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Failure prediction from condition monitoring of complex systems

Bo H. Lindqvist∗ Gunnhild H. Presthus†

Abstract
We consider a technical system subjected to condition monitoring by a marker processY (t). Fail-
ure of the system is closely connected to the event that the processY (t) crosses a certain critical
threshold. The monitored processY (t) depends probabilistically on the state of a latent process
S(t), representing the underlying technical condition of the system. The goal is to, based on the
observation of the processY (t), estimate the distribution of the first passage time ofY (t) of the
critical threshold. The processY (t) is modeled as a piecewise Wiener process with change points
determined by the latent processS(t). A Bayesian approach involving Markov Chain Monte Carlo
simulations is used for estimation.

Key Words: Wiener process, condition based maintenance, change pointestimation.

1. Introduction

Any industrial production process involves maintenance asan integrated part. In fact, it has
been reported that up to 70% of production costs can be attributed to maintenance. Efficient
and cost-effective maintenance strategies are therefore sought. One solution is the so-called
condition-based maintenance, in which (see definition in [Rausand and Høyland, 2004,
p. 363]) maintenance actions are decided based on measurements of variables that are
correlated with deterioration. The variables may be, e.g.,temperature, pressure, erosion,
vibration or noise levels. Condition-based maintenance requires a monitoring system for
measurements of the variables, as well as a mathematical model that predicts the behavior
of the deterioration process. When repair is difficult, involves risk, is costly in itself or
leads to costly downtime, condition monitoring may be important to ensure that no pro-
duction is lost. Examples that could be thought of are offshore structures, such as sub-sea
structures or wind turbines. The motivating example of the present paper is from the latter
field, where the object of study is the failure development ofa wind turbine bearing. The
bearing’s temperature is then continuously monitored, assuming a Wiener-process type for
its stochastic modeling.

Wiener processes have been used in a wide range of applications, perhaps mostly be-
cause of their tractable mathematical properties. In degradation modeling it is natural to
consider the Wiener process with drift. In the case of a positive drift, it is well known
that the first passage time of a Wiener process to a given levelhas the Inverse Gaus-
sian distribution. In reliability engineering, this process has been studied in for exam-
ple [Whitmore, 1986], where multiple modes of failure are represented by a multivariate
Brownian motion. Length of stay in hospital has also been modeled by use of a Wiener
processes by [Horrocks and Thompson, 2004], in a competing risks situation. Here the
Wiener process represents a health level process and has multiple outcomes: death in hos-
pital or healthy discarge. A time scale transformation is applied to a Wiener process in
[Whitmore and Schenkelberg, 1997], with the aim of lifetimeprediction. This time trans-
formation is actually inspired by [Doksum and Høyland, 1992], see also Section 6. In
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[Whitmore et al., 1998] a bivariate Wiener process is connected to an unobservable marker
process. Many different applications of Wiener processes are suggested, in a variety of
fields, among them marriage failure, where the appropriate marker process is a social es-
trangement index, AIDS death, where CD4 cell count is the appropriate marker process,
and metal fatigue failure, with dominant crack length as themarker process.

In the present paper we study Wiener processes with one or more change points, ana-
lyzed in a way inspired by [Shiryaev, 1963] and furthermore extending the previous study
of [Lindqvist and Slimacek, 2013]. Whereas the latter authors developed estimates for the
time of change points of a Wiener process, the present paper will examine the predicted
distribution of the hitting time of a specified threshold. Asalready mentioned, in our ap-
plication we use Wiener processes to model temperature in the bearing of a wind turbine,
with distribution dynamically depending on an underlying unobserved failure development,
modeled by a hidden Markov chain. A more detailed explanation of the case study is pre-
sented in Section 2. Some general theory for Wiener processes is displayed in Section 3,
while Section 4 describes the basic model of the approach. The case of a single changepoint
is studied in Section 5, which includes Bayesian statistical inference based on a simulated
temperature process. The general case ofm change points is briefly discussed in Section
6, which includes the analysis of simulated data for the casem = 2. Section 7 is the con-
cluding section, which in particular discusses some possible extensions of the approach.

2. Failure development in a wind turbine bearing

The motivating example of this study is a wind turbine bearing which is continuously moni-
tored. Following [Valland et al., 2012], the failure development in the wind turbine bearing
can be described as a sequence of distinguished stages:

Stage 1: Impurities in oil

Stage 2: Mechanical wear

Stage 3: Micropitting

Stage 4: Chipping

Stage 5: Bearing break-down

Stage 6: Turbine shut-down

Let Y (t) be the temperature at timet (days). Figure 1 from [Valland et al., 2012] shows an
example of the temperature development in a wind turbine bearing through the six stages
of failure development.

The temperatureY (t) is an example of a marker process, i.e., a stochastic process
generated by an individual under study which measures the “health” of the individual (see
[Jewell and Kalbfleisch, 1996]). We will consider the markerprocess itself as the main
object, being an example of condition monitoring as basis for condition-based maintenance.

Motivated by the example with a wind turbine bearing, the aimis to predict the timeT
until the processY (t) crosses a critical level. The timeT is hence a first passage time. As-
sume that the process possesses some kind of stationarity under normal conditions, while
under an emerging system failure,Y (t) is expected to leave the stationary behavior and in-
crease towards the critical border. In the wind turbine example, this means that the bearing
enters state 1 and starts the failure development through the stages described above.

The marker processY (t) will be modeled as a stochastic process which depends on
an unobservable stochastic processS(t). The latter process represents the development
through the failure stages as described earlier.



Figure 1: Example of the development of temperature,Y (t), as a function of timet (days),
in a wind turbine bearing through the six stages of failure development.

3. The Wiener process and the Inverse Gaussian distribution

Before presenting the model in the next section, we find it convenient to recall some defi-
nitions and properties of the Wiener process.

A stochastic processW (t) is a Wiener process with drift coefficientν and variance
parameterσ2 if

1. W (0) = 0 with probability one,

2. For everyt > 0, W (t) is normally distributed with meanνt and varianceσ2t,

3. W (t) has stationary and independent increments.

Whenν = 0, W (t) = σB(t), for a standard Brownian motion processB(t). Note also
that, given thatν > 0, for timesr ands such thatr > s, W (r) is first-order stochastically
dominatingW (s), that is, for allx, P (W (r) ≥ x) ≥ P (W (s) ≥ x).

Define the first passage timeT of a threshold valuea as the first time the process crosses
the threshold value:

T = inf
t>0

(W (t) > a).

An important and mathematically tractable attribute of theWiener process, see, e.g,
[Aalen and Gjessing, 2001], is that ifν > 0, the first passage time to a levelW (t) ≥ a > 0
is Inverse Gaussian distributed, with density

f(t; ν, σ, a) =
a

√

2πσ
t−

3

2 exp

(

−

(a− νt)2

2tσ2

)

, t > 0. (1)

The mean and variance are given by

E[T ] =
a

ν
, V ar[T ] =

a σ2

ν3
. (2)



Figure 2: The stagesS(t) of the underlying failure development process is modeled asa
Markov chain with state space{0, 1, . . . ,m} and time-homogenous transition probabilities.

Figure 3: Simulation of the processesS(t) and Y (t) in the case of two switchpoints,
τ1 = 500 andτ2 = 750.

It can be seen from (1) that the Inverse Gaussian distribution can be expressed by only
two parametersµ = a/ν andλ = a2/σ2. We shall however find it convenient to consider
the distribution with three parameters, the drift parameter ν, variance parameterσ and
threshold parametera. The cumulative distributionF (t; ν, σ, a) = P (T ≤ t) is then given
by:

F (t; ν, σ, a) = Φ

(

νt− a

σ
√

t

)

+ exp

(

2aν

σ2

)

Φ

(

−a− νt

σ
√

t

)

, (3)

and we say that T is Inverse Gaussian distributed with parametersν, σ, a: T ∼ IG(ν, σ, a)

4. Probabilistic modeling of the marker process Y (t)

Let the latent processS(t) be modeled as a time-homogeneous Markov chain on the state
space{0, 1, . . . ,m}, wherem = 6 in our application to wind turbine bearing. It is assumed
thatS(0) = 0, and that the allowed transitions are only0 → 1 → 2 → · · · , see Figure 2.
This means that the sojourn times in each state are exponentially distributed.

The observed temperature processY (t) is assumed to be a piecewise Wiener process
where parameters will change when the stageS(t) changes. More specifically, the param-
eters(ν, σ) of the Wiener process are defined as:

= (0, σ0) whenS(t) = 0 (“normal conditions”),

= (νi, σi) whenS(t) = i ∈ {1, 2, . . . , k}

where0 < ν1 ≤ ν2 ≤ . . ..
Figure 3 shows a simulated processY (t) whereY (0) = 0, k = 2, andS(t) switches

from 0 to 1 atτ1 = 500 and from 1 to 2 atτ2 = 750.



5. Special case: One change point (m = 1)

Let τ be the time when the processS(t) switches from 0 to 1. Thus, assume thatY (t)
follows a Wiener process withY (0) = 0, and that until timeτ , there is no drift,ν = 0,
while from timeτ on, there is a positive driftν. Assume that the variance parameterσ is
the same in both stages.

Under these assumptions, letT be the time whenY (t) crosses the levela > 0. Under
the simplifying assumption thatT is larger thanτ , we thus have

T = inf{t > τ |Y (t) ≥ a}.

Then conditional onτ andY (τ), T − τ has an Inverse Gaussian distribution with drift
parameterν, variance parameterσ and threshold parametera − Y (τ), that isT − τ ∼

IG(ν, σ, a− Y (τ)).

5.1 Statistical inference with m = 1

We now describe the statistical inference problem, where itis convenient to use a Bayesian
approach. For simplicity we furthermore consider a discretized time.

Thus assume that the latent processS(t) as well as the marker processY (t) are ob-
served at equidistant discrete time pointsti, where for simplicity we letti = i, i =
1, 2, . . . , n. Now, the temperature incrementsXi ≡ Y (ti) − Y (ti−1) are independent
and normally distributed, withXi ∼ N(0, σ2

0) for i = 1, 2, . . . , τ ; Xi ∼ N(ν1, σ
2
1) for

i = τ + 1, τ + 2, . . ..
Following [Shiryaev, 1963], we put a geometric prior onτ with parameterq ∈ (0, 1),

π(τ) = q(1− q)τ−1; τ = 1, 2, . . .

This corresponds to assuming the transition probabilityP01 = q for the (discrete time)
Markov chainS(t), that is, the probability of experiencing a switch from state 0 to state 1,
on any time unit, isq. This may seem like a reasonable assumption for the wind turbine
bearing example, where state 1 corresponds to the event of occurrence of impurities in the
oil, which can be viewed as an externally triggered event, independent of the wear of the
bearing. Note that the expected value ofτ is 1/q.

5.1.1 The posterior predictive distribution ofT

Given observationsx1, . . . , xn of the temperature incrementsX1, . . . ,Xn, the problem is
to predict the distribution of the timeT of exceedance of levela.

At first, we considerν andσ as known. [Lindqvist and Slimacek, 2013] noted that it
may be a reasonable assumption thatν andσ are known from expert judgment or statistical
analysis of past data. Now,

P (T ≤ t|x1, . . . , xn; ν, σ, a)

=
∑

τ∈Ω

P (T ≤ t|τ, x1, . . . , xn; ν, σ, a)π(τ |x1, . . . , xn; ν, σ) (4)

whereΩ is the range ofτ .
For computation of the right hand side of (4), the first factorcan be derived from prop-

erties of the Wiener process and Inverse Gaussian distribution, to be discussed below. For
the second factor, the posterior ofτ , there is no simple analytic expression, and a Monte
Carlo simulation approach will be used.



5.1.2 The posterior distribution ofτ

The likelihood function for the data is (see [Lindqvist and Slimacek, 2013])

L(τ |x1, . . . , xn) ∝

{

exp{− 1
2σ2 (

∑τ
i=1 x

2
i +

∑n
i=τ+1(xi − ν)2)} if τ ≤ n

exp
{

−
1

2σ2

∑n
i=1 x

2
i

}

if τ > n,

and the posterior forτ is proportional toπ(τ)L(τ |x1, . . . , xn).
Multiplying L by exp

{

(1/2σ2)
∑n

i=1 x
2
i

}

we get the posterior distribution
π(τ |x1, . . . , xn) for τ on the form

∝ q(1− q)τ−1
·

{

exp{ 1
2σ2 [2ν

∑n
i=τ+1 xi − (n− τ)ν2]} if τ ≤ n

1 if τ > n.

5.1.3 The conditional distribution ofT

In order to compute the first factor on the right hand side of (4),P (T ≤ t|τ, x1, . . . , xn; ν, σ, a),
we need to distinguish between the casesτ < n andτ ≥ n.

In the former case,

P (T ≤ t|τ, x1, . . . , xn; ν, σ, a) = P (T − tn ≤ t− tn|τ, x1, . . . , xn; ν, σ, a))

= P (S ≤ t− tn|τ, x1, . . . , xn; ν, σ, a− Y (tn)))

= F (t− tn; a− Y (tn), ν, σ),

whereF (·;β, γ, δ) is the Inverse Gaussian cumulative distribution function given in equa-
tion (1) with threshold parameterβ, drift parameterγ and variance parameterδ.

In the situation whereτ > tn, because of the assumption that the threshold is not
crossed beforeτ , P (T < τ) = 0, the process should be shifted to the new point(τ, Y (τ)),
from which the shifted threshold time is Inverse Gaussian,S = T−τ ∼ IG(ν, σ, a−Y (τ)).
However,Y (τ) is a future state and thus unknown. Conditioning onY (τ) we have,

P (T ≤ t|τ, Y (τ), x1, . . . , xn;ν, σ, a) = P (T − tn ≤ t− tn|τ, Y (τ), x1, . . . , xn; ν, σ, a))

= P (S ≤ t− tn|τ, Y (τ), x1, . . . , xn; ν, σ, a− Y (τ))

= F (t− tn; ν, σ, a − Y (τ)).

In order to uncondition onY (τ), one may simulate from the distributionN(0, (τ − n)σ2)
of Y (τ)− Y (n), or use the rough approximation thatY (τ) ≈ Y (n).

[Presthus, 2014] also considered an estimator ofP (T ≤ t|x1, . . . , xn; ν, σ, a) com-
pletely based on simulation. More precisely, this simulation approach simulates a large
number of Wiener processes, starting at the last observation Y (n), until the processes
crosses the threshold valuea.

5.1.4 Simulated example

Figure 4 shows a simulation from the temperature process. Table 1 shows some summary
statistics of the posterior distribution ofτ when the process is observed until, respectively,
timen = 1400, n = 1700, n = 3000. It is seen that the uncertainty is fairly large for the
two lowest observation times, while at time 3000, the changepoint is very well estimated,
as should be expected.

The predictive distribution ofT is shown in Figure 5, again for the observation times
respectivelyn = 1400, 1700, 3000. The blue curve in the three plots is the posterior pre-
dictive distribution ofT . It is seen that in the casen = 3000, the curve is very close to
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Figure 4: Piecewise Wiener process simulated in the time interval[0, n] = [0, 3000], with
one change pointτ = 1500. The drift parameter after the change point isν = 0.003, and
variance parameter is the same for both pieces,σ = 0.02. The critical threshold isa = 14.

Mean 4 378
n = 1400 Median 3 459

95 % HPD [1 292, 10 389]
Mean 3 352

n = 1700 Median 2 149
95 % HPD [1 254, 9 138]

Mean 1 507
n = 3000 Median 1 497

95 % HPD [1 292, 1 682]

Table 1: Estimated values ofτ for observation periods of lengthn and prior distribution
for τ being geometric withq = 1/3000. (True value ofτ is τ = 1500).
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Figure 5: Estimated predictive distribution ofT for observation periods of different lengths
n and prior distribution forτ being geometric withq = 1/3000. (True value ofτ is
τ = 1500).
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Figure 6: Priors and posteriors for unknownτ, ν, σ. Posteriors are for observation with
n = 3000. Prior distributions: τ ∼ geometric(1/3000);ν ∼ gamma(4,0.0006);σ ∼

gamma(4,0.01). True values:τ = 1500, ν = 0.003, σ = 0.02.

the true distribution, which corresponds to knowing the value of τ . The curves forming
the 95% credible intervals are based on the credibility intervals forτ as obtained from the
respective posterior distributions.

[Presthus, 2014] also considered the case whenτ, ν, σ are all unknown parameters, and
performed a Bayesian analysis using properly tuned prior distribtuions and the Metropolis-
Hastings method. Graphs of the posterior distributions aregiven in Figure 6. Note that
the example is based on observation at time 3000, which implies that the variation in the
posterior ofτ is fairly low.

6. The general case: m change points

Consider now the setting when the state space of the underlying processS(t) is{1, 2 . . . ,m},
in which case the marker processY (t) hasm change points,

τ1 < τ2 < · · · < τm

and corresponding Wiener-process parameters

~ν = [0, ν1, . . . , νm]

~σ = [σ0, σ1, . . . , σm].

The likelihood for the incrementsXi = Y (i) − Y (i − 1) is, as for the casem = 1, in
principle straightforward to write down, but for a given observation timen it needs to be
stated explicitly for each of the casesn ∈ (τj , τj+1], j = 1, . . . ,m− 1.
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Figure 7: Simulated example: Two change-points. Piecewise Wiener process with two
change pointsτ1 = 800 andτ2 = 1400 simulated in the time interval[0, n] = [0, 2000].
Parameter values:ν0 = 0, σ0 = 0.05, ν1 = 0.03, σ1 = 0.05, ν2 = 0.039, σ2 = 0.065.
Critical temperature threshold isa = 13.

In correspondence with the Markovian assumption forS(t), the prior distribution for
(τ1, . . . , τm) should be chosen by givingτ1, τ2− τ1, . . . , τm− τm−1 independent exponen-
tial distributions in general, and geometric distributions in the discrete time case.

The computation of the posterior predictive distribution of T is similar to the one for
the case with one change point, namely,

P (T ≤ t|x1, . . . , xn;~ν, ~σ, a) =

∑

(τ1,...,τm)∈Ω

P (T ≤ t|τ1, . . . , τm, x1, . . . , xn;~ν, ~σ, a)

×π(τ1, . . . , πm|x1, . . . , xn; ν, σ)

whereΩ is the range of(τ1, . . . , τm), and the summation needs to be done by sampling
vectors(τ1, . . . , τm) from the joint posterior of theτi.

The computation of the terms

P (T ≤ t|τ1, . . . , τm, x1, . . . , xn;~ν, ~σ, a)

involves numerical or Monte Carlo integrations in additionto analytic expressions from the
Inverse Gaussian distribution. This extends the procedurewe indicated above for the case
m = 1. Some of the challenges for the computation for a generalm are touched in the case
m = 2, which is treated in detail in [Presthus, 2014].

Figure 7 shows a simulated example withm = 2, while Figure 8 gives the resulting
estimates and confidence curves for observations at three different points in time.

6.1 Time-transformed Wiener process

Note that in the above presentation of the case with generalm, we allow the variance
parametersσj to vary freely. Below we indicate that by imposing a certain relation between
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Figure 8: Estimated predictive distributions for two change-points, for observation periods
of different lengthsn and prior distribution forτ1, τ2 given byτ1 geometrically distributed
with probability 1/2000, andτ2 − τ1 geometrically distributed with probability1/1000.
(The true values areτ1 = 800 andτ2 = 1400).



the σj , the calculation of the posterior predictive distributionof T may be considerably
simplified. The following Proposition from [Doksum and Høyland, 1992] is crucial:

Proposition. Let ξ(t) be a nonnegative strictly increasing and continuous function on
[0,∞) with ξ(0) = 0 and let{W0(t), t > 0} be a Wiener process with driftη > 0 and
variance parameterσ2. Let T be the first time the processW0(ξ(t)) hits the threshold
a > 0. Then the cdf ofT equalsF (ξ(t); ν, σ, a) whereF is given in (3).

The result leads to a simplification of the calculations in the m change-point case by
defining

ξ(t) =

{

t for τ1 < t ≤ τ2
τj +

νj
νj−1

(t− τj) for τj < t ≤ τj+1, j = 2, . . .

The drawback of such a simplified approach is, however, that the variance parameters are
restricted byσj = (νj/νj−1)σj−1 for j = 2, . . . (see [Presthus, 2014] for further details).

7. Concluding remarks and further work

In the framework of [Valland et al., 2012], several health indicators of bearing failure were
suggested. While we used the temperature as the only such indicator, we might have con-
sidered multi-dimensional processes, either of multivariate Wiener type, or combinations of
Wiener-processes and other types of processes. A challengewould then be that the health
indicators most probably are correlated.

Another suggestion for a model extension would be to includemore than one failure
mode, thus assuming a kind of competing risks situation. Thetype of failure considered in
the present paper is a “soft” one, resulting from mechanicalwear. One could also include
the possibility of a shock, which would have a larger effect along the failure development.

For problems where the deterioration is cumulative, such ascorrosion or crack growth,
the gamma process might be a more suitable process. [Fouladirad et al., 2008] presented a
frequentistic approach to estimating change points of sucha deterioration process, exem-
plified by the gamma process.

Switching models like the one suggested in this paper are common in the literature.
A reliability application is given by [Chiquet et al., 2008]. In a potential extension of the
present work one might let the latent processesS(t) be given as by a more general stochas-
tically monotone Markov chains, with increasing paths relative to some partial order.
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