrictions easily generalizes

to the k × l case. In particular we identify the 11× 16 matrix A such that β = Aθ. Finding

this relation can be done using a recursive technique where the interaction parameters are

calculated in the order they appear in the β vector. That is, we start by calculating β∅,

which can be done by comparing the models (7) and (8) for x = (0, 0, ..., 0),

β∅ = nmθ
00
00.

Next we calculate β by evaluating the two models for x = (0, ..., 1, 0, ..., 0), where the

position of the 1 is an arbitrary choice in the sense that all choices give the same result. We

get

β∅ + β = θ
10
00 + θ

01
00 + θ

00
10 + θ

00
01 + (nm− 4)θ

00
00

and thereby

β = θ
10
00 + θ

01
00 + θ

00
10 + θ

00
01 − 4θ

00
00.

Continuing in this way we can establish the rest of the interaction parameters. As already
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θ
00
00 θ

10
00 θ

01
00 θ

00
10 θ

00
01 θ

11
00 θ

00
11 θ

10
10 θ

01
01 θ

10
01 θ

01
10 θ

01
11 θ

10
11 θ

11
01 θ

11
10 θ

11
11

β∅ nm
β −4 1 1 1 1
β 2 −1 −1 −1 −1 1 1

β 2 −1 −1 −1 −1 1 1

β 1 −1 −1 1

β 1 −1 −1 1

β −1 1 1 1 −1 −1 −1 1

β −1 1 1 1 −1 −1 −1 1

β −1 1 1 1 −1 −1 −1 1

β −1 1 1 1 −1 −1 −1 1

β 1 −1 −1 −1 −1 1 1 1 1 1 1 −1 −1 −1 −1 1
Figure 1: The matrix A between the clique parameters θ and the interaction parameters β

in the case with maximal cliques of size 2× 2. Empty cells represents the value 0.

mentioned this system of equations can be written as β = Aθ, and the matrix A for the 2×2

case is shown in Figure 1. The ordering we choose on θ is the number of ones present in each

configuration y in θy, from no ones to only ones. For configurations with the same number

of ones, the ordering is made according to the ordering of the corresponding β parameters.

For instance, since β appear before β we have θ
11
00 and θ

00
11 before θ

10
01. The ordering for

the two former is however arbitrary. This ordering give A the lower triangular like shape

seen in Figure 1. In order to have identifiability, restrictions must be set on the configuration

parameters such that there is a one-to-one relation between θ and β. One possibility is to

define a matrix B that constrains θ by a parameter vector φ such that θ = Bφ where B has

dimension 2kl × (Nkl +1) and φ ∈ R
(Nkl+1) in the general case. In the following we illustrate

for a 2 × 2 clique how we construct B making sure that φ gives an identifiable model. The

generalization to a k × l clique will follow. To ensure identifiability one can define B such

that the matrix AB becomes square and lower triangular. As we can see in Figure 1, as a

product of the ordering of the elements we have chosen in β and θ, the system of equations

already have a shape that is close to being lower triangular. Starting with the equation for β∅
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in Figure 1 and moving down the rows we see that one or more new configuration parameters

are introduced in each row. That is, for each row in the matrix there exists one or more

elements from θ that gets non-zero coefficients for the first time. Our strategy is to give

all new parameters that are introduced in row i the same value φi, i = 0, ..., 10. We write

φ = (φ0, ..., φ10), and by using this constrained parametrization we have defined a square and

lower triangular matrix AB. The matrix B which gives this result is easy to define. This

matrix simply consists of only 0’s except for one entry with the value 1 in each row. For

row i this entry picks out the element in φ that θi should equal. For instance, the rows 2-5

will have a non-zero entry at the second position in order to get θ
10
00 = θ

01
00 = θ

00
10 = θ

00
01 = φ1,

while the tenth row will have a one at position 5 to obtain θ
10
01 = φ4. As we can see the

choice we make are in the construction of B, and one could imagine different choices being

made here, for instance constraining some of the θ parameters to equal zero. However, the

choice made here is intuitive, easy to construct and, as we will see next, easily generalized

to a k × l clique.

One way to obtain this solution also for a k × l clique is to think of the value 0 as a

background color, and focus on the position of the nodes with value 1 in the configuration,

which we will think of as an object. If we define the configurations to be translation invariant

with respect to the position of the nodes with value 1, we obtain the solution illustrated for

the 2 × 2 clique above. In other words, all configurations where exactly the same object of

nodes with value 1 appear but at different positions in the k × l block will be assigned the

same configuration parameter. For instance in the 3× 3 case we get

θ

110
100
000 = θ

011
010
000 = θ

000
110
100 = θ

000
011
010.

We may now write the potential function as U(xΛ, Bφ). Note that one more restriction on
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c0 =

{

(

00
00

)

}

, c1 =

{

(

10
00

)

,
(

01
00

)

,
(

00
10

)

,
(

00
01

)

}

, c2 =

{

(

11
00

)

,
(

00
11

)

}

,

c3 =

{

(

10
10

)

,
(

01
01

)

}

c4 =

{

(

10
01

)

}

, c5 =

{

(

01
10

)

}

, c6 =

{

(

11
10

)

}

,

c7 =

{

(

11
01

)

}

, c8 =

{

(

10
11

)

}

, c9 =

{

(

01
11

)

}

, c10 =

{

(

11
11

)

}

Figure 2: All the configuration sets for a binary 2× 2 clique.

φ is still needed in order to make the model identifiable. Our choice for this last restriction

is given later.

In the following we refer to all k×l configurations that are assigned the same configuration

parameter as a configuration set. We denote these sets by c0, ..., cNkl
. For instance in the

2× 2 case N22 = 10 and all the configuration sets for this case can be seen in Figure 2. We

refer to the elements of φ as configuration set parameters.

We end this section with a discussion on how the above torus MRF and associated prior

can be modified to the free boundary case. One should first note that for a free boundary

MRF, a translation invariance property of the potential functions will not be transferred

to a corresponding translation invariance for the interaction parameters, and neither will

such a model be stationary. Moreover, the restrictions we identified for the θ parameters in

the torus boundary condition case no longer apply. However, the extra free θ parameters

that may be introduced in the free boundary case will only model properties sufficiently

close to a boundary of the lattice. Our strategy in the free boundary case is to keep the

same θ parameter vector and translational invariant potential functions U(xΛ, θ) for all k× l

cliques as in the torus boundary condition case, but to add non-zero potential functions for

some (non-maximal) cliques at the boundaries of the lattice. Our motivation for including
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non-zero potential functions for some cliques at the boundaries of the lattice is to reduce

the boundary effect and, hopefully, get a model which is less non-stationary. To define our

non-zero potential functions at the boundaries, imagine that our n×m lattice is included in

a much larger lattice and that this extended lattice also has maximal cliques that are blocks

of k × l nodes. We then include a non-zero potential function for every k × l clique in the

extended lattice which is partly inside and partly outside our n×m lattice. In such a k × l

clique, let Λ denote the set of nodes that are inside our n ×m, and let λ denote the set of

nodes outside. As we have assumed that the k × l clique is partly inside and partly outside

our n×m lattice, Λ and λ are both non-empty and Λ∪ λ is clearly a maximal clique in the

extended lattice. For the (non-maximal) clique Λ we define the potential function

UΛ(xΛ, θ) =
1

2|λ|

∑

xλ

UΛ∪λ(xΛ∪λ, θ), (5)

where UΛ∪λ(xΛ∪λ, θ) is the same (translational invariant) potential function we are using for

maximal cliques inside our n × m lattice. One can note that (5) corresponds to averaging

over the values in the nodes outside our lattice, assuming them to be independent, and to

take the values 0 or 1 with probability a half for each.

2.2 Example 1: The independence model

Consider a model where the variables are all independent of each other and P (xi) = pxi(1−

p)1−xi for each i and where p is the probability of xi being equal to 1. We get

p(x) =
nm
∏

i=1

pxi(1− p)1−xi ∝ exp

(

α
nm
∑

i=1

xi

)

,

where

α = ln

(

p

1− p

)

.
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We use the independence model as an example also later in the paper, and in particular we

fit an MRF with 2 × 2 cliques to data simulated from this model. Therefore it is helpful to

know how one can represent the independence model using 2× 2 cliques. This can easily be

done by first writing the independence model on the form in (8), which we can do using the

recursive technique described above. Next one can solve for the configuration set parameters

for the configuration sets given in Figure 2 by comparing the interaction parameters for the

two models. Starting with the equations for β∅ we get

nφ0 = α · 0 = 0 ⇒ φ0 = 0.

Next, one can solve for φ1 by comparing the equations for β ,

4φ1 − 4φ0 = α ⇒ φ1 =
α

4
,

and continue in this way until all φi i = 0, ..., 10 are found. As already mentioned adding

a constant η to the obtained solution does not change the distribution of interest. The full

solution may be written as φ0 = η, φ1 = α/4 + η, φ2 = ... = φ5 = α/2 + η, φ6 = ... = φ9 =

3α/4 + η and φ10 = α+ η. How we choose η will be given later in the paper. When p = 0.5

we see that α = 0, and we get in fact that all configuration set parameters should be equal.

2.3 Example 2: The Ising model

The Ising model (Besag 1986) is given by

p(x) =
1

c
exp

{

−ω
∑

i∼j

I(xi 6= xj)

}

,

where the sum is over all horizontally and vertically adjacent sites, and ω is a parameter

controlling the probability of adjacent sites having the same value. The same strategy as in

the previous section can be used in order to represent the Ising model with 2 × 2 cliques.
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The Ising model is obtained by setting the configuration set parameters for the configuration

sets in Figure 2 equal to φ0 = φ10 = η, φ1 = φ2 = φ3 = φ6 = φ7 = φ8 = φ9 = −ω + η, and

φ4 = φ5 = −2ω + η.

3. PRIOR SPECIFICATION

In this section we define a generic prior for the parameters of an MRF with k × l cliques.

The first step in the specification of the prior is to choose what parametrization of the

MRF to consider. In the previous section we introduced three parametrizations for the

MRF, with parameter vectors θ, β and φ, respectively. When choosing between these three

parametrizations and defining the prior we primarily have the torus version of the MRF

in mind. However, as the free boundary version of the model is using the same parameter

vectors, the prior we end up with can also be used in that case. As discussed above, the

parametrization using θ is grossly overparameterized and it is thereby not natural to focus on

this formulation to define a prior. It should also be remembered that the parametrizations

using β and φ are non-identifiable, but here it is sufficient to add one restriction to make any

of these models identifiable. The perhaps easiest way to make the models identifiable is to

restrict one of the parameters to equal zero, but other alternatives also exist. We return to

this issue below. From Table 1 we see that for the φ and β parametrizations the dimension

of the parameter vectors grow rapidly with k and l. It is therefore natural to look for prior

formulations which include the possibility for a reduced number of free parameters. For the

β parametrization the perhaps most natural strategy to obtain this is to assign positive prior

probability to the event that one or several of the interaction parameters are exactly zero. The

interpretation of the φ parameter is different from the interpretation of the β parameter, and
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it is not natural to assign positive probability for elements of the φ vector to be exactly zero.

A more reasonable scheme here is to set positive prior probability for the event that groups of

configuration parameters have exactly the same value. In addition to specify the probabilities

for some elements in β to be exactly zero, or the probabilities for groups of elements in φ

to be equal, one also needs to specify a prior density for the (non-zero) parameter values.

As mentioned above the interpretation of the β and φ parameter differ substantially, and

thereby a prior for their value should also differ. We find it natural to assume apriori that

all elements in φ are on the same scale and, unless particular prior information is available

and suggests the opposite, we find it natural to choose a prior where the elements of the φ

vector are exchangeable. The interpretation of the β parameter is more complex than for

the φ parameters. In particular we think higher order interaction parameters apriori should

tend to take smaller values than lower order interaction parameters. This makes it more

difficult to specify a reasonable prior for β than for φ. In the following we therefore focus

on specifying a prior for φ. We first introduce the notation necessary to define the groups of

configuration parameters that should have the same value and thereafter discuss possibilities

for how to define the prior.

To define groups of configuration set parameters that should have the same value, let

C1, . . . , Cr be a partition of the set of all configuration sets, with Ci 6= ∅ for i = 1, . . . , r.

Thus, Ci ∩ Cj = ∅ for i 6= j and C1 ∪ . . . ∪ Cr = {c0, . . . , cNkl
}. Let ϕi denote the common

value for φj for all cj ∈ Ci, and let z = {(Ci, ϕi), i = 1, . . . , r}. Thus, for i = 0, . . . , Nkl we

have

φi =
∑

(C,ϕ)∈z

ϕI(ci ∈ C).

Let Φ denote the function so that φ = Φ(z). We define a prior on φ by specifying a prior for z.

An alternative to this construction would be to build up {C1, ..., Cr} in a non-random fashion,

15



constraining φ according to properties like symmetric and rotational invariance. However

with our prior distribution such properties can be inferred from data. The potential function

may now be written as U(xΛ, Bφ) = U(xΛ, BΦ(z)).

Given all configuration sets in a k× l clique, we want to assign positive probability to the

event that groups of configuration sets have exactly the same parameter value. For instance,

the 3 groups indicated in Section 2.3 is an example of such a grouping for a 2 × 2 clique.

Since no groups can be empty, the maximum number of groups one can get is Nkl + 1. Our

prior distribution for z will be on the form

p(z) = p({C1, ...., Cr})p({ϕ1, ..., ϕr}|r)

where p({C1, ..., Cr}) is the prior for the grouping of the configuration sets, while p({ϕ1, ..., ϕr}|r)

is the prior distribution on the group parameters given the number of groups r. Two pos-

sibilities for the prior distribution for {C1, ..., Cr} immediately comes to mind. The first

alternative is to assume a uniform distribution on the groupings,

p1({C1, ..., Cr}) ∝ const,

meaning that each grouping is apriori equally likely. However for p(r), the marginal proba-

bility of the number of groups, this means that most of the probability is put on groupings

with approximately (Nkl + 1)/2 groups. In fact the probability p(r) becomes equal to

p(r) =
g(Nkl + 1, r)

∑Nkl+1
i=1 g(Nkl + 1, i)

,

where g(Nkl + 1, r) is the number of ways Nkl + 1 configuration sets can be organized into r

unordered groups, remembering that no empty groups are allowed. The function g(Nkl+1, r)

is easily deduced to be

g(Nkl + 1, r) =
1

r!

r
∑

i=0

(

r

i

)

(−1)r−iiNkl+1,
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where each term in the sum is equal to the number of ways Nkl+1 configuration sets can be

organized into r ordered groups allowing for empty groups. For the 2 × 2 clique this means

for instance that p(r = 1) = p(r = 11) ≈ 10−6 while p(r = 5) = 0.36. The second alternative

for p({C1, ..., Cr}) is to make the distribution for the number of groups uniform. This can

be done by defining the probability distribution

p2({C1, ..., Cr}) =
1

(Nkl + 1)g(Nkl + 1, r)
.

With this prior a particular grouping with many or few groups will have a larger probability

than a particular grouping with approximately (Nkl + 1)/2 groups. For instance in the

2 × 2 case the probability of the grouping where all configuration sets are assigned to the

same group or the grouping with 11 groups is p({C1}) = p({C1, ..., C11}) = 0.09, while

the probability of a particular grouping with 5 groups is p({C1, ..., C5}) ≈ 10−7. Observe

however, that with both prior distributions we have the property that given the number

of groups the grouping is uniformly distributed. As a compromise between these two prior

distributions we propose

p({C1, ..., Cr}) ∝ p1({C1, ..., Cr})
1−γp2({C1, ..., Cr})

γ,

where 0 ≤ γ ≤ 1. Given z we assume in the reminder of the paper that

∑

(C,ϕ)∈z

ϕ = 0, (6)

in order to obtain identifiability. This choice also gives us an exchangeable model in opposite

to for instance fixing one configuration set parameter to a constant. Restricted to this sum-

to-zero property we assume independent zero mean normal priors with variance σ2
ϕ for all

the group parameters. This fully defines the prior for z, except that we have not specified

values for the two hyper-parameters γ and σ2
ϕ.
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4. MCMC SAMPLING FROM A POSTERIOR DISTRIBUTION

In this section we assume that an observed binary n × m image is available. We consider

this image as a realization from our MRF with free boundary conditions defined in Section

2. As prior for the MRF parameters we adopt the prior specified in Section 3. The focus

in this section is then on how to sample from the resulting posterior distribution. Letting x

denote the observed image, the posterior distribution we want to sample from is given by

p(z|x) ∝ p(x|BΦ(z))p(z),

where p(x|BΦ(z)) and p(z) are the MRF from Section 2 and the prior from Section 3,

respectively. To simulate from this posterior distribution we adopt a reversible jump Markov

chain Monte Carlo (RJMCMC) algorithm (Green 1995) with three types of updates. The

detailed proposal mechanisms are specified in the supplementary materials, here we just give

a brief description of our proposal strategies.

The first proposal in our algorithm is simply first to propose a change in an existing

ϕ parameter by a random walk proposal with variance σ2, and thereafter to subtract the

same value from all ϕ parameters to commit with the sum-to-zero constraint. In the second

proposal we draw a pair of groups and propose to move one configuration set from the

first group to the second group, ensuring that the two groups are still non-empty. In the

last proposal type, we propose a new state by either increasing or decreasing the number

of groups with one. When increasing the number of groups by one we randomly choose a

configuration set from a randomly chosen group and propose this configuration set to be a

new group. When proposing to reduce the number of parameters with one, we randomly

choose a group with only one configuration set and propose to merge this group into another
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group. In the trans-dimensional proposals we ensure that the proposed parameters commit

with the sum-to-zero constrain by subtracting the same value from all ϕ parameters.

5. SIMULATION EXAMPLES

In this section we first present two examples based on simulated data sets, and thereafter

present results for a data set of census counts of red dear in the Grampians Region of north-

east Scotland. In all the simulation experiments we use the prior distribution as defined in

Section 3. In this prior the values of the two hyper-parameters σϕ and γ must be specified.

We have fixed σϕ = 10 and tried γ = 0, 0.5 and 1. When discussing simulation results we

first present results for γ = 0.5. As likelihood function we use the MRF discussed in Section 2

and we use 2×2 cliques except in the last part of the real data example where we also discuss

results for 3× 3 cliques. To cope with the computationally intractable normalizing constant

of the MRF likelihoods, we adopt the approximation strategy of Tjelmeland and Austad

(2012). The MRF is then approximated with a partially ordered Markov model (POMM),

see Cressie and Davidson (1998), where the conditional distribution of one variable given all

previous values is allowed to depend on maximally ν previous values. We have tried different

values for ν and found that in all our examples ν = 7 is sufficient to obtain very good

approximations, so all the results presented here are based on this value of ν. To simulate

from posterior distributions we use the reversible jump MCMC algorithm defined in Section

4. In our sampling algorithm we have an algorithmic tuning parameter σ2 as the variance

in Gaussian proposals. Based on the results of some preliminary runs we set σ = 0.3. Note

also that one iteration of our sampling algorithm is defined to be one of each proposal type.

Lastly we note that parallel computing was used in order to reduce computational time, and
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the technique that is used is explained in the supplementary materials.

5.1 The independence model

We generate a realization from the independence model in Section 2.2 with p = 0.3 on

a 100 × 100 lattice, consider this as our observed data x, and simulate by the MCMC

algorithm defined in Section 4 from the resulting posterior distribution. Using the notation

for the configuration sets in a 2 × 2 clique defined in Figure 2 and the results from Section

2.2, we ideally want our algorithm to produce realizations with the grouping {c0}, {c1},

{c2, c3, c4, c5}, {c6, c7, c8, c9}, {c10}. Note that due to our identifiablity restriction in (6) the

configuration set parameters should be close to the solution from Section 2.2 with η = −α/2.

To check convergence we investigated trace plots of various statistics, see the supplementary

material, and these investigations show that the algorithm converges very quickly. The

acceptance rate for the parameter value proposals is 24%, whereas the acceptance rates

for the other two types of proposals are both around 2%. We run our sampling algorithm

for 20000 iterations, and estimate the posterior probability of the number of groups. The

configuration sets are organized into 4 (77%), 5 (21%) or 6 (2%) groups, so for these data

the grouping tends to be a little bit too strong compared to the correct number of groups.

This can also be seen from the estimated posterior probability of two configuration sets

being assigned to the same group, shown in Figure 3. This figure suggests the four groups

{c0}, {c1}, {c2, c3, c4, c5, c7}, {c6, c8, c9, c10} which is also calculated to be the most probable

grouping estimated by counting the number of occurences. In fact the posterior probability

for this grouping is as high as 55%. In Figure 3 we also see how the most probable grouping

differ from the correct model grouping, shown in grey. The group {c6, c7, c8, c9} in the correct

model is split in the most probable grouping, and the subsets {c7} and {c6, c8, c9} are inserted
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Figure 3: Independence model example: Estimated posterior probabilities for two con-

figuration sets to be grouped together. The correct grouping is shown in grey, and only

probabilities larger than 5% are given.

into the correct model groups {c2, c3, c4, c5} and {c10}, respectively.

One informative way to look at the result of the simulation is to estimate the posterior

distribution for the interaction parameters β. Histograms and estimated 95% credibility

intervals for each of the parameters are given in Figure 4. As we can see, the true value of

the interaction parameters are mostly within the credibility intervals, but the tendency to

group the configurations too much is in this case forcing some of the true values into a tail

of the marginal posterior distributions.

To study the properties of the MRF p(·|BΦ(z)) when z is a sample from the posterior

p(z|x) we take 5000 samples from the MCMC run for p(z|x) and generate for each of these

a corresponding realisation from the MRF p(·|BΦ(z)). To analyze these 5000 images we

use six statistics describing local properties of the images. The statistics used and resulting
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Figure 4: Independence model example: Estimated marginal posterior distribution of the

interaction parameters. True values are shown with a black point and estimated 95% credi-

bility interval is given for each parameter.
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Figure 5: Independence model example: Distribution of six statistics of realizations from

our 2×2 model with posterior samples of z (solid), the independence model with correct pa-

rameter value (dashed), and the independence model with posterior samples of the parameter

value (dotted). The data evaluated with each statistic is shown with a black point.

density estimates (solid) of the distribution of these statistics are shown in Figure 5. In the

same figure we also show density estimates of the same statistics when images are generated

from the independence model with the true parameter value (dashed), and when images are

generated from the independence model with parameter value α generated from the posterior

distribution given our observed image x (dotted). In this last case, a zero mean Gaussian

prior distribution with standard deviation equal to 10 is used for α. As we can see, our model

captures approximately the correct distribution of the chosen statistics. It is interesting to
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note that for some statistics the realizations from the independence model with simulated

α values follows our model tightly whereas for the other statistics it is close to the correct

model.

All the above results are for γ = 0.5, but as mentioned in the introduction of this section

we also investigate the results for γ = 0 and 1. For γ = 0 the configuration sets are organized

into 4 (75%), 5 (23%) or 6 (2%) groups, and for γ = 1 we get 4 (93%), 5 (6%), 6 (1%) groups.

From these number we see the effect of varying γ. Particularly when increasing γ from 0.5

to 1.0 for this data set, the tendency to group more configuration sets together becomes

stronger.

We also did experiments were the value of p was changed. If the value of p is close to 0.5

the tendency to group the configurations too much becomes stronger. This makes perfectly

sense, since the correct grouping for p = 0.5 is to put all configuration sets into only one

group. In the other end, choosing p closer to 0 or 1 gives a stronger tendency to group the

configurations according to the correct solution. This illustrates the fact that the algorithm

tries to find a good model for the data using as few groups as possible, but as the difference

between the true parameter values of the groups becomes larger the price to pay for choosing

a model with fewer parameters increases.

5.2 The Ising model

We then repeat the same simulation exercise as above for an Ising model with ω = 0.4. Thus,

we generate a realization from the Ising model with ω = 0.4 on a 100× 100 lattice, consider

this as our observed data x and simulate by the MCMC algorithm from the resulting posterior

distribution. The x was obtained using the perfect sampler presented in Propp and Wilson

(1996). From the calculations in Section 2.3 we ideally want the correct grouping, {c0, c10}
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Figure 6: Ising model example: Estimated posterior probabilities for two configuration sets

to be grouped together. The true grouping is shown in grey, and only probabilities larger

than 5% are given. Note the permutation done to the ordering of the configuration sets ci.

{c1, c2, c3, c6, c7, c8, c9}, and {c4, c5}, to be visited frequently by our sampler. Again we run

our sampler for 20000 iterations and study the simulation results after convergence. The

acceptance rate for the parameter value proposals is 19%, whereas the acceptance rates for

the other two types of proposals are both around 1%. The estimated distribution for the

number of groups is 94%, 5% and 1%, for 3, 4 and 5 groups respectively.

In Figure 6 we have plotted the matrix representing the estimated posterior probability

of two configuration sets being assigned to the same group. As we can see in this figure, the

configuration sets are separated into 3 groups, and these groups correspond to the correct

grouping shown in grey. About 94% of the realizations is assigned to this particular grouping,

and almost all other groupings that are simulated correspond to groupings where the middle

group is split in various ways, while some very few are splits of the groups {c1, c10} and
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{c4, c5}. Every one of these alternative groupings have an estimated posterior probability of

less than 0.5%.

As in the previous example we estimate the posterior distribution for the interaction pa-

rameters, see Figure 7. As we can see, all the true values of the interaction parameters are

within the estimated credibility intervals, however the mode of the distribution for the pair-

wise horizontal and vertical second order interaction, see Figure 7(b) and 7(c), seems to be

somewhat lower than the correct value. As in the first example we compare the distribution

of the same six statistics from simulations from our 2 × 2 model with posterior samples of

z, the Ising model with correct parameter value, and the Ising model with parameter value

obtained by posterior sampling, see Figure 8. In this figure we also see that the data we use

for posterior sampling (black points) of z is a realization from the Ising model with low values

for the number of equal horizontal and vertical adjacent sites, see Figure 8(b) and 8(c), which

causes, as already observed above, our simulations of the second order interactions between

horizontal and vertical adjacent sites to be somewhat lower than the true value, see Figure

7(b) and 7(c). In fact we can see that the simulations from the Ising model using posterior

samples for the parameter value closely follows that of our 2 × 2 model. This means that

the results from our model is as accurate as the result one gets when knowing that the true

model is the Ising model without knowing the model parameter.

Also for this data set we ran our sampling algorithm in the cases where γ = 0 and 1.

For γ = 0 the configuration sets are organized into 3 (66%), 4 (31%) or 5 (3%) groups, and

for γ = 1 we get 3 (96%), 4 (4%) groups. As expected we again see the tendency towards

stronger grouping when γ is increased.
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Figure 7: Ising model example: Estimated marginal posterior distribution for the interac-

tion parameters. True values are shown with a black point and estimated 95% credibility

interval is given for each parameter.
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Figure 8: Ising model example: Distribution of six statistics of realizations from our 2× 2

model with posterior samples of z (solid), the Ising model with correct parameter value

(dashed), and the Ising model with posterior samples of the parameter value (dotted). The

data evaluated with each statistic is shown with a black point.

5.3 Red deer census count data

In this section we analyse a data set of census counts of red deer in the Grampians Region

of north-east Scotland. A full description of the data set is found in Augustin et al. (1996)

and Buckland and Elston (1993). The data is obtained by dividing the region of interest

into n = 1277 grid cells on a lattice and observing the presence or absence of red deer in

each cell. In our notation this is our observed image x, but in this example we also have

the four covariates altitude, mires, north coordinate and east coordinate available in each
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Figure 9: Red deer example: The presence/absence of red deer (left), altitude (middle),

and mires (right) in the Grampians Region of north-east Scotland.

grid cell. The binary data x and the two first covariates are shown in Figure 9. We denote

the covariate j at each location i by yij, j = 1, 2, 3, 4, and model them into the likelihood

function in the following way

p(x|BΦ(z), θC , y) =
1

c
exp

(

∑

Λ∈Lm

U(xΛ, BΦ(z)) +

n
∑

i=1

xi

4
∑

j=1

θCj yij

)

,

where θC = (θC1 , ..., θ
C
4 ) are the parameters for the covariates.

We put independent zero mean Gaussian prior distribution with standard deviation equal

to 10 on θCj , j = 1, ..., 4. In the sampling algorithm these covariates are updated using random

walk, i.e. we uniformly choose one of the four covariates to update and propose a new value

using a Gaussian distribution with the old parameter value as the mean and a standard

deviation of 0.1.

We ran our algorithm for 50000 iterations, and the acceptance rates for the parameter

random walk proposal is 42 %, the group changing proposal is 33%, the trans-dimensional

proposal is 5 %, and the covariate proposal is 48 %. The posterior most probable grouping

becomes {c0}, {c1, ..., c9}, {c10} with probability 33.2%. In total more than 2500 different

groupings are visited, and except for the posterior most probable grouping the posterior

probabilities of all other groupings are less than 5%. The estimated posterior probability

distribution for the number of groups becomes 43% for 3 groups, 48% for 4 groups, 8% for
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Figure 10: Red deer example: Estimated posterior probabilities for two configuration sets

to be grouped together for the red deer data set. The estimated most probable grouping is

shown in grey, and only probabilities larger than 5 % are given.

5 groups and 1% for 6 groups. In particular, the realizations with four or more groups are

mostly groupings where the set {c1, ...., c9} are split in various ways. This can also be seen

in Figure 10, which shows the estimated posterior probability of two configuration sets being

assigned to the same group. The grey blocks in this figure show the estimated posterior

most probable grouping described above. Next we estimate the posterior density for the

interaction parameters, see Figure 11. As we can see, most of the higher order interaction

parameters becomes significantly different from zero, suggesting that a 2 × 2 clique system

is needed for this data set. Figure 12 shows the estimated posterior density for the covariate

parameters. As we can see from the credibility intervals, all these parameters are significantly

different from zero, which justifies the need to include them.

Simulations of p(x|z, θC , y) for three randomly chosen posterior samples of z and θC are
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Figure 11: Red deer example: Estimated marginal posterior distribution for the interaction

parameters. Estimated 95% credibility interval is given for each parameter.
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Figure 12: Red deer example: Estimated marginal posterior distributions for the parame-

ters of the covariates. Estimated 95 % credibility interval is given for each parameter.

Figure 13: Red deer example: Three realizations from the likelihood for three random

samples of z from the posterior distribution.

shown in Figure 13. As we can see the spatial dependency in these realizations looks similar

to the data which indicates that the features of this data set are captured with this model.

Using γ = 0 for this data set gives the estimated posterior probability distribution 24%,

63%, 11% and 2% for 3, 4, 5 and 6 groups respectively, whereas for γ = 1 we obtain 60%,

35% and 5% for 3, 4 and 5 groups respectively. Again we see that higher values of γ results

in more realizations with fewer number of groups. For all the three values of γ the estimated

most probable grouping is the same.
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We end our disscussion of this data set by mentioning that some results of this data set

when assuming a clique size of 3×3 is included in the supplementary material of this paper.

These results indicate that no more significant structure is introduced in the 3 × 3 case for

this data set.

6. CLOSING REMARKS

Our main fucus in this paper is to design a generic prior distribution for the parameters

of an MRF. This is done by assuming a maximal k × l clique, but as the number of free

parameters grows quickly as a function of k and l we construct our prior distribution such

that it gives a positive probability for groups of parameters to have exactly the same value. In

that way we reduce the effective number of parameters, still keeping the complexity a higher

order neighbourhood provides. Proposal distributions that enables us to simulate from the

resulting posterior distributed is also presented. However, to evaluate the likelihood we

use a previously defined approximation to MRFs (Austad 2011), and the trade off between

accuracy and computational complexity limits in practice the size of the cliques that can be

assumed. An alternative to approximations is perfect sampling (Propp and Wilson 1996),

but this was in all our examples too computational intensive. A third alternative would be

to use an MCMC sample of x instead of a perfect sample, as described in for instance Everitt

(2012). An issue with this approach is the need to set a burn in period for the sampler of x,

where a too long burn in period would make the parameter sampler too intensive. Lastly,

we illustrate the effect of our prior distribution and sampling algorithm on three examples.

Our focus in this paper is on binary MRFs. It is however possible to generalize our

framework to dicrete MRFs, i.e. where xi ∈ {0, 1, ..., K} for K ≥ 2. An indentifiable
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parameterization of a dicrete MRF using clique potentials can with a small effort be defined

in a similar way to what is done in the binary case, and ones this parameterization is

established, the prior distribution presented in this paper can be used unchanged. The same

apply to or sampling strategy.

With our prior distribution the size of the maximal cliques, and thereby the number of

configuration sets, act as a hyper parameter and must be set prior to any sampling algorithm.

One could imagine also putting prior distribution on these variables, introducing the need

to construct algorithms for trans-dimensional sampling also for these quantities. Another

way to avoid the need to set the number of configuration sets would be to construct a

prior distribution for the β parameters. A natural choice would be to construct a positive

prior probability for these parameters to be exactly zero, and in this way the significant

interactions of a MRF can be inferred from data. However, it is not clear to us how to design

prior distributions for the values of these interaction parameters, as higher order interactions

intuitively would be different from lower order interaction. Also, grouping β parameters

together in order to reduce the number of parameters would, for the same reason as above,

make little sense. An ideal solution would be somehow to draw strength from both of the two

parametrizations in order to assign a prior distribution to both the appearance of different

cliques and the number of free parameters. This idea is currently work in progress.

SUPPLEMENTARY MATERIALS

Additional .pdf file: Proof of translational invariance for the interaction parameters, de-

tails for the MCMC sampling algorithm, trace plot for the independence model exam-

ple, reed deer census count data with 3× 3 clique, and parallelisation of the sampling
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algorithm.
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Supplemental materials to the paper

Fully Bayesian binary Markov random field

models: Prior specification and posterior

simulation

Petter Arnesen and H̊akon Tjelmeland

PROOF OF TRANSLATIONAL INVARIANCE FOR THE

INTERACTION PARAMETERS

As explained in the paper an MRF with torus boundary condition is given by

p(x) = c exp

(

∑

Λ∈Lm

UΛ(xΛ, θ)

)

, (7)

where UΛ(xΛ, θ) is a potential function for a given maximal clique Λ, Lm is the set of maximal

cliques, and θ is a parameter vector. If we assume the MRF to be stationary the potential

function UΛ(·, ·) must be translational invariant in that the function must be equal for all Λ ∈

Lm. We can thereby simplify the notation by replacing UΛ(xΛ, θ) with U(xΛ, θ). Alternatively

p(x) can be expressed by

p(x) = c exp

(

∑

Λ∈L

βΛ
∏

i∈Λ

xi

)

, (8)
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where βΛ is referred to as the interaction parameter for clique Λ, which is said to be of |Λ|’th

order, and where L is the set of all cliques. In this section we prove by induction that also βΛ

is translational invariant under the given assumptions. First we assume all interactions up to

order |Λ| = o to be translational invariant and then prove that then an interaction parameter

of order o+1 must also be translational invariant. Since β∅ obviously is translational invariant

this is enough to complete the proof. Thus, now assume all interaction parameters up to order

o to be translational invariant. Assume x to be such that only one interaction parameter of

order o+ 1 appear in the sum in (8), and let this interaction parameter be βΛ = β{i1,...,io+1},

where i1, ..., io+1 are the positions of the nodes in this interaction. One example of such an

x is xi = I(i ∈ Λ) for i ∈ S. Next, we let x′ = (x′
1, ..., x

′
nm) be a translation of x such that

x′
i = xtl1,l2(i)

for i ∈ S, where tl1,l2(i) is a translation that takes the position of node i and

moves it l1 positions upwards and l2 positions leftwards in the lattice, correcting for the torus

boundary condition, i.e.

tl1,l2(i) = 1 +

[(⌊

i− 1

m

⌋

+ l1

)

mod n

]

m+

((

i− 1

m
−

⌊

i− 1

m

⌋)

m+ l2

)

mod m.

The assumed stationarity clearly gives that we must have p(x) = p(x′), i.e.

β{i1,...,io+1} +
∑

Λ∈S:|Λ|≤o

βΛ
∏

i∈Λ

xi = β{tl1,l2 (i1),...,tl1,l2(io+1)} +
∑

Λ∈S:|Λ|≤o

βΛ
∏

i∈Λ

x′
i.

Using the assumption that all interaction parameters up to order o are translational invariant

we get

β{i1,...,io+1} = β{tl1,l2 (i1),...,tl1,l2(io+1)}.

Thus, by induction all interaction parameters are translational invariant.
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DETAILS FOR THE MCMC SAMLING ALGORITHM

In this Section we provide details of the proposal distributions that we use when sampling

from the posterior distribution

p(z|x) ∝ p(x|BΦ(z))p(z),

where p(x|BΦ(z)) and p(z) are the MRF and the prior given in the paper, respectively.

To simulate from this posterior distribution we adopt a reversible jump Markov chain

Monte Carlo (RJMCMC) algorithm with three types of updates. The first update type

uses a random walk proposal for one of the ϕ parameters, the second proposes to move one

configuration set to a new group, and the third proposes to change the number of groups, r, in

the partition of the configuration sets. In the following we describe the proposal mechanisms

for each of the three update types. The corresponding acceptance probabilities are given by

standard formulas. It should be noted that only the last type of proposal produces a change

in the dimension of the parameter space.

Random walk proposal for parameter values

The first proposal in our algorithm is simply to propose a new value for an already existing

parameter using a random walk proposal, but correcting for the fact the parameters should

sum to zero. More precisely, we first draw a change ε ∼ N(0, σ2), where σ2 is an algorithmic

tuning parameter. Second, we uniformly draw one element from the current state z =

{(Ci, ϕi), i = 1, . . . , r}, (Ci, ϕi) say, and define the potential new state as

z∗ =

{(

Cj, ϕj −
1

r
ε

)

, j = 1, . . . , i− 1, i+ 1, . . . , r

}

∪

{(

Ci, ϕi + ε−
1

r
ε

)}

.
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Proposing to change the group for one configuration set

Letting the current state be z = {(Ci, ϕi), i = 1, . . . , r}, we start this proposal by drawing

a pair of groups, Ci and Cj say, where the first set Ci is restricted to include at least two

configuration sets. We draw Ci and Cj so that the difference between the corresponding

parameter values, ϕi − ϕj , tend to be small. More precisely, we draw (i, j) from the joint

distribution

q(i, j) ∝



















exp (−(ϕi − ϕj)
2) if i 6= j and group Ci contains at least two configuration sets,

0 otherwise.

Thereafter we draw uniformly at random one of the configuration sets in Ci, c say. Our

potential new state is then obtained by moving c from Ci to Cj . Thus, our potential new

state becomes

z∗ = {z \ {(Ci, ϕi), (Cj, ϕj)}} ∪ {(Ci \ c, ϕi), (Cj ∪ c, ϕj)} .

Trans-dimensional proposals

Let again the current state be z = {(Ci, ϕi), i = 1, . . . , r}. In the following we describe how

we propose a new state by either increasing or reducing the number of groups, r, with one.

There will be a one-to-one transition in the proposal, meaning that the opposite proposal,

going from the new state to the old state has a non-zero probability. We make no attempt

to jump between states where the difference between the dimensions are larger than one.

First we draw whether to increase or to decrease the number of groups. If the number of

groups are equal to the number of configurations sets, no proposal to increase the number of

groups can be made due to the fact that empty groups have zero prior probability. In that
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case we propose to decrease the number of dimensions with probability 1. In our proposals

we also make the restriction that only groupings containing at least one group with only one

configuration set can be subject to a dimension reducing proposal. In a case where no such

group exists, a proposal of increasing the number of dimensions are made with probability 1.

In a case where both proposals are allowed we draw at random which to do with probability

1/2 for each. Note that at least one of the two proposals is always valid.

We now explain how to propose to increase the number of groups by one. We start by

drawing uniformly at random one of the groups with more than one configuration set, Ci

say, which we want to split into two new groups. Thereafter we draw uniformly at random

one of the configuration sets in Ci, c say, and form a new partition of the configuration sets

by extracting c from Ci and adding a new group containing only c. Next we need to draw a

parameter value for the new group {c}, and the parameter values for the other groups also

need to be modified for the proposal to conform with the requirement that the sum of the

(proposed) parameters should equal zero. We do this by first drawing a change ε ∼ N(0, σ2)

in the parameter value for c, where σ2 is the same tuning parameter as in the random walk

proposal. We then define the potential new state as

z∗ =

{(

Cj, ϕj −
1

r + 1
(ϕi + ε)

)

, j = 1, . . . , i− 1, i+ 1, . . . , r

}

∪

{(

Ci \ c, ϕi −
1

r + 1
(ϕi + ε)

)

,

(

{c}, ϕi + ε−
1

r + 1
(ϕi + ε)

)}

.

Next we explain the proposal we make when the dimension is to be decreased by one.

Since we need a one-to-one transition in our proposals, we get certain restrictions for these

proposals. In particular, the fact that only groupings containing at least one group with only

one configuration set are possible outcomes from a dimension increasing proposal dictates

that dimension decreasing proposals only can be made from such groupings. Assume again
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our current model to be z = {(Ci, ϕi), i = 1, . . . , r}, where at least one group contains only

one configuration set. The strategy is to propose to merge one group consisting of only one

configuration set into another group. As in Section 6, we draw the two configuration sets

to be merged so that the difference between the corresponding parameter values tend to be

small. More precisely, we let the two groups be Ci and Cj where (i, j) is sampled according

to the joint distribution

q(i, j) ∝



















exp (−(ϕi − ϕj)
2) if i 6= j and Ci consists of only one configuration set,

0 otherwise.

Next we need to specify potential new parameter values. As these must conform with how

we generated potential new values in the split proposal, we have no freedom left in how to

do this. The potential new state must be

z∗ =

{(

Ck, ϕk +
1

r − 1
ϕi

)

, k ∈ {1, . . . , r} \ {i, j}

}

∪

{(

Cj ∪ Ci, ϕj +
1

r − 1
ϕi

)}

.

The split and merge steps produce a change in the dimension of the parameter space, so

to calculate the acceptance probabilities for such proposals we need corresponding Jacobi

determinants. It is straightforward to show that the Jacobi determinants for the merge and

split proposals become r
r−1

and r
r+1

, respectively.

TRACE PLOT FOR THE INDEPENDENCE MODEL

EXAMPLE

To check for convergence of our sampling algorithm we investigate different trace plots. One

example for the independence model is shown in Figure 14. As we can see from this figure

the algorithm converges quickly.
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Figure 14: Independence model example: Trace plots for the first quarter of the posterior

simulation run. Solid curves are the result from a simulation where the initial number of

groups is 1, and dashed curves are from a run with an initial value of 11 (maximal) number

of groups.

RED DEER CENSUS COUNT DATA WITH 3× 3 CLIQUE

In this section we present some results when assuming a clique size of 3× 3 for the red deer

data set presented in Section 5.3 in the paper. The main drawback with our approach is

computational time, which is very dependent on the approximation parameter ν. One also

needs to keep in mind that even data from simple models will need many groups in the 3×3

case to be modeled correctly. For instance, for the independence model the 401 configuration
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sets would need to be separated into 10 groups, while for the Ising model one would need 11

groups to get the correct model grouping. Similarly, the posterior most probable grouping

found for the 2 × 2 case for the reed deer example would need 38 groups to be modeled in

the 3× 3 case. Thus it is important not to assume bigger cliques than needed. However for

this data set it is possible to run the sampling algorithm with 3× 3 clique, even though this

is computationally expensive.

In these simulations we use ν = 7, since this is the largest value of ν that gives a reasonable

computational time. Also, to get convergence we need a small generalization to the proposal

distribution for the trans-dimensional sampling step presented in Section 6. In particular

we allow for several configuration sets to be split out into a new group at a single proposal,

and correspondingly allow for the possibility of several configuration sets to be merge into

another group in one single proposal. The estimated marginal distribution of the number of

groups is 1%, 65%, 33%, and 1% for 29, 30, 31 and 32 groups respectively. Three realizations

from the likelihood for three randomly chosen realization of z is shown in Figure 15(a), and

comparing with the realizations for the 2 × 2 case, see Figure 13 in the paper, it is hard

to see any differences in the spatial structure of the realisations. We also investigated the

distribution of four statistics for 5000 realization from the likelihood of each of the two clique

sizes, see Figure 15(b), and it appears to be little difference also here. These results indicate

that 2× 2 cliques might have sufficient complexity to explain this data set.

PARALLELISATION OF THE SAMPLING ALGORITHM

Most of the computing time for running our sampling algorithm is used to evaluate the

likelihood in (7). In order to reduce the running time we adopt a scheme that do multiple
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(a) Three realizations from the likelihood for three random samples of z from the posterior distri-

bution.
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(b) Distribution of three functions of realizations from the likelihood with 3× 3 cliques (solid) and

2 × 2 cliques (dashed). The three functions are g(x) =
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(right).

Figure 15: Red deer 3× 3 example: Posterior results with γ = 0.5.

updates of the Markov chain by evaluating likelihoods in parallel.

Assume we are in a state z and propose to split/merge into a new state z1. Now there

are two possible outcomes for this proposal. Either we reject the proposal, which result in

state z, or we accept the proposal, which result in state z1. Either way we always propose

a parameter update in the next step, and proposing this step from both the two states z

and z1 before evaluating the acceptance probability for the split/merge step is possible. The

possible outcomes for these three proposals are z, z1, z2 and z12, where z is the outcome

where neither the split/merge proposal nor the following parameter proposal is accepted, z1

is the outcome where the split/merge proposal is accepted but not the following parameter
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Figure 16: Proposal scheme for parallel likelihood evaluations. Starting in model z, pro-

posals are made down the graph. Arrows pointing straight down represents rejection of

proposal while arrow pointing down and left represent acceptance. Double squares are used

to represents states where a new likelihood evaluation is needed.

proposal, z2 is the outcome where the split/merge proposal is not accepted but the parameter

proposal is, and z12 is the outcome where both the split/merge proposal and the following

parameter proposal are accepted. If we continue the argument we can do the same to propose

updates where configurations are moved from one group to another group, and in the red

deer example we even include a level where updates of covariates are proposed. After making

all proposals we evaluate the likelihood for each possible state in parallel. The result is that

we do need to evaluate too many likelihoods, but if the number of CPUs that are available is

larger than or equal to the number of likelihoods we need to evaluate, a computational gain

close to the number of levels is obtained. The updating scheme is illustrated in Figure 16.
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