NORGES TEKNISK-NATURVITENSKAPELIGE
UNIVERSITET

Failure Prediction from Condition Monitoring
of Complex Systems”
by
Bo H. Lindqvist and Gunnhild H. Presthus

PREPRINT
STATISTICS NO. 4/2014

NORWEGIAN UNIVERSITY OF SCIENCE AND
TECHNOLOGY
TRONDHEIM, NORWAY

This report has URL
http://www.math.ntnu.no/preprint /statistics /2014 /S4-2014.pdf
Bo H. Lindqvist has homepage: http://www.math.ntnu.no/~bo
E-mail: bo@math.ntnu.no
Address: Department of Mathematical Sciences, NTNU, N-7491 Trondheim,
Norway.

*To be published in JSM 201/ Proceedings, Risk Analysis Section. Alexandria, VA:
American Statistical Association.



Failure prediction from condition monitoring of complex systems

Bo H. Lindgvist* Gunnhild H. Presthus

Abstract

We consider a technical system subjected to condition mong by a marker procesds(¢). Fail-

ure of the system is closely connected to the event that theepsY (¢) crosses a certain critical
threshold. The monitored procesgt¢) depends probabilistically on the state of a latent process
S(t), representing the underlying technical condition of theteyn. The goal is to, based on the
observation of the proceds(t), estimate the distribution of the first passage timé&¢f) of the
critical threshold. The proceds(t) is modeled as a piecewise Wiener process with change points
determined by the latent proce$S&). A Bayesian approach involving Markov Chain Monte Carlo
simulations is used for estimation.

Key Words: Wiener process, condition based maintenance, changegstintation.

1. Introduction

Any industrial production process involves maintenancaraisitegrated part. In fact, it has
been reported that up to 70% of production costs can bewtttdlio maintenance. Efficient
and cost-effective maintenance strategies are therefoight One solution is the so-called
condition-based maintenance, in which (see definition iaugadnd and Hgyland, 2004,
p. 363]) maintenance actions are decided based on measusepfevariables that are
correlated with deterioration. The variables may be, éggmperature, pressure, erosion,
vibration or noise levels. Condition-based maintenancgires a monitoring system for
measurements of the variables, as well as a mathematicadlinad predicts the behavior
of the deterioration process. When repair is difficult, imes risk, is costly in itself or
leads to costly downtime, condition monitoring may be intaot to ensure that no pro-
duction is lost. Examples that could be thought of are offststructures, such as sub-sea
structures or wind turbines. The motivating example of tresent paper is from the latter
field, where the object of study is the failure developmen @find turbine bearing. The
bearing’s temperature is then continuously monitoredjragsy a Wiener-process type for
its stochastic modeling.

Wiener processes have been used in a wide range of apptisaperhaps mostly be-
cause of their tractable mathematical properties. In dizgien modeling it is natural to
consider the Wiener process with drift. In the case of a pesirift, it is well known
that the first passage time of a Wiener process to a given leaglthe Inverse Gaus-
sian distribution. In reliability engineering, this pr@sehas been studied in for exam
ple [Whitmore, 1986], where multiple modes of failure arpresented by a multivariate
Brownian motion. Length of stay in hospital has also beenetamtiby use of a Wiener
processes by [Horrocks and Thompson, 2004], in a competskg situation. Here the
Wiener process represents a health level process and haglenolitcomes: death in hos-
pital or healthy discarge. A time scale transformation ipligol to a Wiener process in
[Whitmore and Schenkelberg, 1997], with the aim of lifetiprediction. This time trans-
formation is actually inspired by [Doksum and Hgyland, 19%2e also Section 6. In
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[Whitmore et al., 1998] a bivariate Wiener process is cotetwto an unobservable marker
process. Many different applications of Wiener processessaggested, in a variety of
fields, among them marriage failure, where the appropriaieken process is a social es-
trangement index, AIDS death, where CD4 cell count is the@pjate marker process,
and metal fatigue failure, with dominant crack length asrttagker process.

In the present paper we study Wiener processes with one @ ahange points, ana-
lyzed in a way inspired by [Shiryaev, 1963] and furthermoxterding the previous study
of [Lindgvist and Slimacek, 2013]. Whereas the latter arghdeveloped estimates for the
time of change points of a Wiener process, the present pajlezxamine the predicted
distribution of the hitting time of a specified threshold. @&lseady mentioned, in our ap-
plication we use Wiener processes to model temperaturesibdhring of a wind turbine,
with distribution dynamically depending on an underlyingpbserved failure development,
modeled by a hidden Markov chain. A more detailed explanatitthe case study is pre-
sented in Section 2. Some general theory for Wiener prosaessiisplayed in Section 3,
while Section 4 describes the basic model of the approachcd$e of a single changepoint
is studied in Section 5, which includes Bayesian statisiidfarence based on a simulated
temperature process. The general caser@hange points is briefly discussed in Section
6, which includes the analysis of simulated data for the ease 2. Section 7 is the con-
cluding section, which in particular discusses some plessikiensions of the approach.

2. Failuredevelopment in awind turbine bearing

The motivating example of this study is a wind turbine begvirhich is continuously moni-
tored. Following [Valland et al., 2012], the failure devetoent in the wind turbine bearing
can be described as a sequence of distinguished stages:

Stage 1. Impurities in oil
Stage 2. Mechanical wear
Stage 3: Micropitting

Stage 4: Chipping

Stage 5: Bearing break-down

Stage 6: Turbine shut-down

LetY'(¢) be the temperature at tim€days). Figure 1 from [Valland et al., 2012] shows an
example of the temperature development in a wind turbineitgeghrough the six stages
of failure development.

The temperaturd’(t) is an example of a marker process, i.e., a stochastic process
generated by an individual under study which measures thalthi’ of the individual (see
[Jewell and Kalbfleisch, 1996]). We will consider the markeocess itself as the main
object, being an example of condition monitoring as basisdodition-based maintenance.

Motivated by the example with a wind turbine bearing, the &ito predict the tim&”
until the proces¥’(¢) crosses a critical level. The tinféis hence a first passage time. As-
sume that the process possesses some kind of stationadiy narmal conditions, while
under an emerging system failubé(¢) is expected to leave the stationary behavior and in-
crease towards the critical border. In the wind turbine gXafrthis means that the bearing
enters state 1 and starts the failure development througbtéges described above.

The marker proces¥ (¢) will be modeled as a stochastic process which depends on
an unobservable stochastic procégg). The latter process represents the development
through the failure stages as described earlier.
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Figure 1: Example of the development of temperatlrét), as a function of time (days),
in a wind turbine bearing through the six stages of failureattgpoment.

3. TheWiener process and the I nverse Gaussian distribution

Before presenting the model in the next section, we find ivenient to recall some defi-
nitions and properties of the Wiener process.

A stochastic proces®/ (t) is a Wiener process with drift coefficiemtand variance
parameter? if

1. W(0) = 0 with probability one,
2. For everyt > 0, W (t) is normally distributed with meant and variancer*t,
3. W (t) has stationary and independent increments.

Whenv = 0, W(t) = o B(t), for a standard Brownian motion proceBst). Note also
that, given that > 0, for timesr ands such that > s, W (r) is first-order stochastically
dominatingW¥ (s), that is, for allz, P(W (r) > z) > P(W(s) > ).

Define the first passage tirfieof a threshold value as the first time the process crosses
the threshold value:

T= %I;%(W(t) > a).

An important and mathematically tractable attribute ofWiener process, see, e.qg,
[Aalen and Gjessing, 2001], is thatif> 0, the first passage time to a levéi(¢) > a > 0
is Inverse Gaussian distributed, with density

f(t;v,0,a) = \/2a_7mt_g exp (—%) , t>0. Q)
The mean and variance are given by
BT =2, Var[T] = “—(;2 )
14 14
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Figure 2: The stagesS(t) of the underlying failure development process is modeled as
Markov chain with state spadé, 1, ..., m} and time-homogenous transition probabilities.
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Figure 3: Simulation of the processeS(t) and Y (¢) in the case of two switchpoints,
71 = 500 andry = 750.

It can be seen from (1) that the Inverse Gaussian distributam be expressed by only
two parameterg = a/v and\ = a?/a%. We shall however find it convenient to consider
the distribution with three parameters, the drift parametevariance parameter and
threshold parameter. The cumulative distributiod(¢; v, 0,a) = P(T < t) is then given

by:
F(t;v,0,a) = ® (V;\_/Ea> + exp (%j—;) ) <_z\_/;t> , (€))

and we say that T is Inverse Gaussian distributed with paese o,a: T ~ ZG(v, 0, a)

4. Probabilistic modeling of the marker process Y ()

Let the latent procesS(¢) be modeled as a time-homogeneous Markov chain on the state
space{0, 1, ..., m}, wherem = 6 in our application to wind turbine bearing. Itis assumed
that.S(0) = 0, and that the allowed transitions are ofily~» 1 — 2 — -- -, see Figure 2.
This means that the sojourn times in each state are expatgwlistributed.

The observed temperature procésg) is assumed to be a piecewise Wiener process
where parameters will change when the stagg changes. More specifically, the param-
eters(v, o) of the Wiener process are defined as:

= (0,009) whenS(t) = 0 (“normal conditions”),
= (I/Z',O'Z') WhenS(t) =i€c {1,2,...,]{7}
where0 < 1y <1y < ...

Figure 3 shows a simulated procését) whereY (0) = 0, k = 2, and.S(t) switches
from O to 1 atr; = 500 and from 1 to 2 at» = 750.



5. Special case: One change point (m = 1)

Let 7 be the time when the proces§t) switches from 0 to 1. Thus, assume that)
follows a Wiener process with (0) = 0, and that until timer, there is no drifty = 0,
while from time on, there is a positive drift. Assume that the variance parametes
the same in both stages.

Under these assumptions, [Etbe the time wherY'(¢) crosses the level > 0. Under
the simplifying assumption thé&t is larger thanr, we thus have

T = inf{t > 7|Y(t) > a}.

Then conditional onr andY (), T — 7 has an Inverse Gaussian distribution with drift
parametern, variance parameter and threshold parameter— Y (7), that isT — 7 ~
ZG(v,0,a — Y (1)).

5.1 Statistical inferencewithm =1

We now describe the statistical inference problem, wheasecibnvenient to use a Bayesian
approach. For simplicity we furthermore consider a diszeelt time.

Thus assume that the latent procé§s) as well as the marker proce¥t) are ob-
served at equidistant discrete time points where for simplicity we lett; = 4,9 =
1,2,...,n. Now, the temperature incremen§; = Y (¢t;) — Y (¢;—1) are independent
and normally distributed, with; ~ N(0,03) fori = 1,2,...,7; X; ~ N(v1,0%) for
t1=7+1,74+2,....

Following [Shiryaev, 1963], we put a geometric prior-omwith parameter € (0, 1),

m(r)=q(l—q) 5 7=1.2,...

This corresponds to assuming the transition probabify = ¢ for the (discrete time)
Markov chainS(t), that is, the probability of experiencing a switch from st@tto state 1,
on any time unit, is;. This may seem like a reasonable assumption for the windheirb
bearing example, where state 1 corresponds to the eventofreace of impurities in the
oil, which can be viewed as an externally triggered eventefiendent of the wear of the
bearing. Note that the expected valuera$ 1/q.

5.1.1 The posterior predictive distribution 6f

Given observations, ..., z, of the temperature incremends,, ..., X,, the problem is
to predict the distribution of the tim& of exceedance of level.

At first, we considerr ando as known. [Lindqvist and Slimacek, 2013] noted that it
may be a reasonable assumption thahdo are known from expert judgment or statistical
analysis of past data. Now,

P(T < tlxy,...,zp;v,0,0)

= Z P(T <tlr,z1,...,zn;v,0,a0)7(T|T1, ..., TH3 v, 0) (4)
TEQ
where(} is the range of.

For computation of the right hand side of (4), the first factan be derived from prop-
erties of the Wiener process and Inverse Gaussian distnihub be discussed below. For
the second factor, the posterior of there is no simple analytic expression, and a Monte
Carlo simulation approach will be used.



5.1.2 The posterior distribution of
The likelihood function for the data is (see [Lindgvist ardraicek, 2013])

B n )2 if 7 <
L(T]wl,...,xn) x exp{ 2012 (Zznzl x22+21:7'+1(x2 V) )} If TN
exp { s S 22} fr>mn,
and the posterior for is proportional tor (1) L(7|x1, . .., xy).
Multiplying L by exp {(1/2¢%) 3", 22} we get the posterior distribution
m(T|x1,...,xy,) for 7 on the form

T_ exp{s5 205" .z — (n—1)? if r<n
OCQ(I—(]) 1'{ ) p{20—2[ zz_’r-‘rl ( ) ]} IfT;n

5.1.3 The conditional distribution &f

In order to compute the first factor on the right hand side pff47T" < t|7, z1, ..., z,; v, 0,a),
we need to distinguish between the casesn andr > n.
In the former case,

P(T <tr,z1,...,2n;v,0,a) = P(T —t, <t —ty|7,21,...,20;V,0,a))
=P(S <t—ty|m,x1,...,20;v,0,a — Y (t)))
=F(t—ty;a—Y(ty),v,0),

whereF'(-; 3,7, ) is the Inverse Gaussian cumulative distribution functiveig in equa-
tion (1) with threshold paramete, drift parametery and variance parametér

In the situation where- > t¢,, because of the assumption that the threshold is not
crossed before, P(T < 1) = 0, the process should be shifted to the new p6int” (7)),
from which the shifted threshold time is Inverse Gausstas, T—7 ~ ZG(v, 0,a—Y (T)).
However,Y (7) is a future state and thus unknown. Conditioning¥air) we have,

P(T <t|r,Y(7),21,...,xn;v,0,a) = P(T —t, <t —t,|1,Y(7),21,...,24;V,0,a))
=P(S <t—ty|r,Y(7),21,...,2pn;v,0,a — Y (T))
=F(t—tp;v,0,a —Y(7)).

In order to uncondition oY (7), one may simulate from the distributid¥ (0, (7 — n)o?)
of Y(7) — Y(n), or use the rough approximation tHatr) ~ Y (n).

[Presthus, 2014] also considered an estimatoP¢f < t|z1,...,x,;v,0,a) cCOM-
pletely based on simulation. More precisely, this simolatapproach simulates a large
number of Wiener processes, starting at the last obsenvatia:), until the processes
crosses the threshold value

5.1.4 Simulated example

Figure 4 shows a simulation from the temperature procedsle Tashows some summary
statistics of the posterior distribution efwhen the process is observed until, respectively,
timen = 1400, n = 1700, n = 3000. It is seen that the uncertainty is fairly large for the
two lowest observation times, while at time 3000, the charajet is very well estimated,
as should be expected.

The predictive distribution of" is shown in Figure 5, again for the observation times
respectivelyn = 1400, 1700, 3000. The blue curve in the three plots is the posterior pre-
dictive distribution ofT". It is seen that in the case = 3000, the curve is very close to
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Figure 4: Piecewise Wiener process simulated in the time intefial] = [0, 3000], with
one change point = 1500. The drift parameter after the change poiniis= 0.003, and
variance parameter is the same for both pieges,0.02. The critical threshold is = 14.

Mean 4 378
n = 1400 Median 3459
95 % HPD [1 292, 10 389]
Mean 3352
n = 1700 Median 2149
95 % HPD [1 254, 9 138]
Mean 1507
n = 3000 Median 1497
95 % HPD [1292,1682]

Table 1. Estimated values of for observation periods of lengtt and prior distribution
for 7 being geometric witly = 1/3000. (True value ofr is 7 = 1500).
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Figure5: Estimated predictive distribution @f for observation periods of different lengths
n and prior distribution forr being geometric withy = 1/3000. (True value ofr is
7 = 1500).
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Figure 6: Priors and posteriors for unknown v, c. Posteriors are for observation with
n = 3000. Prior distributions: 7 ~ geometric(1/3000)r ~ gamma(4,0.0006)y ~
gamma(4,0.01). True values:= 1500, v = 0.003, o = 0.02.

the true distribution, which corresponds to knowing theugabfr. The curves forming
the 95% credible intervals are based on the credibilityriraiis for  as obtained from the
respective posterior distributions.

[Presthus, 2014] also considered the case whero are all unknown parameters, and
performed a Bayesian analysis using properly tuned prairibdiuions and the Metropolis-
Hastings method. Graphs of the posterior distributionsgiren in Figure 6. Note that
the example is based on observation at time 3000, which @mpfiat the variation in the
posterior ofr is fairly low.

6. Thegeneral case: m change points

Consider now the setting when the state space of the undgmyocess(¢) is{1,2...,m},
in which case the marker processt) hasm change points,

T <7< - <Ty
and corresponding Wiener-process parameters

0,01, ..., Vn]

[00,01,. .. ,O‘m].

SN

The likelihood for the increment&; = Y (i) — Y'(: — 1) is, as for the casen = 1, in
principle straightforward to write down, but for a given ebgtion timen it needs to be
stated explicitly for each of the cases= (7j,741],j =1,...,m — 1.
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Figure 7. Simulated example: Two change-points. Piecewise Wienargss with two
change points; = 800 and, = 1400 simulated in the time intervdb, n] = [0, 2000].
Parameter valuesy = 0, og = 0.05, 1 = 0.03, o1 = 0.05, 5 = 0.039, oo = 0.065.
Critical temperature threshold is= 13.

In correspondence with the Markovian assumptiond6t), the prior distribution for
(71,...,Tm) should be chosen by giving, 7o — 71, . . ., T, — Ti—1 iINdependent exponen-
tial distributions in general, and geometric distribudn the discrete time case.

The computation of the posterior predictive distributidnZois similar to the one for
the case with one change point, namely,

P(T <tlzy,...,xn;7,8,a) =

Z P(T <t s Ty X1y, TV, 5, 0)

(7-17---77-77L)€Q
XT(Ty ooy T | @1y ooy Ty 1, 0)
where(2 is the range of 74, ..., 7,), and the summation needs to be done by sampling
vectors(ry, ..., T,,) from the joint posterior of the;.

The computation of the terms
P(T <t7, .., Tms X1y, Tn;V,0,a)

involves numerical or Monte Carlo integrations in additioranalytic expressions from the
Inverse Gaussian distribution. This extends the procederendicated above for the case
m = 1. Some of the challenges for the computation for a generate touched in the case
m = 2, which is treated in detail in [Presthus, 2014].

Figure 7 shows a simulated example with= 2, while Figure 8 gives the resulting
estimates and confidence curves for observations at thifeeedit points in time.

6.1 Time-transformed Wiener process

Note that in the above presentation of the case with generalve allow the variance
parameters; to vary freely. Below we indicate that by imposing a certailation between
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Figure 8: Estimated predictive distributions for two change-pgijribr observation periods
of different lengths: and prior distribution for, 5 given by, geometrically distributed
with probability 1/2000, andm, — 7, geometrically distributed with probability/1000.
(The true values are, = 800 andm, = 1400).



the o;, the calculation of the posterior predictive distributioh7” may be considerably
simplified. The following Proposition from [Doksum and Hagtl, 1992] is crucial:

Proposition.  Let&(t) be a nonnegative strictly increasing and continuous fumctn
[0, 00) with £(0) = 0 and let{WW,(¢),t > 0} be a Wiener process with driff > 0 and
variance parameter?. LetT be the first time the procedd’(£(t)) hits the threshold
a > 0. Then the cdf of" equalsF'({(t); v, o, a) whereF' is given in (3)

The result leads to a simplification of the calculations ia#t change-point case by

defining
£(t) = t ) form <t<m
- Tj—l-—(t_Tj) fOl’Tj<t§Tj+1aj:27"'

J
Vi—1

The drawback of such a simplified approach is, however, tteavariance parameters are
restricted byr; = (vj/v;—1)o;—1 for j = 2,... (see [Presthus, 2014] for further details).

7. Concluding remarks and further work

In the framework of [Valland et al., 2012], several healtigators of bearing failure were
suggested. While we used the temperature as the only suicatioi we might have con-
sidered multi-dimensional processes, either of multatariWiener type, or combinations of
Wiener-processes and other types of processes. A chalenge then be that the health
indicators most probably are correlated.

Another suggestion for a model extension would be to inclimdee than one failure
mode, thus assuming a kind of competing risks situation. tyjpe of failure considered in
the present paper is a “soft” one, resulting from mechaniesr. One could also include
the possibility of a shock, which would have a larger effédahg the failure development.

For problems where the deterioration is cumulative, suatoa®sion or crack growth,
the gamma process might be a more suitable process. [Fadagtial., 2008] presented a
frequentistic approach to estimating change points of sudhterioration process, exem-
plified by the gamma process.

Switching models like the one suggested in this paper arayemmin the literature.
A reliability application is given by [Chiquet et al., 2008h a potential extension of the
present work one might let the latent procesSé&9 be given as by a more general stochas-
tically monotone Markov chains, with increasing pathstredato some partial order.
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