
NORGES TEKNISK-NATURVITENSKAPELIGE

UNIVERSITET

Localized/Shrinkage Kriging Predictors

by

Zeytu Gashaw Asfaw and Henning Omre

PREPRINT

STATISTICS NO. 1/2014

NORWEGIAN UNIVERSITY OF SCIENCE AND

TECHNOLOGY

TRONDHEIM, NORWAY

This report has URL
http://www.math.ntnu.no/preprint/statistics/2014/S1-2014.pdf

Zeytu Gashaw Asfaw has homepage: http://www.math.ntnu.no/∼zeytugas
E-mail: zeytugas@math.ntnu.no

Address: Department of Mathematical Sciences, NTNU, N-7491 Trondheim,
Norway.



Localized/Shrinkage Kriging Predictors

Zeytu Gashaw Asfaw/zeytugas@math.ntnu.no
Henning Omre/omre@math.ntnu.no

Department of Mathematical Sciences
Norwegian University of Science and Technology(NTNU)

P.O.Box 7491, Trondheim, Norway

May 28, 2014

Abstract

The objective of the study is to improve the robustness and flexi-
bility of spatial kriging predictors with respect to deviations from spa-
tial stationarity assumptions. A predictor based on a non-stationary
Gaussian random field is defined. The model parameters are inferred
in an empirical Bayesian setting, using observations in a local neigh-
borhood and a prior model assessed from the global set of observations.
The localized predictor appears with a shrinkage effect and is coined
a localized/shrinkage kriging predictor. The predictor is compared to
traditional localized kriging predictors in a case study on observations
of annual cumulated precipitation. A crossvalidation criterion is used
in the comparision. The shrinkage predictor appears as uniformly
preferable to the traditional kriging predictors. A simulation study
on prediction in non-stationary Gaussian random fields is conducted.
The results from this study confirms that the shrinkage predictor is
favorable to the traditional ones. Moreover, the crossvalidation cri-
terion is found to be suitable for selection of predictor. Lastly, the
shrinkage predictor appears as particularly robust towards spatially
varying expectation functions.
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1 Introduction

Consider a set of exact observations from a continuous regionalized variable.
Focus is on prediction of the regionalized variable in an unobserved location
with associated prediction variance. One option is to use traditional kriging
prediction, see Journel and Huijbregts (1978) and Chiles and Delfiner (1999).
If one assume a model with spatially constant expectation and variance with
a shift-invariant spatial correlation function, then a global, ordinary kriging
predictor will be a natural choice. This model assumption may be tested
statistically, see Fuentes (2005).

A more flexible and robust spatial predictor can be defined by applying the
ordinary kriging predictor locally. This entails using only observations in a
specified finite neighborhood around the location of the variable to be pre-
dicted. This approach is termed local neighborhood kriging, see Chiles and
Delfiner (1999), and it robustifies the predictor with respect to deviations
from the assumption of spatially constant expectation and variance. More-
over, local neighborhood predictors can give huge computational gains in
large scale problems.

The major challenge in using localized predictors is to specify the size of
the neighborhoods, or the set of neighboring observations involved. Classical
statistical trade-offs between bias and variance in the local predictor must
be made. The spatial correlation structure may provide a screening effect by
the neighboring observations, see Stein (2002), and this effect may be used
to justify localization. The localized predictors can cause artifacts in the
predicted regionalized variable as discontinuities when extreme observations
are included or excluded in the neighborhood as it is shifted, see Gribov and
Krivoruchko (2004).

The objective of this study is to improve the flexibility and robustness of the
spatial predictor. We define a spatial model as a Gaussian random field with
spatially varying expectation and variance. The spatial correlation function
is shift invariant and known. Under these model assumptions the local neigh-
borhood kriging predictor require expectation and variance to be assessed in
the prediction and observation locations. In traditional kriging approaches
this inference is made by a sliding neighborhood maximum-likelihood esti-
mator.
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We define a new localized predictor inspired by the empirical Bayes approach
discussed in Efron and Morris (1973). We phrase the inference of the spatial
expectation and variance in a Bayesian setting along the lines of Røislien
and Omre (2006). The conjugate prior models are assessed empirically from
the global set of observations. The resulting local kriging predictor appear
with shrinkage caused by the global prior model. We term the predictor as
localized/shrinkage kriging.

The report is organized as follows : Section 2 contain a list of notation.
In Section 3 general random field models are defined and discussed. Model
parameter inference in these random field models are discussed in Section
4, while Section 5 contain definitions of the localized predictors. In Section
6 a presentation of the evaluation criteria is included. Section 7 contain a
demonstration and evaluation of the predictors on a couple of real data ex-
amples, while Section 8 presents the empirical simulation study on Gaussian
random fields. Lastly, Section 9 contains the conclusions from the study.

2 Notation

The folowing notation is used:
LD grid over D
n number of grid nodes in D
Lo locations of sampled observations
no number of sampled observation
k number of closest observation
r vector of values in grid LD

ro vector of values of observations in Lo
r+ value at location x+

rk+o vector of values in k-closest observations to location x+

in unit [n× 1]vector
In unit diagonal [n× n] matrix
µr expected value
σ2
r variance value

Σrr covariance matrix
Ωr correlation matrix
Γr diagonal standard deviation matrix
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H selection matrix
ν degree of freedom for hierarichical representation

3 Random field models

A random field (RF) is a generalization of a stochastic process, taking refer-
ences on some topological space. Due to the complexity of natural phenom-
ena and the actual problem, several kind of random fields are defined, among
them Gaussian RF, Poisson RF and Markov RF. The former is of concern in
the current study. We consider Gaussian RF {r(x);x ∈ D ⊂ <}, where x is
a reference location running over the domain D as a subset of <m, with r(x)
being the random variable of interest.

3.1 General Gaussian Random Field Model

A Gaussian RF is defined by the Gaussian probability density functions.
The Gaussian RF is a preferable model for continuous, or almost continuous,
spatial variables due to its simplicity in inferences and analytical tractability.

The definition of a Gaussian RF is:

A RF {r(x);x ∈ D ⊂ <m} is denoted a Gaussian RF if

r =

 r(x1)
...

r(xn)

 ∼ Nn(µr,Σrr) (1)

for ∀ conf (x1, · · · , xn) ∈ Dn, ∀n ≥ 1

and the corresponding pdf can be written as:

f(r) = (2π)−
n
2 |Σrr|−

1
2 exp

{
−1

2
(r− µr)TΣ−1

rr (r− µr)
}

,

where

µr =

 µr(x1)
...

µr(xn)

 ,
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and

Σrr = ΓrΩrrΓ
T
r ,

with

Γr =


σr(x1) 0 . . . 0

0 σr(x2) . . . 0
...

...
. . .

...
0 0 . . . σr(xn)



Ωrr =

 ρr(x1, x1) ρr(x1, x2) . . . ρr(x1, xn)
...

...
. . .

...
ρr(xn, x1) ρr(xn, x2) . . . ρr(xn, xn)


The model parameters for Gaussian RFs are:

{µr(x) = E [r(x)] ; x ∈ D} - spatial expectation field.{
σ2
r(x) = V ar [r(x)] ; x ∈ D

}
- spatial variance field.{

ρr(x
′
, x
′′
) = Corr

[
r(x

′
), r(x

′′
)
]

; x
′
, x
′′ ∈ D2

}
- spatial correlation field.{

φr(x
′
, x
′′
) = Cov[r(x

′
), r(x

′′
)] = σr(x

′
)σr(x

′′
)ρr(x

′
, x
′′
); x

′
, x
′′ ∈ D2

}
- spatial covariance field.

Hence, the model parametrization for a Gaussian RF is: {µr(x), σ2
r(x);x ∈ D}

and
{
ρr(x

′
, x
′′
);x

′
, x
′′ ∈ D2

}
. The requirements for the model parameters

are:

• σr(x) ≥ 0 for x ∈ D.

• −1 ≤ ρr(x
′
, x
′′
) ≤ 1 for x

′
, x
′′ ∈ D2

• Ωrr - non-negative definite matrix.
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Thus, a correlation field must be a positive semi-definite field to ensure that
Ωrr is valid. A correlation field ρr(x

′
, x
′′
) is called positive semi-definite if

the associated quadratic form is non-negative,then:

∑n
i=1

∑n
j=1 αiαjρr(xi, xj) ≥ 0

∀ conf(x1, ..., xn) ∈ Dn, ∀n > 1, ∀α = (α1, ..., αn)T ∈ <n

If in addition the quadratic form
∑n

i=1

∑n
j=1 αiαjρr(xi, xj) = 0 only for

α = 0in, then the correlation field ρr(x
′
, x
′′
) is called positive definite. Ex-

pectation, variance and correlation fields determine all stochastic properties
of a Gaussian RF.

Consider a regular grid over D, denote it LD and let the number of grid
nodes be n. Define the discretized Gaussian RF r = {r(x);x ∈ LD}.

Further let the expectation [n×1] vector µr = {µr(x);x ∈ LD}, the standard
deviation [n×n] matrix Γr be diagonal with elements {σr(x);x ∈ LD} and the
correlation [n× n] matrix Ωrr have elements

{
ρr(x

′
, x
′′
);x

′
, x
′′ ∈ LD × LD

}
.

Moreover, the covariance [n× n] matrix is Σrr = ΓrΩrrΓ
T
r .

Let ro be a [no × 1] vector of observations which occur at grid locations
hence at a subset of LD,

ro =


r(xo1)
r(xo2)

...
r(xono)

 =


ro1
ro2
...

rono


Hence, [ro | r] = Hr, where H is a binary selection [no × n] matrix having
one on all sampled location and zero in unsampled location.

Consider the combined vector of values at grid nodes and observations:[
r
ro

]
∼ Nn+no

 µr

Hµr

 ,
 Σrr ΣrrH

HΣrr HΣrrH
T
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Hence, the conditional Gaussian RF is

[r | ro] ∼ Nn(µr|ro ,Σrr|ro). (2)

where

µr|ro=E[r | ro] = µr + ΣrrH
T
[
HΣrrH

T
]−1

(ro −Hµr).

Σrr|ro=Var[r | ro] = Σrr − ΣrrH
T
[
HΣrrH

T
]−1

HΣrr

Consider prediction of the value in an arbitrary location x+ ∈ D, and denote
it r+ = r(x+). The avaliable observations are ro.

[
r+

ro

]
∼ N1+no

 µ+

Hµr

 ,
 σ2

+ σ+ω
T
o+HΓrH

T

σ+HΓrHωo+ HΓrΩrrΓrH
T



= N1+no

 µ+

µo

 ,
 σ2

+ σ+ω
T
o+Γo

σ+Γoωo+ ΓoΩooΓ
T
o


where µ+ = µ(x+), σ2

+ = σ2(x+) and

µo =

 µ(xo1)
...

µ(xono)

 = Hµr

ωo+ =

 ρ(xo1, x+)
...

ρ(xono , x+)
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Γo =


σ(xo1) 0 . . . 0

0 σ(xo2) . . . 0
...

...
. . .

...
0 0 . . . σ(xono)

 = HΓrH
T

Ωoo =

 ρ(xo1, xo1) ρ(xo1, xo2) . . . ρ(xo1, xono)
...

...
. . .

...
ρ(xono , xo1) ρ(xono , xo2) . . . ρ(xono , xono)

 = HΩrrH
T

and let Σoo = ΓoΩooΓ
T
o .

The conditional Gaussian random variable in location x+ given the observa-
tion vector ro is:

[r+ | ro] ∼ N1

[
µ+|o, σ

2
+|o

]
with

µ+|o = µ+ + σ+ω
T
o+Γo [ΓoΩooΓo]

−1 [ro − µo]
= µ+ +KG[ro − µo]

σ2
+|o = σ2

+ − σ+ω
T
o+Γo [ΓoΩooΓo]

−1 Γoωo+σ+

= σ2
+[1− ωTo+Γo [ΓoΩooΓo]

−1 Γoωo+]

= σ2
+ −KGΓoΩooΓoK

T
G

where KT
G = σ+ω

T
o+Γo [ΓoΩooΓo]

−1 is a weight [no × 1] vector.
Note that the weight vector, termed generalized kriging weights, are func-
tions of the variances in all the locations involved in the prediction and the
correlation structure.

Simulation of a Gaussian RF
Consider a conditional discretized Gaussian RF represented by [r | ro] with
parameters as in Equation (1). We may want to generate a sample of [r | ro]
from the conditional model. This simulated surface can be generated as
follows:
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1. Cholesky factorization of Σrr|ro = LLT where L and LT are lower/upper
triangular [n× n] matrices.

2. Sample z ∼ Nn(0, In)

3. Compute v = Lz

4. Compute [r | ro] = µr|ro + v

5. Return [r | ro]

3.2 Stationary Gaussian RF Model

Stationarity is a property of a regionalized variable that has shift invariant
statistical properties within the area of interest. Stationary random field is
a random field whose joint probability distribution does not change when
shifted in location. Prediction in stationary Gaussian RF is termed either
simple or ordinary kriging dependent on wheather the expectation is known
or must be estimated.

A RF {r(x);x ∈ D} is defined to be stationary if it satisfies:

{µr(x) = E [r(x)] = µr; x ∈ D}{
σ2
r(x) = V ar[r(x)] = σ2

r ; x ∈ D
}{

ρr(x
′
, x
′′
) = Corr

[
r(x

′
), r(x

′′
)
]

= ρr(x
′ − x′′); x

′
, x
′′ ∈ D2

}
{
φr(x

′
, x
′′
) = Cov

[
r(x

′
), r(x

′′
)
]

= σ2
rρr(x

′ − x′′); x
′
, x
′′ ∈ D2

}

A Gaussian RF having stationary model parameters is said to be station-
ary Gaussian RF. The predictor in r+ = r(x+), in a stationary Gaussian RF
is defined by the expression:

[
r+

ro

]
∼ N1+no

 µr

µrino

 ,
 σ2

r σ2
rω

T
o+

ωo+σ
2
r σ2

rΩoo
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hence,

[r+ | ro] ∼ N1

[
µr|o, σ

2
r|o

]

µr|o = µr + σ2
rω

T
o+

[
σ2
rΩoo

]−1
[ro − µrino ]

= µr +KS [ro − µrino ]

σ2
r|o = σ2

r − σ2
rω

T
o+

[
σ2
rΩoo

]−1
ωo+σ

2
r

= σ2
r

[
1−KSΩooK

T
S

]
where KT

S = ωTo+Ω−1
oo , is a weight [no×1] vector. Note that the weight vector,

termed stationary (simple) kriging weights, is dependent on the correlation
structure only, not on the variance.

3.3 Hierarchical Stationary Gaussian Random Field

For a stationary Gaussian RF to be fully specified, the model parameters µr,
σ2
r and ρr(.) need to be known. In the hierarchical representation we let µr

and σ2
r be represented by random variables m and s2 while ρr(.) is considered

to be known. By conditioning on [m, s2], the Gaussian RF is fully specified.

Consider the discrete representation of stationary Gaussian RF. Let r con-
ditional on the random parameters [m, s2] be distributed as

[r | m, s2] ∼ Nn(min, s
2Ωrr)

where, m and s2 are univariate random variables and Ωrr is a known positive
definite correlation [n × n] matrix.

Moreover, assume the following prior model for [m , s2]:

[m | s2] ∼ N1(µm, τms
2) (3)
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s2 ∼ IG(ξs, γs) (4)

with µm ∈ < , τm ∈ <+ and IG(ξs, γs) representing the inverse gamma pdf

f(s2) = 1
Γ(ξs)

γξss [s2]−(ξs+1)exp {−γs[s2]−1}, s2 > 0.

where Γ(x) is the gamma function, ξs ∈ <+ is a shape parameter and γs ∈ <+

is a scale parameter.

Hence, it can be demonstrated, see Røislien and Omre (2006) that:

r ∼ Tn(µmin,Σrr, ν)

represent a T-dist RF defined by the multivariate T-distribution:

f(r) =
Γ( ν+n

2
)

Γ( ν
2

)(νπ)
n
2
|Σrr|−

1
2

[
1 + 1

ν
[r− µmin]T Σ−1

rr [r− µmin]
]− ν+n

2

where ν ∈ <+ is the degrees of freedom which is defined by ν = 2ξs. This
definition specifies a spherical-symmetric pdf centered at µmin with Ωrr con-
trolling scale and multivariate dependence, while ν controls the tail behav-
ior(Mardia et al., 1979).

Multivariate Gaussian and Cauchy distributions are special cases of mul-
tivariate T-distributions. That is,

Tn(µmin,Σrr, ν)
ν→∞−−−→ Nn(µmin,Σrr) - Gaussian distribution.

Tn(µmin,Σrr, 1) = Cn(µmin,Σrr) - Cauchy distribution.

This hierarchical representation can be interpreted in a Bayesian setting with
[m, s2] being random hyperparameters.

Consider a set of observations ro as previously defined. The posterior model
for the model parameters [m, s2 | ro] can then be determined. From the
definition of hierachical stationary Gaussian RF one has:
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[ro | m, s2] ∼ Nno(mino , s
2Ωoo)

and using the prior model for [m | s2], in Equation (3), one obtains:[
ro
m
| s2

]
∼ Nno+1

 µmino

µm

 ,
 τms

2inoi
T
no + s2Ωoo τms

2ino

τms
2iTno τms

2


Consequently,

[m | ro, s2] ∼ N1

[
µm|o, σ

2
m|o

]
with

µm|o = µm + τms
2iTno

[
τms

2inoi
T
no + s2Ωoo

]−1
(ro − µmino)

= µm + τmi
T
no

[
τminoi

T
no + Ωoo

]−1
(ro − µmino).

σ2
m|o = τms

2 − τms2iTno
[
τms

2inoi
T
no + s2Ωoo

]−1
τms

2ino

Note that µm|o = E[m | ro, s
2] = E[m | ro] and hence independent of s2.

Similarly, the marginal pdf of [ro | s2] is,

[ro | s2] ∼ Nno

[
µmino , τms

2inoi
T
no + s2Ωoo

]
and using the prior model for s2, in Equation (4), one obtains, see Appendix
A:

[s2 | ro] ∼ IG(ξs|o, γs|o)

with

ξs|o = ξs + no
2

γs|o = γs + 1
2

[
[ro − µmino ]

T [Ωoo + τminoi
T
no

]−1
[ro − µmino ]

]
Note that from the characteristics of the inverse Gamma distribution we
have:

µs|o = E[s2 | ro] =
γs|o
ξs|o−1

, ξs|o > 1

σ2
s|o = V ar[s2 | ro] =

γs|o
(ξs|o−1)2(ξs|o−2)

, ξs|o > 2
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4 Model Parameter Inference

Both the stationary Gaussian RF model, see Section 3.2, and the hierarchical,
stationary Gaussian RF model, see Section 3.3, depends on a set of model
parameters. These model parameters must be assessed from the avaliable
observations ro in order to make the respective models operable.

In the study we also use localized estimators for the model parameters. Con-
sider location x+ ∈ D and define the [k × 1] vector of observations:

rk+o = Gk
+ro

where Gk
+ is a binary [k×no] matrix which selects the k observations located

closest to x+. The selection may also include some symmetry criteria.

4.1 Stationary Gaussian RF model

The actual set of model parameters are [µr, σ
2
r , ρr(τ)]. We consider the spa-

tial correlation function ρr(τ) to be known, hence the expected value µr and
variance value σ2

r must be assessed from ro.

We choose to use a maximum likelihood criterion in the assessment, and
the log-likelihood function is:

l(µr, σ
2
r ; ro) = −no

2
log(2π)− no

2
log(σ2

r)

− 1

2
log |Ωoo| −

1

2
[σ2
r ]
−1
[
(ro − µrino)TΩ−1

oo (ro − µrino)
]

Hence the maximum likelihood estimates are:

µ̂r = [iTnoΩ
−1
oo ro][i

T
noΩ

−1
oo ino ]

−1

σ̂2
r = 1

no
(ro − µ̂rino)TΩ−1

oo (ro − µ̂rino)

The corresponding localized estimators of [µr, σ
2
r ] centered at location x+ ∈ D

based on rk+o = Gk
+ro are:

µ̂k+ = [iTk [Gk
+Ωoo[G

k
+]T ]−1Gk

+ro][i
T
k [Gk

+Ωoo[G
k
+]T ]−1ik]

−1

13



σ̂k2
+ = 1

k
(Gk

+ro − µ̂k+ik)T [Gk
+Ωoo[G

k
+]T ]−1(Gk

+ro − µ̂k+ik)

Define also the expectation [no × 1] vector centered at the observation loca-
tions:

µ̂ko =

 µ̂k1
...
µ̂kno

 ,

and the corresponding standared deviation diagonal [no × no] matrix

Γ̂ko =

 σ̂k1 . . . 0
...

. . .
...

0 . . . σ̂kn0


4.2 Hierarchical, stationary Gaussian RF model

The actual set of model parameters is [µm, τm, ξs, γs, ρr(τ)]. We consider the
spatial correlation function ρr(τ) to be known, hence the prior model param-
eters for expectation [µm, τm] and for variance [ξs, γs] must be assessed from
ro.

We choose to make this assessment in an empirical Bayes setting based on the
observations ro. The k-closest localization is used to define a set of localiza-
tions centered at the observations over the domain D. This set is considered
to be a super-population from which the k-closest prior model is assessed.

The estimates for the Gaussian prior model parameters for expectation are:

µ̂km = 1
no
iTnoµ̂

k
o

σ̂k2
m = 1

no
[µ̂ko − µ̂kmino ]T [µ̂ko − µ̂kmino ]

σ̂k2
r|. = 1

no
Tr[Γ̂ko ]

τ̂ km = σ̂k2m
σ̂k2
r|.
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The corresponding localized estimators for the posterior expectation m cen-
tered at location x+ ∈ D based on observations rk+o = Gk

+ro is:

m̂k
+ = E[m | s2, Gk

+ro]

= µ̂km + τ̂ kmi
T
k

[
τ̂ kmiki

T
k + [Gk

+Ωoo[G
k
+]T
]−1 [

Gk
+ro − µ̂kmik

]
which is independent of s2.

Define also the expectation [no × 1] vector centered at the observation lo-
cations:

m̂k
o =

 m̂k
1

...
m̂k
no

 ,

The estimates for the inverse gamma prior model parameters for variance
are more complicated. Note first that the prior expectation and variance for
ξs > 2 are :

µs = E[s2] = γs
ξs−1

σ2
s = V ar[s2] = γ2s

[ξs−1]2[ξs−2]

Consquently,

ξs = µ2s
σ2
s

+ 2

γs = µs

[
µ2s
σ2
s

+ 1
]

Define the [no × 1] vector defined for a k-neighborhood

s2 =

 (ro1 − µ̂km)2

...
(rono − µ̂km)2


The two first moments are estimated by:

µ̂s = 1
no
iTnos

2
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σ̂2
s = 1

no
[s2 − µ̂sino ]T [s2 − µ̂sino ]

The prior model estimates ξ̂s and γ̂s are obtained by inserting µ̂s and σ̂2
s into

the expressions above.

The corresponding localized estimator for the posterior variance s2 centered
at location x+ ∈ D based on observations rk+o = Gk

+ro is:

ŝk2
+ = E[s2 | Gk

+ro]

=
γ̂s|o

ξ̂s|o − 1

=
γ̂s + 1

2

[
[Gk

+ro − µ̂kmik]T
[
[Gk

+Ωoo[G
k
+]T ] + τ̂ kmiki

T
k

]−1
[Gk

+ro − µ̂kmik]
]

ξ̂s + k
2
− 1

Define also the diagonal standard deviation [no × no] matrix centered at the
observation locations

Ŝko =

 ŝk1 . . . 0
...

. . .
...

0 . . . ŝkn0


5 Prediction Models

The objective of the study is to define improved spatial predictors, and we
consider localized predictors which only utilizes observations in a neighbor-
hood of the location in focus for prediction.Two model types are defined: lo-
calized/stationary [Loc/Stat] model and localized/non-stationary [Loc/Non-
stat] model. For each model type we consider a traditional [Trad] predictor
and a shrinkage [Shr] predictor.

Focus is on predicting r(x+) = r+ in arbitrary location x+ ∈ D. The predic-
tion is based on the observation [no × 1] vector ro = [r(xo1), · · · , r(xono)] =
[ro1, · · · , rono ]. Define also the binary, selection [k × no] matrix Gk

+ which
selects the k closest observations to location x+. Note that Gk

+ may also
include some symmetry criteria.
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5.1 Localized/Stationary Model

The predictor is based on the stationary Gaussian RF model, see Section 3.2,
with the model parameters assessed in two different localized ways.

5.1.1 Traditional Predictor

The Loc/Stat/Trad predictor of r+ with associated prediction variance is
defined as:

r̂kSTP+ = µ̂k+ + [Gk
+ωo+]T [Gk

+Ωoo[G
k
+]T ]−1

[
Gk

+ro − µ̂k+ik
]

σ̂k2
STP+ = σ̂k2

+

[
1− [Gk

+ωo+]T [Gk
+Ωoo[G

k
+]T ]−1Gk

+ωo+
]

with the parameter estimators defined in Section 4.1.

The expectation µ+ and the variance σ2
+ are estimated by maximum like-

lihood in a neighborhood of x+, hence the predictor appears like a localized
ordinary kriging predictor. This corresponds to the traditional approach to
localized spatial interpolation, see Chiles and Delfiner (1999). The challenge
is to define the size of the neighborhood to obtain a suitable bias-variance
trade-off. The neighborhood must be small to adopt to possible spatially
varying expectation /variance functions and large to contain enough obser-
vations to provide stable estimates.

5.1.2 Shrinkage Predictor

The Loc/Stat/Shr predictor of r+ with associated prediction variance is de-
fined as:

r̂kSSP+ = m̂k
+ + [Gk

+ωo+]T [Gk
+Ωoo[G

k
+]T ]−1

[
Gk

+ro − m̂k
+ik
]

σ̂k2
SSP+ = ŝk2

+

[
1− [Gk

+ωo+]T [Gk
+Ωoo[G

k
+]T ]−1Gk

+ωo+
]

with the parameters estimators defined in Section 4.2.

The expectation m+ and the variance s2
+ are estimated in a Bayesian setting

as the posterior expectations given the observations in a neighborhood of
x+. Hence the prior model acts like a regulizer when estimating the local
expectation and variance. The prior models for m+ and s2

+ are assessed from
the avaliable observations in an empirical Bayesian setting. This makes it
possible to use smaller neighborhoods which hopefully provides predictors
with less bias.
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5.2 Localized/Non-stationary Model

The predictor is based on the general Gaussian RF model, see Section 3.1,
with the model parameters assessed in two different localized ways.

5.2.1 Traditional Predictor

The Loc/Non-stat/Trad predictor of r+ with associated prediction variance
is defined as:

r̂kNTP+ = µ̂k+ + σ̂k+[Gk
+Γ̂koωo+]T

[
Gk

+Γ̂koΩooΓ̂
k
o [G

k
+]T
]−1

Gk
+[ro − µ̂ko ]

σ̂k2
NTP+ = σ̂k2

+

[
1− [Gk

+Γ̂koωo+]T
[
Gk

+Γ̂koΩooΓ̂
k
o [G

k
+]T ]

]−1

Gk
+Γ̂koω+o

]
with the parameter estimators defined in Section 4.1.

The expectation and variance is locally and uniquely estimated for each ob-
servation according to the General Gaussian RF model in Section 3.1. The
number of parameter estimates is 2(no + 1), expectation and variance for x+

and all observation locations. Hence the predictor is very sensitive to the
estimate precision, which favors large neighborhoods. Large neighborhoods
will however introduce larger bias in the predictor, which is unfavorable.

5.2.2 Shrinkage Predictor

The Loc/Non-stat/Shr predictor of r+ with associated prediction variance is
defined as:

r̂kNSP+ = m̂k
+ + ŝk+[Gk

+Ŝ
k
oωo+]T

[
Gk

+Ŝ
k
oΩooŜ

k
o [Gk

+]T
]−1

Gk
+[ro − m̂k

o ]

σ̂k2
NSP+ = ŝk2

+

[
1− [Gk

+Ŝ
k
oωo+]T

[
Gk

+Ŝ
k
oΩooŜ

k
o [Gk

+]T
]−1

Gk
+Ŝ

k
oωo+

]
with the parameter estimators defined in Section 4.2.

The expectation and variance for both x+ and all observation locations are
assessed in a Bayesian setting as conditional expectations given the obser-
vations in a neighborhood. Hence the empirical prior model for expectation
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and variance act as regulizers in the inference. Note that this regularization
will influence each individual kriging weight under this model. Hence this
can be seen as a truly shrinkage kriging predictor. This regularized approach
makes it possible to use smaller neighborhoods which hopefully entails less
biased predictions.

5.3 CrossValidation Calibrated Predictor

Consider a specific predictor with associated prediction variance in arbitrary
location x+ ∈ D:

r̂∧+ = µ̂+ = Ê[r(x+) | ro]

σ̂2
∧+ = ˆV ar[r(x+) | ro]

based on the observations ro = [r(xo1), ..., r(xono)].

Define the crossvalidation predictions:

r̂∧oi = Ê[r(xoi) | ro(−i)]; i = 1, ..., no

σ̂2
∧oi = ˆV ar[r(xoi) | ro(−i)]

where ro(−i) entails ro with observation i removed.

The corresponding normalized crossvalidation errors are:

∆∧i = r(xoi)−r̂∧oi
σ̂∧oi

; i = 1, ..., no

and define the two first moments:

∆∧ = 1
no

∑no
i=1 ∆∧i

κ2
∧ = 1

no

∑no
i=1[∆∧i −∆∧]

2

Note that both ∆∧ and κ2
∧ can be calculated, and that for a reliable predictor

we want ∆∧ ≈ 0 and κ2
∧ ≈ 1. Actually, we can adjust the predictor with as-

sociated prediction variance such that the global normalized crossvalidation
statistics are exactly 0 and 1.

Define the crossvalidation calibrated (CVC) predictor with associated pre-
diction variance at an arbitrary location x+ ∈ D:
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r̃∧+ = r̂∧+ + σ̂∧+∆∧

σ̃2
∧+ = κ2

∧σ̂
2
∧+

where the associated normalized crossvalidation errors will have the two first
moments equal to 0 and 1 respectively.

Hence we are able to construct a predictor which always reproduce the fa-
vored values for the global crossvalidation statistics. The CVC predictor can
be seen as a globally centered and scale corrected version of the original pre-
dictor. These calibrations are particularly beneficial for localized predictors
which often lack global references.

6 Evaluation Criteria

The test criteria are based on the CVC predictors with associated prediction
variances, see Section 5.3:

r̃∧+ = Ẽ[r(x+) | ro]

σ̃2
∧+ = ˜V ar[r(x+) | ro]

The corresponding crossvalidation predictions are:

r̃∧oi = Ẽ[r(xoi) | ro(−i)]; i = 1, ..., no

σ̃2
∧oi = ˜V ar[r(xoi) | ro(−i)]

The CVC predictions will be globally centered and scaled with respect to the
normalized cross-validation errors. This means however that large deviations
in predictions may be compensated by a large estimated prediction variance.

A prediction criterion which favors precise predictions is mean squared cross-
validation error non-normalized:

PMSE = 1
no

∑no
i=1[r(xoi)− r̃∧oi]2
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We favor small values for this prediction criterion of course.

The CVC prediction variances are also globally scaled. This scaling does
not ensure close agrement between large observed deviation in predictions
and large estimated prediction variances, however. This agreement is indi-
cated by the normalized crossvalidation errors being close to one, not only
unity in average.

A prediction variance criterion which favors agreement between observed
prediction deviations and estimated prediction variances is :

VMSE = 1
no

∑no
i=1

[
[ r(xoi)−r̃∧oi

σ̃∧oi
]2 − 1

]2

We favor small values for this prediction variance criterion of course.
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7 Case Studies

Two case studies are presented: US precipitation and Gamma-log data. The
former consists of observations in a number of locations in the US. The latter
contain observations very densely located along a vertical subsurface profile.

7.1 US precipitation

We consider a data set of yearly accumulated precipitation in locations in an
area in the US, see Figure 1. The study area contains 1001 locations with
observations. The data is a subset of a much larger spatio-temporal data
base Data (2014), see also Johns et al (2003), and we use data from 1997 in
an subarea in the south-east US.

By inspecting the data in Figure 1.b there appears to be a slight increase in
values in the south-east direction, but the observation density is very high.
The empirical spatial correlation function is displayed in Figure 2, and we fit
a generalized exponential correlation function:

ρr(τ) = exp
{
−
∣∣ τ

3.5

∣∣1.4} ; τ ≥ 0

which represents a fairly smooth precipitation surface. This correlation func-
tion is used throughout the study.

We aim at demonstrating and evaluating the predictors defined in Section 5.
The evaluation criteria presented in Section 6 are used.

The Global ordinary kriging predictor, using all 1001 observations under
a stationary model with unknown expectation/variance, is used as reference.
In Figure 3 the results from the corresponding CVC predictor is presented.
The crossvalidation predictions in the observation locations and the associ-
ated prediction standard deviations are displayed. These predictions results
from predictions based on the global data set with the observation in the ac-
tual location removed. We observe that the predictions appear with similar
patterns as the observations in Figure 1, and that the standard deviations
are fairly constant across the area. The standard deviations are only depen-
dent on the location configuration of the observations used in the predictor,
not on the actually observed values. This explains the somewhat higher val-
ues along the boundary since the location configurations are unfavourably,
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asymmetric along the boundary. In Figure 4 the corresponding normalized
crossvalidation errors and the resulting histogram are displayed. Recall that
the use of the CVC predictor ensures that these errors are globally centered
to zero and scaled to one. From the figure we observe some larger errors in
areas with high-value predictions and that the histogram appears as some-
what peaked with heavy tails. These effects may indicate that the variance
of the observations does vary across the area.

We study localized kriging predictors with a k = 10 neighborhood in some
detail, see Figure 5 through 13. In Figure 5 the CVC predictions from the
Loc/Stat/Trad predictor defined in Section 5.1.1 are displayed. The format
of the figure correspond to Figure 3. The global predictions in Figure 3.a
and the Loc/Stat/Trad predictions in Figure 5.a look fairly similar, which
is not surprising since there is a large number of observations and a fairly
smooth spatial correlation model is used. The standard deviations for global
and Loc/Stat/Trad predictors do differ significantly, though, see Figure 3.b
and 5.b respectively. The former does only depend on location configuration
while the latter also depend on the locally estimated variance. One concern
is, however, that estimated variances based on k = 10 observations may be
unstable. We observe that there is larger dispersion in Figure 5.b than in
Figure 3.b. The resulting normalized crossvalidation errors in Figure 6 for
the Loc/Stat/Trad predictor appears as homogeneous across the area. More
so than the corresponding errors for the Global predictor in Figure 4. By
comparing the histograms from the Loc/Stat/Trad and Global predictors in
Figure 6.b and Figure 4.b respectively, we observe that the former has much
lighter tails.

The Loc/Stat/Shr predictor is defined in Section 5.1.2 and we study a k = 10
neighborhood version. The empirical Bayes approach used in the predictor
include prior models on the expectation and variance inferred from the global
data set. These prior models are displayed in Figure 13. The results from
the CVC Loc/Stat/Shr predictor are presented in Figure 7. These results
are compared to the corresponding results for the Global and Loc/Stat/Trad
predictors presented in Figure 3 and 5, respectively. The crossvalidation
predictions appear as fairly similar for all predictors, while the standard de-
viations differs significantly. The Loc/Stat/Shr results seem to lie in between
the results for the two other predictors. The former predictor does actually
shrink the localized estimates towards the global ones, hence this results are

23



not surprising. The normalized crossvalidation error results are displayed in
Figure 8. The results do not deviate much from the corresponding results in
Figure 6. Note, however, that the histogram of the errors in Figure 8.b are
very symmetrical with very light tails.

The Loc/Non-stat/Trad predictor is defined in Section 5.2.1. This predictor
has weighting of the observations that depends on the spatially varying vari-
ance estimates. The results from the CVC Loc/Non-stat/Trad predictor with
k = 10 are displayed in Figure 9 and 10. The crossvalidation predictions do
not deviate much from the other predictors. The standard deviations are even
more dispersed than the ones obtained from the Loc/Stat/Trad predictor in
Figure 5. The normalized crossvalidation errors from the Loc/Non-stat/Trad
predictor in Figure 10 have very little dispersion, hence the histogram is very
compact almost without tails.

The Loc/Non-stat/Shr predictor is defined in Section 5.2.2 and it is based on
the empirical Bayes approach and uses the prior models in Figure 13. The
CVC prediction results are presented in Figure 11 and 12, and the crossval-
idation predictions are similar to the other predictors. The prediction stan-
dard deviations appear as a shrunk version of to the ones for the Loc/Non-
stat/Trad predictor in Figure 9. By inspecting the normalized crossvalidation
errors, in Figure 12, they appear with little dispersion, and the histogram is
compact with fairly light tails. Recall that for the Loc/Non-stat/Shr predic-
tor shrinkage is enforced on the observation weighting itself.

In Table 1, the evaluation criteria defined in Section 6 are displayed for
the various predictors. The results for the Global predictor, corresponding
to Loc/Stat/Trad k = 1000, are presented in the leftmost column. The mean
normalized error (MNE) and mean squared normalized error (MSNE) repre-
sents statistics of the normalized crossvalidation errors prior to crossvalida-
tion calibration (CVC). We observe that the errors are correctly centered at
zero, but somewhat over-dispersed. The evaluation criteria prediction mean
square error (PMSE) and variance mean square error (VMSE) are based on
the CVC predictors, see Section 5.3. These CVC predictors are globally cen-
tered to zero and scaled to unity. The PMSE criterion represents prediction
quality while the VMSE represents prediction variance quality, and for both
criteria small values are favored. We consider the prediction criteria PMSE
as more important than the prediction variance criterion VMSE. The criteria
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have no absolute scale and are only suitable for comparision between various
predictors.

In Table 1, column two, the evaluation criteria for the Loc/Stat/Trad k = 10
predictor are displayed. The non-calibrated centering appear as very good,
while the variance is too large. The former follows from the localized predic-
tors all being unbiased, while the latter is caused by the localized prediction
variances lacking a global reference. The criteria PMSE and VMSE are based
on the corresponding CVC predictors which are globally calibrated. The pre-
diction quality, represented by PMSE, appears to be slightly better for the
Loc/Stat/Trad predictor than for the Global predictor. The prediction vari-
ance quality, represented by VMSE, however, appears as significantly better
for the former than for the latter. Hence the Loc/Stat/Trad k = 10 predictor
dominates the Global predictor in this study.

In Table 1, column three, the evaluation criteria for the Loc/Stat/Shr k = 10
predictor are presented. From the MNE and MSNE values we observe good
centering and over dispersion in the non-caliberated normalized crossvalida-
tion errors. The PMSE and VMSE values based on the corresponding CVC
predictor, are very encouraging. The prediction quality appears as slightly
better than for the Loc/Stat/Trad and Global predictors, while the predic-
tion variance quality seems to be significantly better than for the two other
predictors. Hence the localized/shrinkage kriging predictor appears to dom-
inate the global and localized kriging predictors in this study.

Table 1, column four and five, contain results from the Loc/Non-stat/Trad
k = 10 and Loc/Non-stat/Shr k = 10 predictors, respectively. Both these
predictors are well centered, and are highly over-dispersed prior to global
crossvalidation caliberation. The criteria PMSE and VMSE based on the
corresponding CVC predictors give some mixed signals. The PMSE repre-
senting prediction quality appear as poorer than for the global and local-
ized, stationary predictors. This lack of precision in the predictions may be
explained by the large number of model parameters that are implicitly esti-
mated. Recall that the observation weights are based on locally estimated
variances. The quality of the prediction variances, represented by PMSE,
appear as very favourable compared to the other predictors. It is somewhat
surprising that the Loc/Non-stat/Trad predictor performs better than the
Loc/Non-stat/Shr one for prediction variance assessment for k = 10, how-
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ever.

To summarize, localized predictors appear favorably to the global predic-
tor. This effect is most likely caused by lack of stationarity in both expec-
tation and variance of the phenomen under study. For a phenomenon that
is less smooth and with more sparse observations the localized predictors
are expected to be even more favorable. The localized, shrinkage predic-
tors stabilizes the corresponding localized, traditional predictors and provide
very encouraging prediction results in the study. The previous results are all
based on a localization with a k = 10 neighborhood. In Table 2 through 4
corresponding results for k = 4, 8, 16 respectively, are presented.

In Table 2, results are displayed from the Global predictor, Loc/Stat/Trad
k = 1000, and the other predictors with k = 4. By Comparing prediction
quality PMSE and prediction variance quality VMSE we observe that such a
small neighborhood provide very unstable local estimates of expectation and
variance. The corresponding predictors have poor performance compared to
the Global predictor. Note, however, the improvements in prediction vari-
ance quality VMSE by using shrinkage.

Table 3 contain results from the k = 8 neighborhoods. The results are
very similar to ones for k = 10, in Table 1. If we compare each predictor for
different k-neighborhoods, we observe that precision quality PMSE is best
for k = 8 while precision variance quality VMSE is best for k = 10. There
appears to be some kind of trade-off between the criteria PMSE and VMSE.

Table 4 presents results for k = 16 neighborhoods. The localized, shrinkage
predictors perform very favorably for this case, particularly the Loc/Stat/Shr
predictor which has high prediction quality PMSE and very favorable predic-
tion variance quality VMSE. This may indicate the neighborhood somewhat
larger than k = 10 should be used. In fact, one may optimize the size of the
neighborhood with respect to a loss criterion combining PMSE and VMSE.
One may also perform predictor selection along these lines.
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Figure 1: Annual accumulated prepecitation observation in the US and sub-
area studied.
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Figure 2: Spatial correlation function with estimated values.
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Figure 3: Global CVC predictor-ordinary kriging.
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Figure 4: Global crossvalidation errors.
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Figure 5: Loc/Stat/Trad/10 CVC predictor.
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Figure 6: Loc/Stat/Trad/10 crossvalidation errors.
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Figure 7: Loc/Stat/Shr/10 CVC predictor.
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Figure 8: Loc/Stat/Shr/10 crossvalidation errors.
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Figure 9: Loc/Non-stat/Trad/10 CVC predictor.
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Figure 10: Loc/Non-stat/Trad/10 crossvalidation errors.
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Figure 11: Loc/Non-stat/Shr/10 CVC predictor.
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Figure 12: Loc/Non-stat/Shr/10 crossvalidation errors.
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Figure 13: Priors model for expectation and variance.

Model Localized/Stationary Localized/Non-stationary

Traditional Shrinkage Traditional Shrinkage

Test D. k = 1000 k = 10 k = 10 k = 10 k = 10

MNE 1.0148e-17 -5.3792e-18 5.9892e-17 1.5084e-16 -1.1579e-16

MSNE 1.5399 2.9740 3.3928 9.2487 5.1702

PMSE 6.8758e + 03 6.8745e + 03 6.8654e + 03 2.2181e + 04 9.3555e + 03

VMSE 9.8749 5.9746 5.2027 4.0787 4.3475

Table 1: Precipitation crossvalidation: Mean normalized error (MNE), Mean
square normalized error (MSNE), Prediction mean squared error (PMSE)and
Variance mean squared error (VMSE).

Model Localized/Stationary Localized/Non-stationary

Traditional Shrinkage Traditional Shrinkage

Test D. k = 1000 k = 4 k = 4 k = 4 k = 4

MNE 1.0148e-17 2.3291e-18 -1.8677e-16 1.7080e-17 5.6565e-17

MSNE 1.5399 12.4782 6.8602 14.9119 7.0732

PMSE 6.8758e + 03 7.2351e + 03 7.1938e + 03 1.0271e + 04 6.2025e + 03

VMSE 9.8749 76.5237 14.7642 39.6900 10.3703

Table 2: Precipitation crossvalidation: Mean normalized error (MNE), Mean
square normalized error (MSNE), Prediction mean squared error (PMSE)and
Variance mean squared error (VMSE).
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Model Localized/Stationary Localized/Non-stationary

Traditional Shrinkage Traditional Shrinkage

Test D. k = 1000 k = 8 k = 8 k = 8 k = 8

MNE 1.0148e-17 -1.5639e-17 3.9207e-17 -1.2422e-16 -1.7258e-16

MSNE 1.5399 3.6322 3.9626 8.7274 5.3399

PMSE 6.8758e + 03 6.8421e + 03 6.8275e + 03 1.8969e + 04 8.3440e + 03

VMSE 9.8749 8.0073 5.9935 4.2336 4.5284

Table 3: Precipitation crossvalidation: Mean normalized error (MNE), Mean
square normalized error (MSNE), Prediction mean squared error (PMSE)and
Variance mean squared error (VMSE).

Model Localized/Stationary Localized/Non-stationary

Traditional Shrinkage Traditional Shrinkage

Test D. k = 1000 k = 16 k = 16 k = 16 k = 16

MNE 1.0148e-17 1.7191e-17 1.6304e-17 -5.1907e-17 1.8367e-16

MSNE 1.5399 2.2864 2.5668 9.4840 4.9365

PMSE 6.8758e + 03 6.8581e + 03 6.8549e + 03 2.5527e + 04 1.1038e + 04

VMSE 9.8749 5.8588 4.8849 4.3886 4.0764

Table 4: Precipitation crossvalidation: Mean normalized error (MNE), Mean
square normalized error (MSNE), Prediction mean squared error (PMSE)and
Variance mean squared error (VMSE).

7.2 Gamma-log Data

In Figure 14 a Gamma ray data set from a vertical subsurface well is dis-
played. The data set locations are numbered as [1, 2, ..., 600]. We split the
data in an observations set [1, 30, ..., 570, 600] with no = 21, and a control set
containing the 579 remaining data. The two sets are presented in Figure 14.
Contrary to the US precipitation study, we have control data here, while we
only operate in one dimension with a limited number of observations.

We use the observation set of size no = 21 in a cross-validation study and
we also do prediction into the locations of the control data set. The spatial
correlation function
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ρr(τ) = exp
{
− 1

30
τ 1.5
}

; τ ≥ 0

is used throughout the study. The predictors in Section 5 are evaluated by
the evaluation criteria in Section 6.

In Figure 15 results from both the Global predictor and the localized pre-
dictor are displayed. The predictions look fairly similar, while the prediction
variances differ. The localized predictors have prediction variances that vary
with location. In the shrinkage predictors empirical prior models for expec-
tation and variance are used, and these prior models are displayed in Figure
16. The former being Gaussian and the latter Inverse-Gamma. Note how
the prediction variances in the shrinkage predictor shrink the localized ones
towards the global ones.

Table 5 contains values of the evaluation criteria for the four predictors for
different values of k = 4, 8, 12 by using crossvalidation within the observa-
tion data set of size no = 21. Note that all normalized crossvalidation errors
are reasonably centered, MNE close to zero, but under-dispersed, MSNE
greater than unity. The CVC predictions that normalize with respect to this
under-dispersion provide the base for the prediction criterion PMSE and the
prediction variance criterion VMSE. Both are favored to be small. Note that
the shrinkage predictors make significantly better predictions than their tra-
ditional counterparts, ie smaller PMSE. For the prediction variance criterion
VMSE we observe the same picture. The shrinkage predictors appears with
smallest VMSE. The best shrinkage predictors have very small neighbor-
hoods ±2 which indicates fast changing model characteristics in the Gamma
ray data.

Table 6 contain values of the evaluation criteria based on the differences
between the control set and the different CVC predictors. The prediction
criterion PMSE is almost equal for all predictors, while the prediction vari-
ance criterion VMSE appears as favourable for the traditional predictors.
The latter constitutes a surprising result. Note, however, that these results
are based on a very limited number of observations.

To summarize, if crossvalidation within the no = 21 observations is used
in the calculations of the criteria, then we obtain results similar to the ones
on the US precipitation data. The shrinkage predictors are clearly favorable
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to their traditional counterparts. If, however, the criteria is based on a con-
trol set of data, shrinkage predictors do not appear as favourable. We do not
understand why, but it may just be by chance in a limited dataset.
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Figure 14: Gamma ray observations-with observations (*) and control values.
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Figure 15: Gamma ray predictions and prediction variances.

36



30 40 50 60 70 80
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0 200 400 600
0

0.5

1

1.5

2

2.5

3

3.5
x 10

-3

Figure 16: Prior model for expectation and variance.

Model Localized/Stationary Localized/Non-stationary

Traditional Shrinkage Traditional Shrinkage

Test D. ±6 ±4 ±2 ±6 ±4 ±2 ±6 ±4 ±2 ±6 ±4 ±2

MNE 0.0 0.2 0.1 0.1 0.0 0.0 0.1 0.0 0.1 0.1 0.1 0.1

MSNE 3.2 4.5 3.0 2.3 2.5 1.9 4.1 6.0 4.2 2.5 2.7 1.8

PMSE 639.7 705.2 703.3 589.6 594.1 561.1 921.5 1318.4 1247.7 662.6 704.3 595.7

VMSE 5.3 6.7 4.5 4.3 5.0 3.5 3.8 4.3 2.8 3.5 3.8 2.5

Table 5: Gamma ray crossvalidation: Mean normalized error (MNE), Mean
Squared normalized error (MSNE) Prediction Mean squared error (PMSE)
and Variance Mean Squared error (VMSE).

Model Localized/Stationary Localized/Non-stationary

Traditional Shrinkage Traditional Shrinkage

Test D. ±6 ±4 ±2 ±6 ±4 ±2 ±6 ±4 ±2 ±6 ±4 ±2

PMSE 336.71 331.40 330.40 340.98 335.22 333.86 346.16 340.86 335.60 345.93 342.59 358.97

VMSE 9.6033 4.9232 72.3516 19.4386 15.2300 50.1785 5.7387 3.1133 42.3435 16.4979 13.6487 57.3204

Table 6: Gamma ray control values: Prediction Mean squared error (PMSE)
and Variance Mean Squared error (VMSE) .
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8 Empirical Study

The prediction models defined in the previous section can be evaluated based
on one realization only. We define a test design and several evaluation criteria
and make the evaluation for a variety of Gaussian random field models for
which the exact solutions are analytically obtainable.

8.1 Test Design and Criteria

We define a variety of 1D Gaussian RF: {r(x);x ∈ D ∈ <1}, discretised as
r = {r(x);x ∈ LD} where LD = {1, 2, ..., 199, 200} and hence n = 200. The
observations are obtained as ro = {r(x);x ∈ Lo} where Lo = {1, 10, ..., 190, 200}
and hence no = 21. We use the CVC predictors defined in Section 5 based on
ro to obtain the predictions r̃ = [r̃1, ..., r̃200]T and the associated prediction
variances σ̃2 = [σ̃2

1, ..., σ̃
2
200]T .

Note that all the Gaussian RF are analytically tractable when the model
parameters are known, hence the optimal predictions r∗ = [r∗1, ..., r

∗
200]T and

associated prediction variances σ∗2 = [σ∗21 , ..., σ
∗2
200]T are avaliable.

The evaluation for a single realization is based on both comparison with
the correct predictions and predictions variances and cross-validation in the
15 centrally located observations.

The evaluation criteria in the comparison with correct results are:

PMSC = 1
126

∑170
i=30
i/∈Lo

[r̃i − r∗i ]
2

VMSC = 1
126

∑170
i=30
i/∈Lo

[
σ∗2i
σ̃2
i
− 1
]2

We randomize over the model by averaging over 1000 realizations to obtain
APMSC and AVMSC. Note that this is the ultimate criteria for goodness for
the predictor and prediction variances.

The evaluation criteria in the cross-validation are PMSE and VMSE as in
previous sections, but in addition we randomize over the model by averag-
ing over 1000 realizations to obtain the criteria APMSE and AVMSE. These
are the criteria we need to use when only one set of observations are avaliable.
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This study is targeted at identifying a good spatial predictor and suitable
number of neighborhood observations involved in the predictor. Thus, k =
±2,±4,±6 observations located closest to prediction location x+ is consid-
ered.

8.2 Test Cases

We generate four different test cases with varying expectation and variance
fields but with one identical correlation field defined as:

Corr[r(x
′
), r(x

′′
)] = ρr(x

′
, x
′′
) = exp

{
−1

5

∣∣x′ − x′′∣∣1.5}
Case I-Test

This case defines a regular stationary Gaussian random field with constant
expectation and variance. We use µr(x) = 10 and σ2

r(x) = 20, see Figure
17.a. In Figure 17.b, the optimal prediction and prediction variance are an-
alytically obtained from the correct model for one realization of the field.
The prediction and prediction variance in Figure 17.c are obtained from a
stationary model with globally estimated model parameters. These results
correspond to ordinary kriging. Figure 17.d displays Loc/Stat/Trad/ ±4
predictions made according to CVC predictors defined in Section 5, while
Figure 17.e displays the results from the corresponding Loc/Stat/Shr/±4
CVC predictor.

Figure 18 displays the prior models for expectation and variance for one
realization in the Loc/Shr predictors defined in Section 5. The parametric
prior models for expectation and variance are infered in an empirical Bayes
framework as defined in Section 5.
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Figure 17: Case I - Predictions and prediction variances for one realization.
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Figure 18: Case I - Prior model for expectation and variance for one realiza-
tion.
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The values of evaluation criteria are listed in Table 7. In Figure 19, his-
tograms of the deviations between one realization and the corresponding
predictors, for all the evaluated predictors are displayed.

Model Localized/Stationary Localized/Non-stationary

Traditional Shrinkage Traditional Shrinkage

Test D. ±6 ±4 ±2 ±6 ±4 ±2 ±6 ±4 ±2 ±6 ±4 ±2

APMSC 0.2666 0.3484 1.3569 0.2027 0.2181 0.2696 0.3809 0.6220 2.2520 0.2318 0.2860 0.5083

AVMSC 0.4139 0.6684 43.3676 0.4149 0.5338 1.1251 0.4004 0.6353 37.1616 0.4099 0.5245 1.1335

APMSE 21.6177 22.5767 25.0502 18.5324 18.1406 16.3947 22.1637 23.4164 29.8467 18.6158 18.2514 16.5170

AVMSE 1.8692 1.9430 2.6963 1.6603 1.5907 1.3328 1.8588 1.9239 2.3750 1.6532 1.5778 1.2846

Table 7: Case I Deviation from correct predictions and crossvalidation: Av-
erage prediction mean squared correct (APMSC), Average variance mean
squared correct (AVMSC), Average prediction mean squared error (APMSE)
and Average variance mean squared error (AVMSE).
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Figure 19: Case I - Histogram for normalized error for one realization.

Case I-Discussion

In Figure 17, the predictions from all CVC predictors appear fairly similar.
This is not surprising since the model is stationary in both expectation and
variance and the correlation function is known. The prediction variances,
however, vary considerably between the predictors. The Global predictor
appears with a somewhat under-estimated variance, but otherwise identi-
cal to the correct prediction variance. The localized predictors appear with
locally varying variances. Note that the shrinkage predictor has variances
that are in between the localized traditional and the global traditional one,
and hence justifies its shrinkage label. The shrinkage is caused by the prior
models on expectation and variance, see Figure 18, which are inferred in an
empirical Bayesian setting.

Table 7 contain the values for the evaluation criteria APMSC/AVMSC and
APMSE/AVMSE, defined at the begining of Section 8. The two former are
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based on comparisions with the correct predictions which are analytically
obtainable while the two later relates to crossvalidation. Recall that we fa-
vor all four criteria to be as small as possible. For each pair of criteria, the
P-criterion is most important since it reflects prediction quality while the
V-criterion reflects prediction variance quality. The results for the ultimate
criteria APMSC/AVMSC are not surprising, all predictors improve with in-
creasing neighborhood and the shrinkage predictors are almost consistently
favorable to the corresponding traditional ones. For a model with stationar-
ity in both expectation and variance, global predictors are optimal of course
which favors large neighborhoods. Moreover, shrinkage does reduce local es-
timation variability which obviously improve the localized predictors. This
effect is clearly observable for small neighborhoods, where shrinkage provides
dramatic improvements in localized predictors.

In Table 7, also the corresponding crossvalidation criteria APMSE/AVMSE
are listed, which we must rely on with only one set of observations avali-
able. Note that also these criteria consistently favor the shrinkage predictors
relative to their traditional counterparts. The best shrinkage predictor with
respect to the APMSE/AVMSE criterions appear with the smallest neigh-
borhood, however. This is unfortunate, and it may be caused by overfitting
to the observations.

The normalized error histograms for one realization for all CVC predictors
are displayed in Figure 19. The histograms are fairly similar, but for small
neighborhoods, ±2, we can observe that the errors are somewhat regularized
by the shrinkage effect.

Case II-Test

This case defines a non-stationary Gaussian random field with varying expec-
tation and variance. We use µr(x) = 10 sin(π x

200
) and σ2

r(x) = 20 sin(π x
200

),
see Figure 20.a. In Figure 20.b, the optimal prediction and prediction vari-
ance are analytically obtained from the correct model. The prediction and
prediction variance in Figure 20.c are obtained from a stationary model with
globally estimated model parameters. These results correspond to ordinary
kriging. Figure 20.d displays Loc/Stat/Trad/±4 predictions made according
to CVC predictors defined in Section 5, while Figure 20.e displays the results
from the corresponding Loc/Stat/Shr/±4 CVC predictor.
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Figure 21 displays the prior models for Loc/Shr predictors, and these mod-
els capture the gross variability over the domain. Table 8 and Figure 22
correspond to Table 7 and Figure 19, for Case I.

0 50 100 150 200
0

10

20
Expected field

a)

0 50 100 150 200
0

10

20

30
Variance field

0 50 100 150 200
0

10

20
Correct prediction

b)

0 50 100 150 200
0

10

20

30
Correct prediction variance

0 50 100 150 200
0

10

20
Global prediction

c)

0 50 100 150 200
0

10

20

30
Global prediction variance

0 50 100 150 200
0

10

20
Loc/Stat/Trad [+/-4] prediction

d)

0 50 100 150 200
0

10

20

30
Loc/Stat/Trad [+/-4] prediction variance 

0 50 100 150 200
0

10

20
Loc/Stat/Shr [+/-4] prediction

e)

0 50 100 150 200
0

10

20

30
Loc/Stat/Shr [+/-4] prediction variance 

Figure 20: Case II - Predictions and prediction variances for one realization.
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Figure 21: Case II - Prior model for expectation and variance for one real-
ization.
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Model Localized/Stationary Localized/Non-stationary

Traditional Shrinkage Traditional Shrinkage

Test D. ±6 ±4 ±2 ±6 ±4 ±2 ±6 ±4 ±2 ±6 ±4 ±2

APMSC 0.3665 0.3357 1.0100 0.3968 0.2838 0.2563 0.4815 0.6669 2.1658 0.4259 0.4305 0.6264

AVMSC 0.5287 1.0939 159.3760 0.3927 0.5944 1.2491 0.5108 1.0369 138.6639 0.3860 0.5723 1.2327

APMSE 18.2536 17.8311 19.8851 16.9502 15.6486 13.8070 18.6699 18.4643 23.7843 17.0732 15.8705 14.1365

AVMSE 1.8936 2.0277 2.9888 1.7271 1.7306 1.4011 1.8908 2.0086 2.4491 1.7277 1.7187 1.3483

Table 8: Case II Deviation from correct predictions and crossvalidation: Av-
erage prediction mean squared correct (APMSC), Average variance mean
squared correct (AVMSC), Average prediction mean squared error (APMSE)
and Average variance mean squared error (AVMSE).
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Figure 22: Case II - Histogram for normalized error for one realization.
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Case II-Discussion

In Figure 20, the predictions vary considerably. The global predictor is based
on a stationary model and predictions between observations are clearly biased
towards the global average of the observations. The localized predictors are
fairly similar and do not deviate much from the correct prediction. The pre-
diction variances for the global predictor reflect the stationarity assumptions
made and only capture the localization configuration of the observations.
The prediction variances from the localized predictors capture much more
of the non-stationarity of the model. Note also that the shrinkage predictor
provides prediction variances in between the local traditional and global tra-
ditional predictors. The shrinkage is caused by the prior models displayed in
Figure 21.

Table 8 contain the values of the evaluation criteria. Consider first the
APMSC for Loc/Stat/Trad CVC predictors with varying neighborhoods.
These are prediction quality relative to the correct predictions. Observe the
pattern, best for ±4 and poorer for ±6 and ±2. We observe a bias/variance
crossing point, since too large neighborhood provides biased estimates of the
non-stationary expectation and variance, while too small neighborhood pro-
vides large estimation variance due to few observations. Consider now the
APMSC criterion for corresponding shrinkage CVC predictor, Loc/Stat/Shr.
This predictor regularizes the estimates of the expectation and variances and
appear as clearly favorable for small neighborhoods. The improvements are
so large that the bias/variance crossing point is moved to ±2 for the shrink-
age predictor. The prediction variance quality is reflected by AVMSC relative
to the correct predictions. The stability of variance estimates are of course
very poor, and use of shrinkage predictors has a dramatic positive effect
for small neighborhood predictors. A joint assessment based on both pre-
diction and prediction variance quality, would probably make us choose the
Loc/Stat/Shr/±4 CVC predictor among the stationary predictors.

Note, however, that for models which are non-stationary in both expecta-
tion and variance, localized, non-stationary predictors have the potential of
being better than stationary ones. By inspecting the APMSC/AVMSC cri-
teria for Loc/Non-stat/Trad and Loc/Non-stat/Shr predictors for varying
neighborhoods, we observe that they are less favorable than the stationary
ones. We belive this is caused by the need to estimate a large number of
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parameters.

In practice, with one set of observations we need to select a predictor based
on the crossvalidation criteria APMSE/AVMSE. Based on these criteria the
shrinkage predictors appear as consistently favorable to the corresponding
traditional ones. As they actually are. Moreover, we would select a station-
ary, shrinkage predictor prior to a non-stationary one. However, we would
select the Loc/Stat/Shr ±2 predictor since the prediction variance criterion
appears as under-estimated for the crossvalidation criterion. Hence we select
a too small neighborhood in the predictor.

In Figure 22, normalized error histograms for one realization are displayed.
Observe the favorable shape of the global histogram, but this is caused by
normalization based on severely over-estimated prediction variances. Note
also that the histograms for the correct predictor and Loc/Stat/Shr with
±4 and ±2 are very similar. Lastly, a small regularization effect on the
histograms can be seen from shrinkage.

Case III-Test

This case defines a non- stationary Gaussian random field with varying expec-
tation and constant variance. We use µr(x) = 10 sin(π x

200
) and σ2

r(x) = 20,
see Figure 23.a. In Figure 23.b, the optimal prediction and prediction vari-
ance are analytically obtained from the correct model. The prediction and
prediction variance in Figure 23.c are obtained from a stationary model with
globally estimated model parameters. These results correspond to ordinary
kriging. Figure 23.d displays Loc/Stat/Trad/±4 predictions made according
to CVC predictors defined in Section 5, while Figure 23.e displays the results
from the corresponding Loc/Stat/Shr ±4 CVC predictor.

Figure 24 displays the prior models for Loc/Shr predictors, which represents
the gross variability over the domain. Table 9 and Figure 25 correspond to
Table 7 and 8, and Figure 19 and 22 for Case I and II, respectively.
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Figure 23: Case III - predictions and prediction variances for one realization.
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Figure 24: Case III - Prior model for expectation and variance for one real-
ization.
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Model Localized/Stationary Localized/Non-stationary

Traditional Shrinkage Traditional Shrinkage

Test D. ±6 ±4 ±2 ±6 ±4 ±2 ±6 ±4 ±2 ±6 ±4 ±2

APMSC 0.4339 0.4027 1.5498 0.4628 0.3354 0.3152 0.5800 0.7993 3.0182 0.5014 0.4956 0.7195

AVMSC 0.5783 1.0568 687.1633 0.3919 0.5517 1.0074 0.5566 0.9922 590.5700 0.3847 0.5302 0.9891

APMSE 22.5294 22.3758 24.8330 20.6543 19.2866 17.0429 23.0463 23.1767 29.0106 20.7936 19.5368 17.3665

AVMSE 1.8404 1.9649 3.3623 1.6693 1.6335 1.3537 1.8366 1.9477 2.5569 1.6691 1.6236 1.3147

Table 9: Case III Deviation from correct predictions and crossvalidation:
Average prediction mean squared correct (APMSC), Average variance mean
squared correct (AVMSC), Average prediction mean squared error (APMSE)
and Average variance mean squared error (AVMSE).
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Figure 25: Case III - Histogram for normalized error for one realization.
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Case III-Discussion

In Figure 23, the predictions vary somewhat, since the global predictions are
biased towards the global average of the observations. The prediction vari-
ances are different because they merge variance and expectation curvature.
Note the upwards bias in the variance of the global stationary model. The
localized predictors appear with localized variance estimates and the shrink-
age predictor is somewhat closer to the global prediction variance. The prior
models in Figure 24 causes this shrinkage.

Table 9, contain the results for the evaluation criteria APMSC/AVMSC and
they exposes patterns very similar to the results from the model with non-
stationarity in both expectation and variance, see Figure 8. The stationary,
traditional predictor makes bias/variance trade-offs in the predictor, while
the stationary, shrinkage improve on the predictor by regularization of the
estimation and hence reducing variance. This shrinkage make small neighbor-
hood predictors more favorable. The prediction variances are more unstable,
and we probably end up recommending the Loc/Stat/Shr/±4 CVC predic-
tor. The non-stationary predictors are less favorable due to their dependence
on a large number of parameters.

In practice, with only one set of observations avaliable, we must select a
predictor based on the crossvalidation criteria APMSE/AVMSE. We would
correctly favor shrinkage predictors for traditional ones and stationary pre-
dictors for non-stationary ones. However, we would select a too small neigh-
borhood, as Loc/Stat/Shr ±2 would be the favorable predictor.

In Figure 25, the normalized error histograms for one realization for all the
CVC predictors are presented. Note in particular the localized predictors
with a ±2 neighborhood. The histograms for the shrinkage predictors are
clearly regularized compared to the histograms for the traditional ones.

Case IV-Test

This case defines a Gaussian random field with constant expectation and
varying variance. We use µr(x) = 10 and σ2

r(x) = 20 sin(π x
200

), see Figure
26.a. In Figure 26.b, the optimal prediction and prediction variance are an-
alytically obtained from the correct model. The prediction and prediction

50



variance in Figure 26.c are obtained from a stationary model with globally
estimated model parameters. These results correspond to ordinary kriging.
Figure 26.d displays Loc/Stat/Trad/±4 predictions are made according to
CVC predictors defined in Section 5, while Figure 26.e displays the results
from the corresponding Loc/Stat/Shr/±4 CVC predictor.

Figure 27 displays the prior models for Loc/Shr predictors, and these models
capture the gross variability over the domain. Table 10 and Figure 28 corre-
spond to Table 7, 8 and 9, and Figure 19, 22 and 25, for Case I, II and III,
respectively.
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Figure 26: Case IV - Predictions and prediction variances for one realization.

51



8 9 10 11 12 13
0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 50 100 150 200
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Figure 27: Case IV - Prior model for expectation and variance for one real-
ization.

Model Localized/Stationary Localized/Non-stationary

Traditional Shrinkage Traditional Shrinkage

Test D. ±6 ±4 ±2 ±6 ±4 ±2 ±6 ±4 ±2 ±6 ±4 ±2

APMSC 0.1891 0.2810 1.0623 0.1357 0.1510 0.2023 0.2576 0.4462 1.6301 0.1510 0.1886 0.4097

AVMSC 0.3821 0.7524 33.0924 0.4556 0.6696 1.9722 0.3689 0.7104 26.8692 0.4506 0.6606 1.9826

APMSE 16.9439 17.5722 19.1127 14.5025 14.1418 12.7449 17.3596 18.2110 22.9114 14.5563 14.2143 12.9016

AVMSE 1.8534 1.8717 2.7330 1.6950 1.5993 1.3174 1.8438 1.8514 2.3343 1.6881 1.5868 1.2709

Table 10: Case IV Deviation from correct predictions and crossvalidation:
Average prediction mean squared correct (APMSC), Average variance mean
squared correct (AVMSC), Average prediction mean squared error (APMSE)
and Average variance mean squared error (AVMSE).
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Figure 28: Case IV - Histogram for normalized error for one realization.

Case IV-Discussion

In Figure 26, all predictions appear as very similar. The prediction variances
are of course very different since the global predictor estimate one global
variance. The shrinkage predictor regularizes the prediction variances of the
traditional predictor. The prior models are presented in Figure 27.

Table 10 contain the values of the evaluation criteria APMSC/AVMSC. Large
neighborhoods are clearly favorable for all CVC predictors both for prediction
and prediction variance criteria. Moreover, shrinkage predictors are clearly
favorable to their traditional counterparts, and stationary are favorable to
non-stationary. If we select predictor based on the crossvalidation criteria
APMSE/AVMSE, we would select Loc/Stat/Shr/±2, hence correct predic-
tor type but with too small neighborhood. All histograms in Figure 28 are
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very similar.

Summary

For a model with stationarity in both expectation and variance the global
stationary predictor is of course favorable. Only the global expectation and
variance must be estimated. If, however, localized predictors are required,
for example to reduce computational demands, then localized shrinkage CVC
predictors are clearly favorable.

For models with non-stationary expectation and variances across the domain
of study, localized predictors will often appear as clearly favorable to global
ones. Moreover, localized, shrinkage CVC predictors seem to be favorable to
localized, traditional ones since it regularizes the expectation and variance
estimates and hence can operate with larger localization hence smaller neigh-
borhoods. The critical factor appears to be non-stationarity in expectation.
If the expectation vary across the domain of study, global predictors can
be severely biased towards the average of the observations and the variance
estimates are upwards biased by the interplay of expectation and variance.
Localized, shrinkage CVC predictors appear as robust towards non-stationary
expectations. Non-stationary variances across the domain of study appears
to have less influence on the predictors.

In practice, with only one set of observations avaliable, we must rely on
crossvalidation criteria in the selection of optimal CVC predictors. We will
correctly select localized, stationary, shrinkage predictors, but we will tend
to select too small neighborhoods.
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9 Conclusion

Spatial prediction is usually made under Gaussian assumptions by kriging. In
order to robustify the predictor towards lack of spatial stationarity, localized
kriging, which includes only observations in a neighborhood, is frequently
used. Bias/variance trade-off must be made in order to specify the local
neighborhood. We introduce a shrinkage version of kriging in a Bayesian
setting, where estimates in a local neighborhood are regularized by a global
prior model. This prior model is assessed in an empirical Bayes tradition
from the complete, global set of observations.

Two versions of the shrinkage kriging predictor are defined. One station-
ary version perform regularization only of the model parameter estimates,
while the other non-stationary version make regularized estimates of both
parameter estimates and kriging weights. Further we define crossvalidation
calibrated (CVC) predictors which empirically calibrates the predictor for
centering and scale.

The localized/shrinkage CVC predictors are compared to localized/traditional
kriging CVC predictors in an empirical simulation study. The experimental
design include 1D Gaussian random fields with varying expectation and vari-
ance trends. Deviation measures between the predictors specified above and
the correct predictions and prediction variances which are analytically as-
sessible under the model specification are compared. The major conclusions
are:

• localized/shrinkage kriging appears to be almost uniformily superior
to the corresponding localized/traditional kriging - for relatively small
neighborhoods.

• localized/shrinkage kriging with a regulizer only on model parameter
estimates appears superior to the version that also regularizes the krig-
ing weight. In the latter a large number of parameters need to be
inferred and uncertainty related to this estimation detoriate the pre-
dictor.

• cases with both non-stationary expectation and variance make the lo-
calized/shrinkage predictor more favorable to the localized/traditional
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kriging predictors. Large curvature in the expected trend seems to be
the important factor.

• optimal size of the neighborhood is not specifically studied since only
one correlation function and one observation design is evaluated. The
optimal neighborhood shall normally increase with more smoothness
in expectation and variance trends and longer range in the correlation
function.

A set of criteria for evaluating the localized CVC predictors based on cross-
validation are developed. This set of criteria can be computed from the set
of observations only. The characteristics of this criteria set are explored in
the empirical study, and the major conclusions are:

• the crossvalidation criteria can be used to identify the favorable pre-
dictor type most frequently being localized, stationary, shrinkage pre-
dictors.

• the optimal neighborhood of the favorable predictor seems to be under-
estimated, hence too small neighborhoods are selected.

We evaluated the localized predictors on two different real datasets: Obser-
vations of annually cumulated precipitation in locations in an sub-area of the
US, and Gamma ray recordings along a vertical well through the subsurface.

The findings are:

• in the precipitation study, 1001 observations are avaliable, and cross-
validation based evaluation criteria are used. Localized CVC predictors
are found to be clearly favorable to the global ordinary kriging predic-
tor. Since a model non-stationary in both expectation and variance ap-
pears as most representative for the observation, this conclusion make
sense. The localized, shrinkage predictors are uniformily favorable to
the corresponding localized traditional ones for the neighborhoods be-
ing studies. Moreover, the stationary, shrinkage predictors appear as
favorable to the non-stationary shrinkages ones. Lastly, a neighborhood
of about 10 observations are found to be suitable.

• in the Gamma ray study, one observation set of size 21 and a control set
of 579 are used. By using the crossvalidation based criteria, we conclude
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that the localized, stationary, shrinkage predictors are clearly favorable
to the other predictors. The evaluation results from the control set
of data, can not confirm this conclusion, though. We have no clear
explanation for this result.

We conclude that whenever a localized predictor is prefered - either due to
non-stationaries in the expectation and variance fields, or due to need for
computational efficiency - one should use a localized, stationary, shrinkage
CVC predictor. Since this predictor is also reliable for stationary models, the
recommendation may as well be to always use localized, stationary, shrinkage
CVC predictors whenever there are a fair number of obervations.
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Appendices
A Posterior pdf

The conditional pdf for [s2 | ro] is:

f(s2 | ro) = const× f(ro | s2)f(s2)
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