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Abstract

The signature of a coherent system with independent and identically distributed

component lifetimes is a useful tool in the study and comparison of lifetimes of

systems. A key result is the representation of a system’s survival distribution in

terms of its signature vector, which enables comparison of lifetime distributions

of different systems, possibly with differing number of components. The main

result of the present paper is a characterization of systems of size n which

stochastically dominate a given system of size n + m for m ≥ 1, where for

simplicity of presentation we study in detail the case m = 1 only. The

characterization is applied in a reliability economics setting to a corresponding

comparison of performance-per-cost for systems of different sizes. We also

obtain some new results on the comparison of performance-per-cost for systems

with the same number of components.
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1. Introduction

Consider a coherent system with n binary components, as studied in the monograph

by Barlow and Proschan [1]. We shall in the following say, for short, that a system

with n components is an n-system. Suppose that the component lifetimes X1, . . . , Xn

are independent and identically distributed (i.i.d.) with continuous distribution F , and

let X1:n < X2:n < · · · < Xn:n be their ordered values. Samaniego [5] introduced the

signature vector, s = (s1, . . . , sn), of the system, defined by sk = P (T = Xk:n); k =

1, . . . , n. The signature of a system depends only on the system structure and does not

depend on the distribution F of component lifetimes. Theorem 3.1 in Samaniego [6]

states that the survival function of the lifetime T of the system can be represented as

F̄T (t) = P (T > t) =

n∑
i=1

si

i−1∑
j=0

(
n

j

)
(F (t))j(F̄ (t))n−j , (1)

where F̄ (t) = 1 − F (t), that is, that the system lifetime distribution is completely

determined by the pair (s, F ).

Standard examples of coherent systems are series systems, which work if and only if

all components are working, and parallel systems, which work if and only if at least one

component is working. We shall also be interested in the so-called k-out-of-n systems

which fail upon the k-th component failure, for 1 ≤ k ≤ n. It is easy to see that the

signature vector of a k-out-of-n system is (0, . . . , 1k, . . . , 0), where the subindex k refers

to the kth element of the vector.

For practical as well as mathematical reasons, it has proven useful to extend the

class of n-systems to include so-called mixed n-systems, see, e.g., [6, p.28-31]. A mixed

n-system is a stochastic mixture of a finite number of coherent n-systems. It is easily

verified that the result (1) continues to hold for mixed systems (see, e.g., remark in

Samaniego et al. [7]). Note that any probability vector (s1, . . . , sn) can serve as the

signature of a mixed system. One possible representation of such a mixed system is

the one which gives weight sk to a k-out-of-n system, for k = 1, . . . , n.

Signature vectors have proven particularly useful in the comparison of lifetimes of

different systems. Let s1 and s2 be signature vectors of two mixed n-systems and

let T1 and T2 be these systems’ lifetimes. As is shown in ([6, Section 4.2]), certain

ordering properties of signature vectors are preserved for the corresponding lifetime
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distributions. The following three orderings are considered in [6] and will be applied in

Section 4 of this paper. The definitions below apply both for discrete and continuous

pairs of random variables (X1, X2):

Definition 1. Let X1 and X2 be random variables with corresponding cumulative

distribution functions F1 and F2, and let F̄i = 1− Fi for i = 1, 2. Then X1 is smaller

than X2 in the stochastic ordering, denoted X1 ≤st X2, if and only if F̄1(x) ≤ F̄2(x)

for all x; in the hazard rate ordering, denoted X1 ≤hr X2, if and only if F̄2(x)/F̄1(x) is

increasing in x; and in the likelihood ratio ordering, denoted X1 ≤lr X2, if and only if

f2(x)/f1(x) is increasing in x (assuming that Fi is absolutely continuous with density

fi for i = 1, 2).

Theorems 4.3-4.5 of ([6]) state that when g denotes any of the three orderings of

random variables, st, hr, lr, defined above we have that

s1 ≤g s2 implies T1 ≤g T2. (2)

Navarro et al. [3, Section 2.1] give the following definition of equivalent systems: Two

systems with i.i.d. component lifetimes with distribution F , are said to be equivalent if

the lifetime distributions of the systems are identical, for any component distribution F .

It hence follows that two systems of equal sizes are equivalent if they have the same

signature vector. The cited definition of equivalence is not, however, restricted to

systems of the same size. In order to extend the use of comparison results like (2) in

comparisons of lifetime distributions for systems of different sizes, Samaniego [6, page

32] suggested “converting” the smaller of two systems into an equivalent system of the

same size as the larger one. Then, the signature vector of this derived system can be

compared to the signature vector of the larger system so that the theorems cited above

are applicable.

Theorem 3.2 of Samaniego [6] solves the problem of comparison of mixed n- and

(n+ 1)-systems, for any n, by giving a formula for the signature of an (n+ 1)-system

equivalent to a given n-system. By repeated use one is of course able to compare any

two systems in this way. The cited theorem is displayed in Section 2.

One of the motivations for introducing mixed systems is from the application of

signatures to reliability economics ([6, Ch. 7]. The problem considered is that of opti-
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mizing the performance of a system under given cost constraints. Here the performance

of a system with signature vector s = (s1, . . . , sn) is represented as a linear function

of the signatures,
∑n

i=1 hisi. A motivation for this choice of performance measure is

that, e.g., either the expected lifetime of the system or the reliability function of the

system can be written in this way (see [6, page 95]) and Section 3 of the present paper.

Similarly, one may take the expected cost of building a system with the signature

vector s to be
∑n

i=1 cisi, where ci is interpreted as the cost of building an i-out-of-n

system, i = 1, . . . , n. From this, [6, Ch. 7] defines the following measure of the relative

value of performance and cost for a mixed n-system with signature vector s,

mr(s,h, c) =

∑n
i=1 hisi

(
∑n

i=1 cisi)
r
. (3)

As explained in [6, p. 97], the power parameter r > 0 serves as a calibration parameter,

determining the weight to be put on cost relative to performance in the criterion

function (3). Thus r = 1 is the natural choice if equal weight is put on performance

and cost.

The optimality problem considered in [6, Chapter 7] is the problem of maximizing

the performance-per-cost criterion (3) with respect to the signature vector s among all

mixed systems of the given size.

The main aim of the present paper is to explore the possibility of increasing performance-

per-cost by building smaller systems, i.e., systems with fewer components. The moti-

vation for this is that a smaller system, equivalent to a larger one, is expected to have a

lower cost than the larger system, while performing exactly as well as the larger system.

As noted in Lindqvist, Samaniego and Huseby [2], there may however not be equivalent

systems of smaller sizes than the given system. In that case one may instead look for

smaller systems which are approximately equivalent, or, as will be done in Section 3,

look for smaller systems with better performance, and perhaps lower cost.

As a preparation for our study of optimal systems within a reliability economics

framework, we give in Section 2, a characterization of the class of mixed n-systems with

signature vectors which stochastically dominate the signature vector of a given coherent

or mixed (n+ 1)-system. In Section 3 we will then consider the problem of optimizing

the performance-per-cost function (3) within this set of n-systems, for a given (n +

1)-system. Section 4 considers a slightly different topic, namely conditions under
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which a specific ordering of signature vectors of two n-systems leads to corresponding

inequalities for the performance-per-cost criterion, particularly for the case r = 1 in

(3). As a by-product, we obtain a new proof of one result and a strengthening of

another result from [6, Ch. 7]. In the final section, we make some concluding remarks.

2. The set of n-systems that stochastically dominate a given

(n + 1)-system

The approach of the present section has Theorem 3.2 of [6] as its point of departure.

We state the theorem below, together with a corollary which proves useful in the sequel.

Theorem 1. Let s = (si; i = 1, 2, . . . , n) be the signature of a coherent or mixed system

based on n components with i.i.d. lifetimes with common continuous distribution F .

Then a (mixed) equivalent system with n + 1 components has the signature vector

s∗ = (s∗1, s
∗
2, . . . , s

∗
n+1), where

s∗1 =
n

n+ 1
s1

s∗k =
k − 1

n+ 1
sk−1 +

n− k + 1

n+ 1
sk; k = 2, 3, . . . , n

s∗n+1 =
n

n+ 1
sn.

The following corollary to the theorem is formulated in terms of cumulative signature

vectors. For an n-system and an equivalent (n+ 1)-system, with signatures s and s∗,

respectively, we introduce the cumulative signature vectors, respectively, b and b∗

given by bj =
∑j

i=1 si for j = 1, . . . , n and b∗j =
∑j

i=1 s
∗
i for j = 1, . . . , n+ 1.

The result below is proved by summing the equations of Theorem 1.

Corollary 1. Let s = (si; i = 1, 2, . . . , n) be the signature of an n-system and let b be

the corresponding cumulative signature vector. Then an equivalent coherent or mixed

system with n+ 1 components has the cumulative signature vector b∗ given by

b∗j =

 bj − j
n+1sj for j = 1, . . . , n

1 for j = n+ 1

Let an (n+ 1)-system with signature vector s∗ and corresponding cumulative signa-

ture vector b∗ be given. Suppose there is an n-system with signature s = (s1, . . . , sn)
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that stochastically dominates the given (n + 1)-system in the sense that the (n + 1)-

version of s, here and in the following called s̃ (given as in Theorem 1) satisfies s̃ ≥st s∗

(see Definition 1), or, equivalently,

b̃j ≤ b∗j for j = 1, . . . , n,

where b̃ is the cumulative signature corresponding to s̃. Since necessarily b̃n+1 =

b∗n+1 = 1, the above inequalities are, by Corollary 1, equivalent to

n

n+ 1
s1 ≤ b∗1

s1 +
n− 1

n+ 1
s2 ≤ b∗2

s1 + s2 +
n− 2

n+ 1
s3 ≤ b∗3

. . .

s1 + s2 + · · ·+ sn−2 +
2

n+ 1
sn−1 ≤ b∗n−1

s1 + s2 + · · ·+ sn−1 +
1

n+ 1
sn ≤ b∗n

Since we must have s1 + . . . + sn = 1, we may in the last inequality substitute sn =

1− s1 − s2 − . . .− sn−1 and hence obtain the equivalent inequality

s1 + s2 + · · ·+ sn−1 ≤
n+ 1

n
b∗n −

1

n
(4)

which in the following is assumed to replace the last inequality above.

This gives us a set of n inequalities for linear functions of s1, . . . , sn−1, all of them

with non-negative coefficients. Note than an additional inequality s1+s2+· · ·+sn−1 ≤

1 is not necessary since it is already implied by (4). Furthermore, since a nonnegative

solution for s can only exist if all the right hand sides of the inequalities are nonnegative,

(4) implies that an n-system that stochastically dominates an (n + 1)-system with

signature vector s∗ can only exist if b∗n ≥ 1/(n+ 1) or, equivalently, s∗n+1 ≤ n/(n+ 1).

Informally this can be stated, “unless the (n+ 1)-system is a parallell system, or close

to being so, we can find a better n-system”. More precisely we can formulate the

following result:

Theorem 2. Let there be given an (n+ 1)-system with signature vector s∗ and cumu-

lative signature vector b∗, satisfying s∗n+1 ≤ n/(n + 1). Then there is a non-empty
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convex set of signature vectors s of n-systems which stochastically dominate the given

(n+ 1)-system, where each such vector satisfies the n inequalities

n

n+ 1
s1 ≤ b∗1

s1 +
n− 1

n+ 1
s2 ≤ b∗2

s1 + s2 +
n− 2

n+ 1
s3 ≤ b∗3

. . . (5)

s1 + s2 + · · ·+ sn−2 +
2

n+ 1
sn−1 ≤ b∗n−1

s1 + s2 + · · ·+ sn−1 ≤ n+ 1

n
b∗n −

1

n

As a possible application, suppose we would like to build an n-system which is at

least as good as a given (n + 1)-system, at minimum cost. (“At least as good” here

means with respect to stochastic ordering of signature vectors). Let the expected cost

of a system with signature vector s be
∑n

i=1 cisi, where 0 ≤ c1 ≤ c2 ≤ . . . ≤ cn. (A

discussion and motivation for this cost function is given in Section 3.) Then write

n∑
i=1

cisi =

n−1∑
i=1

cisi + cn(1− s1 − . . .− sn−1) = cn −
n−1∑
i=1

(cn − ci)si.

Thus the problem of minimizing the cost of the n-system over the convex set of

signature vectors satisfying (5) is equivalent to maximizing the linear combination∑n−1
i=1 (cn−ci)si. By the theory of linear programming (see, e.g., Nering and Tucker [4])

this maximum will occur at an extreme point of the convex set defined in Theorem 2.

Furthermore, since our setup in Theorem 2 involves n − 1 variables, s1, . . . , sn−1, it

follows that any extreme point of the convex set defined in the theorem satisfies with

equality at least n−1 of the inequalities which define the restrictions. These restrictions

are first of all the n inequalities of (5), but also the inequalities si ≥ 0 for i = 1, . . . , n−1.

Example 1. (The bridge system.) The bridge system (see, e.g., [6, Page 9]) has 5

components and signature vector s∗ = (0, 1/5, 3/5, 1/5, 0) and hence cumulative signa-

ture vector b∗ = (0, 1/5, 4/5, 1, 1). Suppose we want a 4-system which is stochastically
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at least as strong as this system. Setting n = 4 in Theorem 2, we get the inequalities

4

5
s1 ≤1 b∗1 = 0

s1 +
3

5
s2 ≤2 b∗2 =

1

5

s1 + s2 +
2

5
s3 ≤3 b∗3 = 4/5

s1 + s2 + s3 ≤4
5

4
b∗4 −

1

4
= 1

s1 ≥5 0

s2 ≥6 0

s3 ≥7 0

From inequalities ≤1 and ≥5 it is clear that s1 = 0 for all the solutions to our problem.

It can be shown that the extreme points of the set of (s1, s2, s3) satisfying the above

inequalities are

(0, 0, 0) with equalities at ≥5, ≥6, ≥7

(0, 1/3, 0) with equalities at ≤2, ≥5, ≥7

(0, 1/3, 2/3) with equalities at ≤1, ≤2, ≤4

(0, 0, 1) with equalities at ≤1, ≤4, ≥5, ≥6

Since s4 = 1− s1− s2− s3, these correspond to 4-systems with the following signature

vectors,

(0, 0, 0, 1), (0, 1/3, 0, 2/3), (0, 1/3, 2/3, 0), (0, 0, 1, 0). (6)

Thus, any 4-system which is stochastically as good as the bridge system, has a sig-

nature vector which can be written as a mixture of the four signature vectors in (6).

Considering Table 2.1 of [6] it is seen that all of these signatures, except (0, 1/3, 0, 2/3)

correspond to coherent systems.

Suppose as an example that the price of an i-out-of-4 system is i, i = 1, . . . , 4.

In order to find the 4-system which stochastically dominates the bridge system, and

which is of minimum cost, we need to check the cost only at the extreme points (6), and

choose the one with the minimum cost. This turns out to be the system with signature

(0, 1/3, 2/3, 0). The equivalent 5-system has the signature (0, 1/5, 2/5, 2/5, 0) which is

easily seen to be stochastically larger than the signature of the bridge system.
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Example 2. Let n = 3 and let a coherent (n + 1)-system have minimal cut sets

{1}, {2, 3, 4}. The signature vector is then s∗ = (1/4, 1/4, 1/2, 0), while b∗ = (1/4, 1/2, 1, 1).

Putting n = 3 in Theorem 2 we get the equations

3

4
s1 ≤ 1

4

s1 +
2

4
s2 ≤ 1

2

s1 + s2 ≤ 4

3
− 1

3
= 1

s1 ≥ 0

s2 ≥ 0

It can be shown that the extreme points of the resulting convex set of (s1, s2) is

(0, 0), (1/3, 0), (1/3, 1/3), (0, 1). (7)

so that the extreme points of the set of stochastically dominating signature vectors of

size 3 are

(0, 0, 1), (1/3, 0, 2/3), (1/3, 1/3, 1/3), (0, 1, 0).

The first and last of these are signatures of coherent systems, while the other two are

not. The signature (1/3, 1/3, 1/3) is, however, the signature of a 3-system equivalent

to a single component, i.e. a 1-system. It is intuitively clear that this system is

stochastically better than the given system, since the latter has a minimal cut set in

addition to the set {1}, which makes it more frail. Which of these systems might be

considered best if system costs were taken into accouont remains undetermined. We

examine such questions in the next section.

3. Reliability economics: Comparing performance-per-cost for n- and

(n + 1)-systems

As mentioned in the Introduction, we wish to compare performance-per-cost mea-

sures for systems of different sizes, in particular for n- and (n+ 1)-systems.

Consider the following situation. Suppose that there is given an (n+1)-system with

signature vector s∗. Let there also be given a cost vector c∗ = (c∗1, . . . , c
∗
n+1), where c∗k
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defines the expected cost of a k-out-of-(n + 1)-systems for k = 1, . . . , n + 1. Suppose

similarly that there is given a performance vector h∗ = (h∗1, . . . , h
∗
n+1). For the given

system, the value of the criterion function (3) associated with the signature s∗ is hence

A∗ = mr(s∗,h∗, c∗) =

∑n+1
i=1 h

∗
i s
∗
i

(
∑n+1

i=1 c
∗
i s
∗
i )r

. (8)

3.1. Expected cost of equivalent n and (n + 1)-systems

Suppose now that only n components are at hand, and that one wishes to build an

n-system with a performance-per-cost which is at least as large as A∗. For comparison,

we then need to know the values ci and hi, for i = 1, . . . , n, representing, respectively,

the cost and the performance of a i-out-of-n-system. These may in practice be given

from known sources, but we suggest below a reasonable relation between the ci and hi

for n-systems and the corresponding values c∗i and h∗i for (n+ 1)-systems.

Proposition 1. The expected cost of using an n-system is at most equal to (equal to)

the cost of using the equivalent (n+ 1)-system, for all mixed n-systems, if and only if

ci ≤ (=) (1− i

n+ 1
)c∗i +

i

n+ 1
c∗i+1 (9)

for i = 1, . . . , n.

Proof: From Theorem 1 follows that
∑n

i=1 cisi ≤
∑n+1

i=1 c
∗
i s
∗
i if and only if

n∑
i=1

(
ci −

n− i+ 1

n+ 1
c∗i −

i

n+ 1
c∗i+1

)
si ≤ 0.

This implies (9) for each specific i by setting si = 1 and proves the ’only if’ part of the

proposition. The ’if’ part is clear.

Samaniego [6, page 95] gives an example of how the linear representation
∑n

i=1 cisi

of expected cost of an n-system might occur in practice, that is, in the so called “salvage

model”. Here, it is assumed that the cost ci of an i-out-of-n system can be written as

ci = C + nA− (n− i)B for i = 1, . . . , n, (10)

where C is the initial fixed cost of manufacturing the system, A is the cost of an

individual component, and B is the salvage value of a used but working component

which is removed after system failure. Below we shall use a more convenient form of
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(10), namely

ci = C + n(A−B) + iB for i = 1, . . . , n. (11)

Let us instead start with an (n + 1)-system. Then under the salvage model (11) the

expected cost of an i-out-of-(n+ 1)-system can be written

c∗i = C∗ + (n+ 1)(A∗ −B∗) + iB∗ for i = 1, . . . , n+ 1.

Assuming for a moment that the expected cost of any n-system should be the same as

that of the equivalent (n+ 1)-system, leads to (by Proposition 1) the expected cost for

an i-out-of-n system equal to

C∗ +A∗ −B∗ + n(A∗ −B∗) + iB∗ +
i

n+ 1
B∗.

Comparing this with (11), and making the natural assumption that A = A∗ and

B = B∗, we obtain the following result:

Proposition 2. Suppose that the costs of n-systems and (n+ 1)-systems are given by

the salvage model (11) with the same constants A and B, but with possibly different

constants C, respectively C and C∗ for the n-systems and (n + 1)-systems. Then the

cost reduction by using an i-out-of-n system compared to the equivalent (n+ 1)-system

is

C∗ − C + (A−B) +
iB

n+ 1
.

Remark: Since naturally A > B > 0, the n-system hence has lower expected cost,

unless C is too large in comparison with C∗.

Example 2 (continued). We consider the convex set of signatures for 3-systems which

stochastically dominate the given 4-system. Suppose costs are given by a salvage

model where the constants A,B,C are equal for 3- and 4-systems, with values C =

1/10, A = 3/5, B = 1/2. This gives the cost values for the 4-system and the 3-system,

respectively,

c∗i =
1

10
+ 4 · 1

10
+ i · 1

2
=

1

2
+ i · 1

2

ci =
1

10
+ 3 · 1

10
+ i · 1

2
=

2

5
+ i · 1

2



12 BO H. LINDQVIST AND FRANCISCO J. SAMANIEGO

or, in vector form, c∗ = (1, 3/2, 2, 5/2) and c = (9/10, 7/5, 19/10). We can now

compare the latter values with the values we would get on the right hand side of the

inequalities in Proposition 1. These would be, in the same order, (9/8, 7/4, 19/8),

which are all larger than the ones obtained by the salvage model. Alternatively, these

values could been obtained by using Proposition 2.

Remark: It is interesting to note that the result of Proposition 2 can be obtained also

when going from n-systems to (n+1)-systems. Thus consider an i-out-of-n-system with

expected cost given by (11). To get an equivalent (n+ 1)-system we follow the idea of

[2] and add an irrelevant component to the original n-system, which is independent of

the components of the n-system and has the same lifetime distribution. The cost of this

extra component is A units, but the component can be salvaged for B units if it does

not fail before the i-out-of-n system fails. The probability of the latter case equals

the probability that in the simultaneous ordering of the lifetimes X1, . . . , Xn of the

original components and the lifetime Y of the irrelevant component, Y is not among

the i smallest. This probability is clearly 1 − i/(n + 1). Thus, using the equivalent

(n+1)-system obtained this way adds a cost A−B(1− i/(n+1)) = A−B+ i/(n+1)B

to the original system. But this is exactly the same amount that we obtained above

when using Proposition 1, if the fixed costs C and C∗ are assumed equal.

There are thus reasons to assume that the expected cost of equivalent systems is

reduced when reducing the number of components. The salvage model (11) gives

an explicit way of expressing this, when we assume that the fixed costs A,B,C are

independent of n.

3.2. Performance measures of equivalent n- and (n + 1)-systems

Now we turn to a more detailed study of the performance measure and how it differs

between equivalent systems of different sizes. As we have already seen, the performance

measure of an n-system with signature vector s = (s1, . . . , sn), is given in the form∑n
i=1 hisi. Samaniego [6, page 95] motivates this by giving two natural examples of

performace measures, the expected lifetime of the system, ET , and the reliability of the

system, P (T > t0) for a specific value t0. It is well known that ET =
∑n

i=1 siEXi:n,

while P (T > t0) =
∑n

i=1 siP (Xi:n > t0), so both measures are of the form
∑n

i=1 hisi.
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More generally, for any function Φ(T ), we can write EΦ(T ) =
∑n

i=1 siEΦ(Xi:n), so

there is a natural class of performance measures of the form
∑n

i=1 hisi. An important

property of the measures is that their values are unchanged among equivalent systems.

Since an i-out-of-n system is equivalent to the mixture of an i-out-of-(n + 1) system

and an (i + 1)-out-of-(n + 1)-system, with weight 1 − i/(n + 1) to the former, we get

the relation

hi = (1− i

n+ 1
)h∗i +

i

n+ 1
h∗i+1 for i = 1, . . . , n,

between the performance vectors h∗ = (h∗1, . . . , h
∗
n+1) and h = (h1, . . . , hn), respec-

tively, of equivalent systems of size n + 1 and n. This of course also follows from the

same reasoning as in Proposition 1.

3.3. Comparison of performance-per-cost for n- and (n + 1)-systems

Returning to the full criterion functions, (3) and (8), it follows from the above

that if one starts with an (n + 1)-system which has an equivalent n-system, then the

numerators of (3) and (8) are equal. Thus the criterion function for the n-system will

be the smaller of the two if and only if the n-system has a lower expected cost.

Suppose next that we start from an (n+ 1)-system for which there is no equivalent

n-system. There may be reasons to search among the class of n-systems that are

stochastically better than the given (n + 1)-system. One motivation is that these

may still have a lower cost than the (n + 1)-system, and they will also have a better

performance.

Theorem 2 defines the convex set of signature vectors of all n-systems that stochasti-

cally dominate the given (n+1)-system. We assume below that the required condition

on s∗n+1 given in the theorem is satisfied, and we let R denote the convex set of

(s1, . . . , sn−1) defined by Theorem 2. We now seek to maximize the criterion function

mr from (3) over this set. Since sn = 1− s1 − . . .− sn−1 we may rewrite (3) as

mr(s,h, c) =
hn −

∑n−1
i=1 (hn − hi)si

(cn −
∑n−1

i=1 (cn − ci)si)r
≡

hn −
∑n−1

i=1 h̃isi

(cn −
∑n−1

i=1 c̃isi)
r
, (12)

where c̃i = cn − ci and h̃i = hn − hi for i = 1, . . . , n− 1.

We claim that the maximum of (12) occurs on the boundary of the convex set R.

To see this, assume, as in a proof by contradiction, that the maximum occurs at an

interior point ŝ of R. At this point, consider the two hyperplanes of (s1, . . . , sn−1) for
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which, respectively, the linear functions
∑n−1

i=1 h̃isi and
∑n−1

i=1 c̃isi have the same value

as in the optimum point ŝ. Let N be an open neighborhood of ŝ which is included in R,

and consider the intersection N0 of N and the above hyperplane defined by the c̃i. On

this set, the denominator of (12) is constant. The set N0 will, however, contain points

on both sides of the hyperplane defined by the h̃i, meaning that
∑n−1

i=1 h̃isi on N0 will

have values both larger and smaller than its value at ŝ. But then (12) will in N0 take

values larger than the value at ŝ, which gives a contradiction since the maximum is

assumed to be at ŝ. Thus the maximum point of (12) is a boundary point of R.

The above argument clearly holds for all r. We now argue that for r = 1, the

maximum value of (12) must be at an extreme point of R. Suppose, as in a proof by

contradiction, that the maximum is at a boundary point of R which is not an extreme

point. Let the maximum value of (12) be A. Then (12) equals A in a hyperplane in

the space of s1, . . . , sn−1 (the hyperplane will depend on A). But since the hyperplane

contains a point on the boundary of R which is not an extreme point, the hyperplane

will intersect the interior of R. Hence the interior of R will also contain an optimum

point of (12). But this is impossible by what we have already seen for general r, so

we get a contradiction. This shows that the maximum of (12) for r = 1 must be at an

extreme point.

While it is shown in [6, Chapter 7] that, for r 6= 1, the maximum of mr on the

full simplex of signature vectors s = (s1, . . . , sn) is attained for an s with at most

two positive elements, it will be seen in an example below that the maximum of (12)

restricted to the set R may well occur at boundary points with more than two positive

entries.

Example 2 (continued). We have already computed the cost vectors c∗ = (1, 3/2, 2, 5/2)

and c = (9/10, 7/5, 19/10). Let the components’ lifetimes Xi be exponential with

expected value 1. It is well known that EXi:n = 1/n+ 1/(n− 1) + . . . 1/(n− i+ 1) for

i = 1, . . . , n, so we have the performance vectors for the 4-system and 3-system given

by, respectively, h∗ = (1/4, 7/12, 13/12, 25/12) and h = (1/3, 5/6, 11/6).

It follows that A∗ from (8) equals

A∗ =
6 · 8r−1

13r
.
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Since we consider the set of 3-systems which stochastically dominate the given system,

the function to maximize is

mr(s1, s2) =
11
6 −

3
2s1 − s2

( 19
10 − s1 −

1
2s2)r

on the convex set R with extreme points given in (7): (0, 0), (1/3, 0), (1/3, 1/3), (0, 1).

A rough grid search was used to find the optimal point in R for r ranging from 0.05

to 10.00 in steps of 0.05. The result is that for r ≤ 1.55, the maximum is obtained

at (s1, s2, s3) = (0, 0, 1), i.e. a parallell system of 3 components. For 1.60 ≤ r ≤ 1.75

the optimum point changes continuously from (0, 0, 1) to (1/3, 0, 2/3) along the path

(p, 0, 1 − p) for 0 ≤ p ≤ 1/3. Next, for 1.80 ≤ r ≤ 2.35 the optimum is at the single

point (1/3, 0, 2/3). When r increases further, 2.40 ≤ r ≤ 2.75, the optimum changes

continuously from (1/3, 0, 2/3) to (1/3, 1/3, 1/3) along the path (1/3, p, 2/3 − p) for

0 ≤ p ≤ 1/3 , while for r ≥ 2.80 the optimum is steady at (1/3, 1/3, 1/3). The

optimum value of the criterion function is for each r larger than the corresponding A∗

for the original (n+ 1)-system.

We also maximized (3) in the full simplex of (s1, s2, s3), i.e. over all possible mixed

3-systems. Then for r ≤ 1.55 the optimum was at (0, 0, 1) (parallel system) and for

r ≥ 4.00 at (1, 0, 0) (series system). For r from 1.60 to 3.95 the optimum point changed

continuously along (p, 0, 1− p) for 0 ≤ p ≤ 1.

A similar performance was seen when optimizing over all 4-systems. For r ≤ 1.45

the optimum was at (0, 0, 0, 1) (parallel system). Then for 1.50 ≤ r ≤ 4.75 the optimum

changed continuously along (p, 0, 0, 1−p) to reach (1, 0, 0, 0) at r = 4.80 and is constant

at that value for r > 4.80.

We finally compared the maximum value of the criterion functions for the optimal

systems at different values of r. It turns out that for r smaller than approximately 0.4,

the optimal 4-system is stronger than the optimal 3-system, while for all r > 0.4 the

optimal 3-system is the stronger. The reason that the 4-system is stronger for small

r is that then the performace is the most important part of the criterion function.

Certainly a parallel system of 4 components has better performace than a parallel

system with 3 components. On the other hand, for r large, the cost is becoming the

most important aspect so a 3-system is preferred to a 4-system.
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4. On the comparison of performance-per-cost for ordered systems

In this section we consider a slightly different problem than treated in the previous

sections. Consider two systems of size n, where the signature vectors are ordered with

respect to one of the order relations considered in Definition 1, stochastic ordering (st);

hazard rate ordering (hr); or likelihood ratio ordering (lr).

Usually, we will have cost vectors c = (c1, . . . , cn) and performance vectors h =

(h1, . . . , hn) with values which are increasing with the index. In this case, it follows

that for two n-systems with respective signature vectors, s = (s1, . . . , sn) and t =

(t1, . . . , tn) which are stochastically ordered, with s ≤st t, then both the performance

and cost will be larger for the system with signature t than for the one with s. Since

these appear, respectively, in the numerator and denominator of the performance-

per-cost measure, it is still of interest to compare the criterion functions for such two

systems. Intuitively, if in some way the performance increases proportionally more than

the cost when going to a stochastically better system, then the value of the criterion

function my also rise. To make this precise, we shall make use of the following theorem,

which follows from results of Shaked and Shantikumar [8, Chapter 1].

Theorem 3. Let X and Y be two independent random variables and let α(·) and β(·)

be arbitrary real-valued functions. Consider the follwing conditions:

C1: β(x) ≥ 0 for all x

C2: α(x)/β(x) is nondecreasing in x

C3: β(x) is increasing in x

C4: α(y)β(x)− α(x)β(y) is nonincreasing in x on {x ≤ y}

C5: E[α(X)]E[β(Y )] ≤ E[α(Y )]E[β(X)] (assuming that the expectations exist)

The following implications hold:

(i) If X ≤lr Y , then C1,C2 together imply C5.

(ii) If X ≤hr Y , then C1,C2,C3 together imply C5.

(iii) If X ≤st Y , then C1,C2,C3,C4 together imply C5.
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Proof: The statement (ii) is part of Theorem 1.B.12 in Shaked and Shantikumar [8]. In

their proof, (ii) is obtained by application of their Theorem 1.B.10 to a particular pair of

functions φ1, φ2. The results (i) and (iii) are not stated in [8], but it is straightforward

to check that (i) is obtained by using the same pair of functions as in their Theorem

1.C.22, while (iii) is obtained similarly from their Theorem 1.A.10.

Remark: Regarding (ii) above, Theorem 1.B.12 in [8] in fact shows that if C5 holds

for all functions α, β satisfying C1,C2,C3, then X ≤hr Y . We are not, however, able

to show that corresponding results hold in (i) and (iii).

In our application of Theorem 3, we let X,Y be defined on {1, . . . , n} with prob-

ability distributions respectively given by the signature vectors s and t. Further,

the functions α and β will be defined on {1, . . . , n} with values given by, respectively,

h = (h1, . . . , hn) and c = (c1, . . . , cn). Then it is seen that condition C5 of the theorem

can be written as ∑n
i=1 hisi∑n
i=1 cisi

≤
∑n

i=1 hiti∑n
i=1 citi

(13)

which is to say that the performance-per-cost unit is higher for the system with

signature vector t compared to the system with signature s.

The conditions C1 and C3 now become, respectively, ci ≥ 0 and ci is increasing in

i, which are the usual assumptions for the cost function. Further, C2 can be written

h1
c1
≤ h2
c2
≤ · · · ≤ hn

cn
(14)

which expresses the intuition that performance needs to increase more than the cost

when going from an i-out-of-n system to an (i + 1)-out-of-n system. Now C4 can be

viewed as a further strengthening of this.

First, C4 states that hjci − hicj is decreasing in i for i ≤ j. This means that

hjci − hicj ≥ hjci+1 − hi+1cj or, equivalently,

hi+1 − hi
ci+1 − ci

≥ hj
cj

for j = 2, . . . , n; i = 1, 2, . . . , j − 1

Thus it follows from (14) that if we assume both C3 and C4, then in addition to (14)

we have the condition

hi+1 − hi
ci+1 − ci

≥ hn
cn

for i = 1, 2, . . . , n− 1
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Corollary 2. Let s and t be the signatures of two n-systems. Let c and h be, respec-

tively, the cost vector and the performace vector. Consider the follwing conditions:

C1’: ci ≥ 0 for all i

C2’: hi/ci is increasing in i

C3’: ci is increasing in i

C4’: hi+1−hi

ci+1−ci ≥
hn

cn
for i = 1, 2, . . . , n− 1

Then the following implications hold:

(i) If s ≤lr t, then C1’,C2’ together imply (13).

(ii) If s ≤hr t, then C1’,C2’,C3’ together imply (13).

(iii) If s ≤st t, then C1’,C2’,C3’,C4’ together imply (13).

Remark: Consider again (3), where we may have r 6= 1. We shall see that under the

assumption that (13) holds, while ci is increasing in i (C3’) and r ≤ 1, it will follow

that ∑n
i=1 hisi

(
∑n

i=1 cisi)
r
≤

∑n
i=1 hiti

(
∑n

i=1 citi)
r
. (15)

This is because the inequality of (15) can be written∑n
i=1 hisi∑n
i=1 cisi

≤
∑n

i=1 hiti∑n
i=1 citi

·
(∑n

i=1 cisi∑n
i=1 citi

)r−1

which holds if (13) holds and the last factor is at least 1. But this latter fact is so

provided that r ≤ 1 and ci is increasing in i, provided s ≤st t.

The conclusion is that, for r ≤ 1, the results (ii) and (iii) of Corollary 2 hold if the

inequality of (13) is replaced by the inequality of (15).

As another corollary, we get the results of Theorem 7.1 and Corollary 7.1 of Samaniego [6],

which concern optimizing (3) for r = 1.

Corollary 3. (Samaniego [6].) Consider the class of mixed systems of size n. Assume

that r = 1 in the criterion function (3), with h and c fixed. Let

K∗ =

{
k | k = argmaxi

{
hi
ci
, i = 1, . . . , n

}}
Then (3) is maximized by any mixture of i-out-of-n systems with i ∈ K∗.
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Proof: Let s be a given signature vector. Let {i1, . . . , in} be a reordering of the

components {1, 2, . . . , n} such that

hin
cin
≥
hin−1

cin−1

≥ · · · ≥ hi1
ci1

Let s′ = (si1 , . . . , sin). Then s′ ≤lr (0, . . . , 0, 1) and it follows from (i) of Corollary 2

that ∑n
j=1 hijsij∑n
j=1 cijsij

≤ hin
cin

Here the left hand side equals m1(s,h, c), while the right hand side equals∑n
i=1 hiti∑n
i=1 citi

for any signature (i.e. probability) vector t = (t1, . . . , tn) for which tk > 0 only if

k ∈ K∗. Since s was arbitrarily chosen, this proves the corollary.

Remark: In view of Corollary 2 one might think that the result of Corollary 3 would

hold also for r < 1. The following example shows, however, that this is not the case.

Suppose n = 3 and

mr(s,h, c) =
2s1 + 3s2 + 5.7s3
(s1 + 2s2 + 3s3)r

Then for r = 1, this is uniquely maximized by s = (1, 0, 0) by Corollary 3. Now for

t = (0, 0, 1) the mr equals 5.7/3r, while for s it equals 2 for any r. Hence for r ≤ 0.9533,

t gives a higher value of the criterion function than s. This suggests that for r < 1

one should no longer consider hi/ci, but rather hi/c
r
i . In fact, by using Theorem 7.2

of Samaniego [6] we can prove the following result:

Theorem 4. Assume that r < 1 in the criterion function (3), with h and c fixed with

0 < h1 < h2 < . . . < hn and 0 < c1 < c2 < . . . < cn. Let

K∗ =

{
k | k = argmaxi

{
hi
cri
, i = 1, . . . , n

}}
Then (3) is maximized by a system with signature vector s if and only if s puts mass

1 on one of the componentes i ∈ K∗, i.e. can be represented as an i-out-of-n system

with i ∈ K∗.

Proof: By [6, Theorem 7.2], the signature vector maximizing (3) has at most two non-

zero elements. Without loss of generality we can assume that these are the two first
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elements, s1 and s2. Thus by letting s = s1 we may consider the function

m(s) =
h1s+ h2(1− s)

(c1s+ c2(1− s))r
for 0 ≤ s ≤ 1

Differentiation with respect to s gives that the sign of m′(s) is the same as the sign of

g(s) = (h1 − h2)(c1s+ c2(1− s))− (h1s+ h2(1− s))(c1 − c2)r (16)

This is a linear function in s. We first rule out the possibility that g(s) = 0 for all

0 ≤ s ≤ 1. In that case we would have g(0) = g(1) = 0, which gives the following two

equations,

(h1 − h2)c2 = h2(c1 − c2)r

(h1 − h2)c1 = h1(c1 − c2)r

By dividing the left hand sides and the right hand sides, we get h2/c2 = h1/c1. Sub-

stitution of this into the first equation gives, however, r = 1, which is a contradiction.

Hence at least one of g(0) and g(1) is nonzero. From this we conclude that g(s) = 0

for an s strictly between 0 and 1 if and only if g(0) and g(1) are both nonzero and

have different signs. Now if g(0) < 0 and g(1) > 0, m(s) has necessarily a minimum in

(0, 1), in which case the maximum of m(s) must occur for either s = 0 or s = 1. The

only remaining case is hence that g(0) > 0 and g(1) < 0. If this is the case, m(s) has a

maximum value in the open interval (0, 1). The key of the proof is, however, to show

that this case is impossible when r < 1.

From (16) above we get that g(0) > 0 if and only if

h2 − h1
c2 − c1

<
h2
c2
r (17)

while g(1) < 0 if and only if
h2 − h1
c2 − c1

>
h1
c1
r (18)

Now since r < 1, (17) implies that

h2 − h1
c2 − c1

<
h2
c2

Reorganizing this inequality it is seen that it is equivalent to

h1
c1

>
h2
c2
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Combining this with (18) we get

h2 − h1
c2 − c1

>
h1
c1
r >

h2
c2
r

which contradicts (17).

Hence the function m(s) cannot have a maximum for s strictly between 0 and 1,

and hence only s = 0 or s = 1 are possible for its maximum. Returning to the original

setup with s being n-dimensional and we want to maximize the function (3), it follows

from the above that the maximum occurs when setting si = 1 for some i. This clearly

implies the stated result.

Remark: Example 7.1, [6, page 102], shows that the result of Theorem 4 does not

necessarily hold for r > 1. In this case there is hence not always a single i-out-of-n

system that is optimal. The reason for the difference between the cases r < 1 and r > 1

is related to the fact that the denominator for r < 1 is a concave function, while for

r > 1 it is convex. This is also the reason for the difference between Corollary 3 and

Theorem 4, where mixtures of systems defined by K∗ are not possible in the latter.

In the example preceding Theorem 4, it follows that for r ≤ 0.9533, the optimal

system is the parallel system (with 3 components). Note that the intuition of the case

r < 1 is that cost is considered less important than performance.

5. Concluding remarks

In Section 2 we arrived at a characterization of the set of signature vectors of n-

systems which stochastically dominate the signature of a given (n + 1)-system. The

characterization was then used in Section 3 in a comparison of performance-per-cost

of corresponding n- and (n + 1)-systems. We could as well have considered the

more general case of characterizing the set of signature vectors of n-systems which

stochastically dominate the signature of a given (n + m) system for a general m ≥ 1.

In fact, by repeated application of Theorem 1 it would follow that the components of

the signature vector of an (n + m)-system are linear functions of the components of

the signature vector of an equivalent n-system. Explicit expressions for these linear

functions are, furthermore, given in Navarro et al. [3] and Lindqvist et al. [2]. Thus
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the construction of a convex set of signature vectors of n-systems which stochastically

dominate the (n+m)-system would be similar to the one performed for m = 1.
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