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Abstract

The optimal design of data acquisition is not obvious in Bayesian
Network models. The dependency structure may vary dramatically,
which makes learning and information evaluation complicated and
sometimes non-intuitive. Our application, and the motivation for
working on this topic, is prospect selection for petroleum exploration
in the North Sea. Here, the data gathering is often carried out during
seasonal campaigns, and it is useful to plan the experimentation and
to understand which data are likely to be most informative. We use
information measures to compare possible future observation sets.

Four information measures are studied: Shannon Entropy, sum
of Variances, Node-wise Entropy and overall Prediction Error. The
Shannon Entropy is commonly considered the standard measure of
information, and the Node-wise Entropy measure can be interpreted
as an approximation to the former. The Variance measure links uncer-
tainty and variance. The Prediction Error measure is tied to decision
making rules.

The results lead to new insight about prospect selection. For ex-
ample, the Node-wise Entropy and the Variance measure behaves sim-
ilarly, and the optimal observation set of Shannon Entropy does not
correspond to what we intuitively would consider as minimizing un-
known information in this case.

1 Introduction

A collection of petroleum prospects and their probabilistic dependencies can
be modelled as a bayesian network (BN), see e.g. Wees et al. (2008) and
Martinelli et al. (2011). In this paper we define and discuss various infor-
mation measures for BNs. These should be useful for evaluating petroleum
exploration strategies. The BN models are among the key inventions from
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statistics the last 25 years. They are convenient for modeling complex depen-
dencies between random variables, and allow the construction of intuitive and
modular probability statements at the local level. In principle, these mod-
els can also account for any correlation structure within the variables. This
leaves a wealth of modeling opportunities, but this flexibility often makes
the interpretation of data conditioning and the evaluation of information
gathering harder than for a simpler model. BNs are used a lot in various
applications, see e.g. Jensen and Nielsen (2007) for an overview, or Heavlin
(2003) and Mortera et al. (2013). Despite a large interest in such models,
there has not been much work on designing experiments for BNs.

Our goal with this paper is to evaluate and compare various information
gathering schemes for BNs in the context of prospect selection in the North
Sea. We assume the joint probability structure to be known, and study
how information at selected nodes influence the probability structures at
the non-selected nodes. Typical questions include; where should we drill
exploration wells? What is a natural information measure to use for BNs? We
study a BN with 25 prospects, and aim to design a strategy for selecting the
best subsets of prospects for information gathering. This setting is relevant
for a petroleum company which plans for seasonal drilling campaigns. Via
this application, we attempt to develop new approaches for data gathering
schemes for BNs.

Ginebra (2007) studies how to measure information in a statistical exper-
imental design setting and discusses what is a valid measure of information
in an experiment. Not aiming for the same level of generality as in Ginebra
(2007), we focus on a special type of information gathering in a BN. While
one in the general experimental setting strives to learn the unknown index
θ of the possible probability distributions {Pθ} driving the experiment, we
try to reduce the combined uncertainty in a collection {Xi} of dependent
random variables. We will study four information measures in this paper,
each of which can be related to some examples and the general theory of
Ginebra (2007).

The expected reduction in Shannon Entropy was introduced as a mea-
sure of information by Lindley (1956), and examples of applications can be
found in Ko et al. (1995) and Bueso et al. (1998). Shewry and Wynn (1987),
Royle (2002) and Le and Zidek (2006) successfully apply the Shannon En-
tropy criterion to spatial models. Although a BN is a convenient tool to
model Gaussian variables, the dependency structure in a general BN is often
not as homogeneous as in e.g. Gaussian Random Field models. This calls
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for studying different information measures. Based on the results for the
prospect selection case presented in this paper, we will advocate the use of a
Variance criteria, a Node-wise Entropy criteria, or a Prediction Error criteria
for BN models of similar application.

In some situations the variables of interest {Xi} are tied to decisions.
If costs and revenues for the underlying decision problem are well known,
the value of information approach is perhaps the most natural information
measure. It represents how much a risk-neutral person should be willing to
pay for a given observation. The resulting values can then be compared in
order to figure out which observations are optimal on average. Krause and
Guestrin (2009) and Bhattacharjya et al. (2010) provide examples of value
of information analysis. Martinelli et al. (2011) perform value of information
analysis for the BN we study here. When there is ambiguity in the underlying
decision problem, we need to compare possible observations without reference
to any monetary values, and our suggested measures could be useful here. For
instance, value of information analysis for the oil exploration case requires
monetary values for the future price for oil.

In Sect. 2 we present the basic notation used to describe BNs and in-
formation gathering schemes in our context of prospect selection. We define
four information measures and discuss their properties in Sect. 3. Section
4 demonstrates properties of our information measures on illustrative exam-
ples. In Sect. 5, we apply the information measures on the case study with
North Sea petroleum prospects. In Sect. 6, we summarize our findings and
provide guidelines for the choice of information measure. Section 7 points to
future work.

2 Background and notation

Figure 1 shows the BN with 42 nodes from Martinelli et al. (2011). The
black circles represent petroleum prospects, where we could choose to collect
data. Because there is dependence in the network, information gathered at
one prospect will propagate to the other prospects. Martinelli et al. (2011)
illustrate probability updating in this BN to see the effect of an observation.
A question is where to collect data? Another is which criteria should the
selection of prospects be based on? In this section we present the notation
required to study various information gathering schemes for BNs.

For an introduction to BNs, see e.g. Lauritzen and Spiegelhalter (1988);
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Figure 1: Illustration of the Bayesian Network model with 42 nodes. The
black nodes, numbered from 1 to 25, represent petroleum prospects in the
North Sea where it is possible to collect information. The gray nodes have
a geological interpretation, but are not directly observable. We also marked
a possible size 3 observation set {14, 18, 22} by dotted circles. The BN was
originally presented in Martinelli et al. (2011).
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Jensen and Nielsen (2007); Cowell et al. (2007) or Koller and Friedman
(2009). Assume a collection of n binary random variables Xi, i ∈ V =
{1, 2, · · · , n}. The set V is the vertex set of the network, and its elements
are called nodes. The conditional dependency structure among the random
variables is described by edges. Figure 1 visualizes each node by a circle,
and edges e = (i, j) ∈ E are shown as arrows from a node i to another node
j. The edge set E is a collection of ordered pairs of elements in V , and the
pair (V,E) is a directed graph. We say that node i is a parent of node j
for each edge e = (i, j) ∈ E, and denote the set of parents of node j by
Pa(j). For a collection of indexes A = {i1 < i2 < · · · < im} ⊆ V , we let
XA = (Xi1 , · · · , Xim). Then, XV is a vector with all random variables as
entries, and XPa(i) is a vector of the random variables corresponding to the
parents of a node i.

Following Russell and Norvig (2003), we define a BN as a directed acyclic
graph (DAG), that is, a directed graph where the edge set does not contain
any directed cycle. In addition, each random variable Xi has a local prob-
ability distribution P

(
Xi = xi|XPa(i) = xPa(i)

)
associated with it. Note that

from here on, we will only include the assignment to a random variable in
our notation in the cases we believe it is required to clarify the mathematical
understanding. The joint probability distribution for the BN is given by

P (X1, · · · , Xn) =
n∏
i=1

P
(
Xi|XPa(i)

)
,

where the parent set is empty for the top nodes (roots) of the network. The
joint model is in this way fully specified by the edge structure and conditional
probability statements. These are easy to visualize, as in Fig. 1. BNs have
shown to be useful models for capturing complex dependency. They further
enjoy the efficiency of established inference algorithms, see e.g. Lauritzen
and Spiegelhalter (1988) and Cowell et al. (2007).

We assume a known joint probability distribution, but uncertain out-
comes XV of the random variables. The goal is to collect data at a subset
of the nodes to learn as much as possible about the variables of interest. In
this way we attempt to contribute to the design of experiments for networks.
Let L ⊆ V denote the set of observable nodes. We want to select an ob-
servation set B ⊂ L in order to gain as much information as possible about
all realizations in L. We are not interested in the latent variables in V \ L.
Therefore we only (directly) value information about the realizations in L,

7



which means that XL also plays the role as our scoring variables. In Fig.
1, the L set are the black nodes 1 − 25, and the latent variables V \ L are
nodes numbered 26 − 42, marked in gray. The latent nodes are important
to model the geological mechanisms, but it is not possible to observe any
of these node variables. We study measures of information associated with
such an observation set B. Note that in this paper, L plays both the role of
our observable set and the set in which we want to minimize the unknown
information.

It is natural to require that for any A ⊂ B, the information gained when
observing XA is less than or equal to the information we would gain by
observing XB. Thus, we limit scope to the optimal observation set Bm ⊂ L
of size m. We define

Bk = {B ⊆ L : |B| = k}, k = 1, . . . , |L|,

so the candidates for Bm are exactly the elements of Bm. Note that the
number of candidates for Bm is

(|L|
m

)
, which is of order |L|m when m << |L|.

We focus on small levels m in this paper; m = 1, . . . , 6 for the prospect
selection case in Sect. 5. Figure 1 shows an observation set of size m = 3 in
dotted circles.

We will evaluate information measures before the data is acquired. To
achieve this task, one needs to take expected values over the observation set,
and conditional expectations over the nodes of interest. The expected value
of a function f(XA) over some set of binary random variables XA is given by

E[XA]f(XA) =
∑

XA=xA∈{0,1}|A|
f(XA)P (XA) .

Similarly, we define the conditional expectation by

E[XA|XL\A]f(XL) =
∑

XA=xA∈{0,1}|A|
f(XL)P

(
XA|XL\A

)
,

where some conditional assignment XL\A = xL\A is implicit. The evalua-
tion of expected values and conditional expectations require marginalization
and conditioning in the joint distribution defined by the BN. This must be
done many times when computing the information measures, and it is cru-
cial to use fast routines, such as the Junction Tree Algorithm of Lauritzen
and Spiegelhalter (1988). The function f(·) will differ between the various
information measures presented in the next section.
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3 Measures of Information

Measures of information can be divided into two distinct types; one type is
based purely on a reduction of uncertainty within the probability distribu-
tion, and the other on the monetary value of information. The first type
allows comparison of experimental designs without reference to any specific
decision problem with associated costs or revenues, since the information
measure is a function of the probability distribution alone. The second type
enjoys decision theoretic advantages as it is tied to the monetary values of the
underlying decision problem. In this paper, we study the first type of mea-
sure, hence only assuming that the probability distribution is known. Our
focus will be on our information measures being able to evaluate observation
sets in a BN with a complex dependency structure, e.g. as in the dependent
prospect situation of Fig. 1.

3.1 Definitions

The interpretation of the Shannon Entropy measure is tied to the log likeli-
hood, where we now take the expected value over the non-observed random
variables. The expected remaining Shannon Entropy is as follows:

Definition 1. Shannon’s Entropy measure

µShE(B) = −E[XB ]

[
E[XL\B |XB ]

[
logP

(
XL\B|XB

)]]
.

The entropy is larger when we are more uncertain about the outcomes of the
random variables.

We are going to compare this Shannon Entropy measure to three other
candidates; a Prediction Error measure, a Node-wise Entropy measure and
a Variance measure, defined in the following.

Definition 2. Expected number of prediction errors

µPrE(B) =
∑
i∈L

E[XB ]

[
1− max

x∈{0,1}
{P (Xi = x|XB)}

]
.
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The motivation for the Prediction Error measure is that data XB should
on average improve our ability to classify each Xi correctly. Thus, reducing
the uncertainty about the random vector XL is connected to getting as few
prediction errors as possible. We will see that this approach is equal to the
value of information approach when we assume equal costs and revenues for
all nodes.

For statisticians, it is natural to interpret the uncertainty of a variable as
its marginal variance, and here we look at the sum of conditional variances
over the random variables in L, averaged over the possible observations for
the B set:

Definition 3. Variance measure

µV ar(B) =
∑
i∈L

E[XB ]

[
Var[Xi|XB ] [Xi]

]
.

The last measure is inspired by the Shannon Entropy measure, as a ver-
sion with reduced time complexity for calculations. It is a node-wise sum
over terms corresponding to the remaining Shannon Entropy of single nodes.

Definition 4. Node-wise Entropy measure

µNwE(B) = −
∑
i∈L

E[XB ]

[
E[Xi|XB ] [logP (Xi | XB)]

]
.

We will see that the Node-wise Entropy measure is more related to the Vari-
ance measure than to the Shannon Entropy measure.

3.2 Properties of our measures

Complex BN models can incorporate dependency structures of a less uni-
form type than most other well-known models. Thus, probability updates
would not be as intuitive as in for instance a spatial Gaussian model where
correlation between a pair of variables just depends on the physical distance
between them. Therefore, our information measures should be able to see a
wide range of dependency structures. We want the optimal observation set
to tell as much as possible, not only about the observed variables, but also
about the ones left unobserved. In our North Sea prospect application, this
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will be very important, since we consider to observe just 6 (or fewer) of the
25 prospects.

The four measures in this paper can be related to Ginebra (2007). The fo-
cus in Ginebra (2007) is on learning the unknown index θ of the distribution
driving an experiment, while we try to learn about the realization in a collec-
tion of correlated random variables. However, if we compare θ to a collection
containing only one Random Variable Xi, we observe a direct similarity to
Table 2 p.32 in Ginebra (2007); between our Variance measure and Ginebra’s
example 2, between our Prediction Error measure and Ginebra’s example 3
and also between our Node-wise Entropy measure and Ginebra’s example 4.
When we deal with the combined uncertainty of several random variables,
each of these three measures evolve into a sum of terms with the correspond-
ing similarity. The Shannon Entropy measure arises from Ginebra’s Example
4 when θ is viewed as the vector XL.

Three of our measure definitions are of similar form; a sum over the node
set of interest and an outer expectation over the observation set B. For a
random variable Xi ∈ {0, 1}, the inner terms in these three measures can be
described by the following concave functions

fPrE : [0, 1]→ R, fPrE(p) = min{p, 1− p},
fV ar : [0, 1]→ R, fV ar(p) = p · (1− p),
fNwE : [0, 1]→ R, fNwE(p) = −p · log(p)− (1− p) · log(1− p).

We can then write

µT (B) =
∑
i∈L

E[XB ] [fT (P (Xi = 1|XB))] , (1)

for each subscript T ∈ {PrE, V ar,NwE}. This formulation illustrates the
similarities between the information measures µPrE(·), µV ar(·), µNwE(·), and
will be used to prove the following results.

Theorem 1. Given A ⊂ B ⊆ L, the information measures µShE(·), µPrE(·),
µV ar(·) and µNwE(·) are all non-increasing as the input set is increased from
A to B ⊃ A.

• The decrease in any of our four measures is positive unless XB\A is
deterministically given by XA.
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• For each subscript T ∈ {PrE, V ar,NwE}, the information measure µT
consists of terms µiT ≡ E[XB ] [fT (P (Xi = 1|XB))] which are separately
non-increasing as the observation set is increased from A to B. More
specifically:

1. For each subscript T ∈ {V ar,NwE}, each term µiT has a zero-
valued decrease if and only if Xi ⊥ XB\A|XA.

2. The decrease in µiPrE is non-zero if and only if the outcome of
XB\A can change the prediction of Xi when XA is already known.

The proofs and closed form solutions connected with these results are pro-
vided in the Appendix.

For any i ∈ A ⊂ L and T ∈ {PrE, V ar,NwE}, we have µiT (A) = 0.
When comparing µT (B) to µT (A) for some B ⊇ A, we see |B\A| more terms
µiT (B) which evaluate to zero for the same reason. This will be referred to as
the self-effect of the additional nodes in B \ A, and we define the self-effect
of these additional nodes to have value

∑
i∈B\A µ

i
T (A). We split the measure

value reduction µT (A)− µT (B) into the self-effect of the additional nodes in
B \A, and their effect

∑
i∈L\B (µiT (A)− µiT (B)) on the unobserved nodes in

L \ B through correlations. Unless XB\A is deterministically given by XA,
we have a positive self-effect of increasing the observation set from A to B.

In Fig. 2, we see the shapes of the base functions fPrE(p), fNwE(p) and
fV ar(p). We observe that fNwE(p) and fV ar(p) have very similar shapes, and
that both are strictly concave, while fPrE is concave. The concavity of the
functions fPrE(p), fNwE(p) and fV ar(p) is what ensures non-negative effects
for the unobserved nodes in L \ B through correlations with the additional
nodes in B \A. For each unobserved Xi which is dependent on XB\A (condi-
tional on XA), we have a positive µiT (A)−µiT (B) for T ∈ {V ar,NwE}, while
µiPrE(·) additionally requires the information from XB\A to have potential to
switch the maximal probability state for Xi.

The similar shapes of fNwE(p) and fV ar(p), visualized in Fig. 2, implies
that an ordering of candidate prospect nodes according to µNwE would be
very similar to the prospect node ordering according to µV ar. In fact, Taylor

12



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p

f(
p)

Var
NwE
PrE

Figure 2: Base functions fPrE (dashed), fNwE (solid) and fV ar (dotted) for
the measures µPrE, µNwE and µV ar, each scaled to have maximum value
equal to 1.

series expansions centred at x = 0 and x = 1 for the function log(x) give

fNwE(p) = 4 log(2)

(
fV ar(p) +

p(1− p)
log(2)

∞∑
j=1

sj (2p− 1)2j
)
,

sj ≡
∞∑

n=2j

(
n

2j

)
1

(n+ 1) · 2n+1
,

where each sj is a constant defined by a convergent series (ratio test). This
means that fNwE(p) in the interior of its domain can be written as 4 log(2)fV ar(p)
plus an infinite polynomial which is zero-valued for p ∈ {0, 1

2
, 1}. Because

of the similarity to the Variance measure, we will not list the results for the
Node-wise Entropy measure in our examples below.

The formulation in Eq. (1) gives the information measures µPrE, µV ar
and µNwE common properties in the way they evaluate correlation struc-
tures in the network, and in terms of complexity for computations. As-
suming, calculations of fT (P (Xi = 1|XB)) has approximately constant time-
complexity given an assignment to XB, we see that calculating µT (B) consists
of adding L\B terms which again consists of 2|B| terms of constant complex-
ity. That yields a complexity of O

(
|L \B| · 2|B|

)
for calculating µT (B) when

T ∈ {PrE, V ar,NwE}. However, if we want to find the optimal Bm ∈ Bm,
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we have to compare the values of
(|L|
m

)
candidates, and we end up with a total

time complexity of O
(( |L|

m+1

)
·m · 2m

)
.

The time-complexity for calculating the value µShE(B) for an observation
set B is exponential in the size of the full set L of observable nodes. When
comparing different candidates B, this complexity can be reduced. The mea-
sure is inspired by the Shannon Entropy H. The Shannon Entropy can be
written as a telescoping sum over the nodes in B,

H(XB) = −E[XB ] [logP (XB)] = −
∑
i∈B

E[X{j∈B: j≤i}]

[
logP

(
Xi|X{j∈B: j<i}

)]
.

From the telescope sum formula we have

µShE(B) = H(XL)−H(XB),

which means that comparing µShE(B) for different observation sets B, effec-
tively is the same as comparing only on H(XB), since H(XL) is constant.
That is,

arg min
B∈Bm

{µShE(B)} = arg max
B∈Bm

{H(XB)} . (2)

This means that the Shannon Entropy measure performs its evaluation based
on the probabilistic properties within the marginal distribution for the B-set.
We use the dependence structure between XB and the unobserved XL\B to
calculate the distribution of XB as a marginal of the distribution of XV . How-
ever, when evaluating the observation set B, the Shannon Entropy measure
is indifferent on whether single node-probabilities and correlations within B
are induced by scoring variables outside of B or not. In this sense, the de-
pendence structure between XB and the unobserved XL\B is only implicitly
taken into account. Further, this means the Shannon Entropy measure does
not give credit for probability updates for the unobserved variables. The
other measures explicitly incorporate the effect of the observation set on
each scoring variable.

Computing H(XB) has time complexity O
(
2|B|
)
. Since we repeat this

for all B ∈ Bm, we end up with a total time complexity of O
((|L|

m

)
· 2m

)
for finding the optimal Bm. We have seen that when |L| and m are large,
finding the optimal observation set Bm by comparing all candidates in Bm is
computationally infeasible, for all of our measures. However, in this paper,
we have m small enough to be able to compare all

(|L|
m

)
candidates for each

measure.
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We now explore the relation between value of information and our Pre-
diction Error measure µPrE. We focus on the random variable Xi ∈ {0, 1}
and want to figure out which action ai ∈ A = {0, 1} to perform on node i,
e.g. we compare two possible actions. Any utility function on Xi and ai can
be written as

ui : {0, 1} × {0, 1} → R, ui(x, α) = ηi + βix− γiα + δixα,

where u(Xi, ai) is the utility realized after performing action ai and the re-
alization in node i was Xi. Here ai = 1 is the most expensive action, which
could be interpreted as the possibility to pay an additional γi > 0 before the
experiment in order to increase your income by δi > γi whenever Xi = 1.
For the prospect selection case, action ai would be related to reservoir devel-
opment. The constants ηi, βi, γi and δi connects to revenues and costs, and
may be hard to assign in general. The prior value of node i is the expected
utility for the optimal action.

PVi = max
ai∈{0,1}

{
E[Xi]u(Xi, ai)

}
= ηi+βiP (Xi = 1)+max {δiP (Xi = 1)− γi, 0} ,

where the last term is included if and only if it pays off apriori to set ai = 1.
The terms with αi and βi are not influenced by our action.

Correspondingly, after observing the outcome in some observation set B,
node i has posterior value

PoVi = PVi + E[XB ] [max {δiP (Xi = 1|XB)− γi, 0}]
−max {δiP (Xi = 1)− γi, 0} .

The total value of information of observing XB is defined by the sum of the
difference between posterior value and prior value over all scoring nodes. We
get

VoI(B) =
∑
i∈L

(
E[XB ] [max {δiP (Xi = 1|XB)− γi, 0}]

−max {δiP (Xi = 1)− γi, 0}
)
.

In fact, if we let µWPrE be the expected weighted number of prediction
errors, where a false predicted success of node i is given weight γi and a false
predicted failure is given weight δi − γi, the above equation implies that

VoI(B) = µWPrE(∅)− µWPrE(B).
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This proves that minimizing the Prediction Error measure µPrE is equivalent
to maximizing the value of information whenever δi = 2γi. This corresponds
to a utility function where the decision ai = 1 has a gain δi − γi for Xi = 1
which equals the penalty γi for Xi = 0.

4 Illustrative examples

This section provides three simple BNs to illustrate properties of the mea-
sures presented in the previous section. The BNs are made to prepare the
analysis of the North Sea prospect case in Sect. 5. There are similarities in
network structure, and we build understanding to better interpret the effects
we observe in our main application in Sect. 5. Section 4.1 shows the main
difference between the Shannon Entropy measure and the others. Section 4.2
illustrates how the information in a node is evaluated differently depending
on the other variables in the observation set. In Sect. 4.3, we study how the
optimal single node observation in a success propagating chain changes with
the success probability parameter.

4.1 The blind spot of the Shannon Entropy measure

Assume N ≥ 3 variables in a BN where nodes 1 and 2 are roots and all other
nodes has node 2 as a single parent, like in Fig. 3. Here,

1 2

3 4 5 6 7

Figure 3: A BN with two uncorrelated parts.

P (X1 = 1) = q, P (X2 = 1) = p, P (Xi = 1|X2) = αiX2, i ≥ 3,

with

p >
1

2
and

1− p
p
≤ αN ≤ · · · ≤ α3 ≤

1

2p
,

so that X3 has marginal success probability closest to 1/2, possibly except
X1.
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When the observation set B consists of a single node, the marginal success
probability P (Xi = 1) is the only probabilistic property within the observa-
tion set. Thus, Eq. (2) in Sect. 3.2 simplifies to

arg min
i
µShE({Xi}) = arg min

i

{∣∣∣∣P (Xi = 1)− 1

2

∣∣∣∣} ,
and we chose to observe the node with marginal closest to 1/2.

When q = pα3, the Shannon Entropy measure is indifferent between
observing node 1 and node 3, even though when observing node 3, we si-
multaneously learn about nodes 2 and 4, · · · , n. The expected remaining
Shannon Entropy is smallest when observing the node with marginal prob-
ability closest to 0.5. That is, the Shannon Entropy does not account for
the possible information propagated to dependent variables. If we further
slightly increased q to pα3 + ε, node 1 turns strictly optimal, even though its
marginal uncertainty is barely larger than in node 3 and we have no learn-
ing for other nodes. Note that both the Prediction Error measure and the
Variance measure rates node 1 as suboptimal for small ε. This example is
designed to illustrate how the Shannon Entropy differs from the other mea-
sures for single node observations. The example could easily be expanded
to comparing two larger observation sets: Assume their corresponding vec-
tors are (close to) independent copies, but only one of the observation sets
is correlated with other scoring variables.

4.2 The information value of a node

Assume three random variables, in a BN as in Fig. 4. Let the joint probability

3

21

Figure 4: Two independent parents of a single child.

distribution be determined by

P (X1 = 1) = P (X2 = 1) = p, and X3 = min {X1, X2} .
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Knowing the realization of X1 and X2 deterministically gives the value of X3,
so obviously, the optimal observation set of size 2 is B2 = {1, 2}. But what is
the optimal B1? The value of X1 alone gives node 1 as well as some indication
on node 3. A similar argument holds for node 2. However, the value of X3

gives indications on both X1 and X2, and node 3 will be the optimal choice
as long as the success probability is high enough. This happens through the
implicit effect on the marginal of the observation node in consideration for
Shannon Entropy. Additionally, we see an explicit effect on the observation
nodes’ ability to better predict the other variables for the other measures.
The thresholds for each measure can be found in Table 1. That is, if p > pV ar,

pShE pV ar pPrE√
5−1
2
≈ 0.62

√
2− 1≈ 0.41 1

3
≈ 0.33

Table 1: The smallest success probability pT that makes B1 = 3 for the
measure µT (·).

the variance measure µV ar chooses node 3 as the optimal single node obser-
vation. Note that pShE > pV ar > pPrE, so whenever p > 0.62, all measures
agree on B1 = 3 in this example, and we have B1 6⊂ B2. This illustrates
how the information from a node depends on whether it is accompanied by
information from other sources. Getting the same information twice does not
have double information value. Dependent variables give information about
each other, since the realization in one node updates the probability distri-
bution on all correlated nodes. Observing two correlated variables is likely to
give some of the same information twice, which means that the information
value for the pair is less than the sum of the information values separately in
each of the two nodes. Shannon Entropy has a larger threshold for p, since
it does not account for the potential for probability updates. The Prediction
Error has a smaller threshold, since p < 1/2 results in just the self effect for
observing node 1 (or 2) here, while the same does not hold for node 3.

4.3 Comparing size sets in a chain network

Assume we have four random variables in a success propagating chain as in
Fig. 5. Let the joint probability distribution be determined by the single
parameter p, according to

P (X1 = 1) = p, and P (Xi = 1|Xi−1) = pXi−1, i ≥ 2.
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1 2 3 4

Figure 5: A four node success propagating chain
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Figure 6: Evaluation of single node observation sets for the Shannon Entropy
measure (left window), the Prediction Error measure (middle window) and
the Variance measure (right window) as a function of the parameter p.

Observe that the probabilistic relationship between node 1 and node 2 in this
example is exactly the same as between node 1 and node 3 in the previous
(three node) example. Thus, we know that for a single node observation, the

Shannon Entropy measure would prefer node 2 to node 1 when p >
√
5−1
2

.
Correspondingly, if the success (propagation) probability p is even higher,
the measure µShE could rate node 3 even higher, and for p very close to
1, the success is most likely to propagate throughout the whole chain, and
node 4 would give most information about the whole network. In Fig. 6,
we see how the Shannon Entropy, the Prediction Error and the Variance
measures rate the information from each node as a function of p. Recall that
for Shannon Entropy the optimal single node only depends on how far from
1/2 the corresponding marginal success probability for each node is.

If we set p = 0.65, we know that the optimal single node to observe is
node 2, and we can see how the optimal observation set Bm changes as we
increase the observation size m. All the information measures agree on the
following sequence

B1 = {2}, B2 = {1, 3}, B3 = {1, 2, 4},

which interestingly has B1 ⊂ B3, but also B1 6⊂ B2 6⊂ B3. In applications
with a large number of variables, forward search approximations are popular
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to determine a sequence of candidates B̃m, m = 1, 2, · · · . That is, one starts
with finding the true optimal B̃1 = B1 for measure µT (·), and continues by
adding one node at the time such that

B̃m = B̃m−1 ∪ arg min
{i}

{
µT (B̃m−1 ∪ {i})

}
.

Both in the previous three-node example (Sect. 4.2) and in this section, we
have situations where a forward search would fail. For p = 0.65, the forward
search approximation for Shannon Entropy gives

B̃1 = {2}, B̃2 = {1, 2}, B̃3 = {1, 2, 4},

which coincides with a backward search where one starts with the full set of
observable nodes and remove one at the time. In fact, since the two searches
start at different end points, one could hope that their agreement would
indicate that the approximation is in fact optimal. However, this four node-
chain provides a counterexample. Our implementation also gives agreeing
forward and backward sequences for Prediction Error, and equal to Shannon
Entropy except for B̃2 = {2, 4}. Note that this is neither the unique forward
nor the unique backward sequence, since µPrE ({2, 4}) = µPrE ({2, 3}) and
µPrE ({1, 2, 4}) = µPrE ({1, 2, 3}).

5 Application with 25 North Sea petroleum

prospects

We now turn to the case study of 25 petroleum prospects in the Norwegian
part of the North Sea. Figure 1 in Sect. 2 shows the nodes and edge structure
of the network. Altogether, the network consists of 42 nodes, but only 25 of
these represent actual locations where data may be acquired. The remaining
17 nodes (numbered from 26 to 42 in Fig. 1) are required to build the
dependency model expected by geologists with expert knowledge about the
formation of hydrocarbon (HC) in this region of the North Sea. Thus, as in
many network applications, the nodes here have a clear physical meaning.
The top nodes are so-called kitchens where the HC was created. Directed
edges are indicative of causal mechanisms, which in our situation relate to the
migration of HC over geologic time. They point from kitchens to regional
prospect areas, and to the 25 prospect locations which are bottom nodes
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(numbered from 1 to 25). In this BN the dependency structure for the
bottom nodes of primary interest is incorporated via the directed graph.

The HC at any of the 25 prospects is assumed to be a binary {success,
failure} variable. The marginal success probabilities of HC at the prospects
are reported in Fig. 7. The conditional probabilities involved in the BN

0.5

1.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Figure 7: Marginal probabilities of success at the 25 prospect nodes.

are as indicated previously, defined from expert knowledge and a series of
constraints. Some of these are similar to the ones in Sect. 4. In particular,
a strict limitation is enforced on the propagation of HC : If a parent node
is not a success (dry), the child node will for sure not be a success, i.e.
P (Xi = 0|XPa(i) = 0) = 1. With multiple parents, all must be dry for this to
hold; otherwise HC could still flow from one of the parent nodes containing
HC.

Martinelli et al. (2011) performed value of information analysis of explo-
ration wells for this network, Martinelli et al. (2013) studied various strategies
for sequential decision making, while Brown and Smith (2013) looked at clus-
tering strategies for estimating the optimal value of sequential strategies with
upper bounds. See also Martinelli and Eidsvik (2014) who looked at cluster-
ing approaches for optimal sequences based on entropy reduction or expected
profit optimization. In this paper we use the same BN to demonstrate and
evaluate the suggested information measures for fixed-size (non-sequential)
data gathering schemes. Unlike Martinelli et al. (2011) and the other refer-
ences mentioned above, we impose no cost or revenue levels to the prospects.
Instead we perform the information assessments based on the probability
model alone. In fact, determining the costs and revenues is not straightfor-
ward for this case, since there are several shared costs between prospects as
well as large uncertainties associated with the future production costs, re-
covery rates and price level of petroleum resources. As in Brown and Smith
(2013), we assume kitchen uncertainty, as we let the kitchens (top nodes)
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be producing independently with probability 0.9. Compared with the orig-
inal paper by Martinelli et al. (2011), we further slightly altered a couple
of the conditional prospect probabilities (14/15/16 and 4/5) to avoid having
siblings which are independent copies given their parent.

First, we look at data gathering in a single prospect. Which node is the
most informative? Figure 8 shows the top ten ranked single prospects for
each of the three information measures. Thus, if we can gather data in one

Rank

6.4

6.9

PrE

4.2

4.8

Var

-0.64

-0.69

ShE

17 21 2 22 8
19 7 13

3
18

14 15 16

18 4 5 6 19
22 7

14 15 16

18 19 22 21 17 6 20

1 2 3 4 5 6 7 8 9 10

Figure 8: Ranking of the best single prospects for the three information
criteria; the leftmost prospect is the optimum. The center of each node is
placed at the corresponding measure value according to the axis on the left.

node, the Shannon Entropy criteria guides us to prospect number 17. The
Variance criteria and the Prediction Error criteria agree on node 14.

There is a large difference in the rankings for Shannon Entropy and the
other measures. For instance, prospect 14 is not even on the top-ten list for
the Shannon Entropy measure. We see that Shannon Entropy gives nodes
2, 17, 21 and 22 very similar measure values, and also very close to the theoret-
ical maximum of log 2 ≈ 0.6931 for a binary variable. Figure 7 confirms that
these four nodes have marginal probabilities very close to 1/2. The Shannon
Entropy criteria makes its single node choices based on these marginal prob-
abilities alone, otherwise ignoring the correlation structure of the network.
Thus, the Shannon Entropy criterion does not guide us towards any strategic
parts with high correlations in the network. Both the Variance measure and
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the Prediction Error measure have nodes 14, 15, 16 as their top three choices.
They are all tied to parent node 38. Roughly speaking, nodes on one side of
Fig. 1 give information about nodes on the same side of the graph. Central
nodes can be characterized as giving information in both directions. This
possibly means that the central nodes propagate information to the whole
network to a larger extent. We observe from Fig. 1 that most of the top ten
single choices for the Variance criterion are prospects located in the central
part of the graph. The same holds for the Prediction Error measure.

We go on to data gathering at multiple nodes. Here, we consider various
sizes m of the set Bm defined above. Figure 9 shows the best subsets of
various sizes for each of the three information measures. We note a strong
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Figure 9: Optimal subsets Bm of size m = 2, 3, 4, 5, 6 for each of the three
information criteria. The solid line shows the corresponding measure value,
while the dashed line shows an independent information approximation. If
the two lines are close for Bm, it means that the different observation nodes
in Bm give close to independent information, i.e. the measure ensures that
two observation nodes do not (partly) tell the same.

link with the ranking of single nodes in Fig. 8, since e.g. {17, 21} is the
best pair for Shannon Entropy and these are also ranked first and second in
the single prospect list. However, the subset selection is not just going down
this list; it also accounts for the dependence between prospects, as indicated
by the inclusion of prospect 8 and prospect 13 in the size four and size five
subsets for the Shannon Entropy measure. Again, this could be interpreted
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by nodes on the left giving information about nodes on the left side of the
graph. Note for instance how the edge from 33 to 42 connects left to center,
and the edge from 34 to 37 connects center to right. For the Prediction Error
and Variance criteria, the three top ranked single nodes do not follow each
other in the best B3 set, because 14, 15 and 16 are tied to the same parent
node (38), and the criteria prefer to explore new parts of the network instead.
The same holds for the selection of 22. Node 22 is selected before 19, which
has a common parent with the included node 18.

To study the actual measure values, first note that µV ar(∅) = 4.99. Af-
ter observing node 14 independently, the sum of variances have decreased
µV ar(∅) − µV ar({14}) = 0.79 units on expectation, and correspondingly for
node 18 we get an expected 0.58 decrease. If 14 and 18 gave close to indepen-
dent information, we could assume that they (mainly) shrink the variance in
disjoint variable sets, and

µV ar({14, 18}) ≈ 4.99−0.79−0.58 = µV ar({14})+µV ar({18})−µV ar(∅) = 3.62.

The calculations for the Prediction Error are done correspondingly, while for
Shannon Entropy, we compare H(Bi) to

∑
j∈Bi

H({j}), since these quantities
are equal if and only if Bi consists of independent nodes. These numerical
experiments are referred to as the individual information approximation in
Fig. 9. We see a strong agreement with the true measure values which fully
accounts for the dependency structure, and this illustrates how the measures
actually have sought to collect information from near independent sources.
Shannon Entropy has nearly perfect agreement with the true measure value,
and this indicates that gaining independent information is more important for
the Shannon Entropy measure than it is for the other information measures.

Recall that each Prediction Error measure term µiPrE has µiPrE(B) >
µiPrE(B ∪ {j}) if and only if there exist an assignment to XB∪{j} (of positive
probability) which yields a different prediction for the node Xi compared
to a situation where we only saw the corresponding XB. In the North Sea
petroleum prospect BN, we always see a positive self-effect (i = j), since no
two prospects are fully dependent and thus µjPrE(B) 6= 0 whenever j /∈ B. We
can expect that the Prediction Error measure would pick js simply according
to the self-effect µjPrE(B) more often than the Variance measure would, since
the Prediction Error measure is more restrictive on which other µiPrE terms
that experience a reduction in value. The Prediction Error has Bm ⊂ Bm+1

for all observation set sizes m listed in Fig. 9, so it makes sense to investigate
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which new observation nodes that has potential to change the prediction of
some unobserved nodes. Calculations show that when the Prediction Error
criterion is obtaining Bm+1 by adding a node j to Bm for m = 1, 2, 3, 5,
there is a reduction in µiPrE for two or three nodes i lying close to j in the
graph. However, when going to B5 by including node 2 in the observation
set B4, this is due to a pure self-effect, as there are no i ∈ L \ {2} such that
µiPrE(B4) 6= µiPrE(B5).

For homogeneous spatial models, we know that it is optimal to spread out
the observations. Studying the BN in Fig. 1, we could expect the measures
to choose observation nodes B of different parents, and again so that the
parents are from different parts of the network. A spread out observation set
indicates observation nodes with little internal dependence, so that we do not
get similar information from multiple sources. It also indicates that we try
to learn from several parts of the network, so that the information obtained
propagates to the whole network. As an example, we could expect B6 to be
something like 1, 7, 12, 18, 22, 24 just from looking at the structure of the BN
(the DAG). This observation set has some nodes close to the kitchens, some
further out, and it also covers the left, the right and the central parts of the
network.

The information measures evaluate the structure together with the con-
ditional probabilities, as the probabilities determine the strength of depen-
dence. In Fig. 10, we see how all three measures actually spread out the
observation nodes in order to get information from different parts of the net-
work. This is illustrated for m = 6. All three measures spread out their
observations. They all select nodes in the left, center and right parts. The
Prediction Error criteria is the only one which chooses no prospects con-
nected to node 33 or 34, which bridge nodes left and right in the network.
Learning about the realization in 33 or 34 helps split the network in two, and
their evidence spread both to the right and left part of the BN.

Note from Fig. 9 that both Prediction Error and Variance first select a
node in the center (14), then add a node to the left (18), then a node on the
lower right (22) and then a node on the upper right (12). On their fifth and
sixth choice their strategies separate, as the Variance criterion samples more
in the central area (5 and 25), while Prediction Error goes for the pure self-
effect (2) and then goes left (10). The strategies of the Variance criterion
and the Prediction Error separate as they value the dependence over the
bridge nodes differently. The Shannon Entropy ends up following the single
node observation ranking in Fig. 8, except never adding a sibling to a node
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already in the observation set. In Fig. 10, we see this as a well spread out
observation set, while Fig. 7 illustrates how the marginal uncertainty in each
node also plays a major part.

6 Discussion and guidelines

The motivation for this work is to evaluate each information measure’s ability
to see the wide range of dependency structures present in BNs such as the
North Sea prospect example. For the last 25 years, BN models have made it
easier to model dependency structures of a less uniform type. It is not obvious
whether the widely endorsed Shannon entropy measure would be as successful
as for homogeneous models. We also wanted to interpret what characteristic
properties of the Shannon entropy measure meant in a prospect selection
case. BNs give a wealth of opportunities in modelling, but the flexibility can
make the interpretation and evaluation of data conditioning harder. We also
find that this makes the choice of measure more subjective and dependent
on the goal of the analysis. For the North Sea example, all measures try to
get information from a set of sites with little internal correlation, in order to
avoid getting similar information from multiple sources. In the oil exploration
case, we care about the number of successes and getting more certain about
as many outcomes as possible.

For our application, Shannon Entropy built the sequence B1 to B6 of opti-
mal observation sets by including the unobserved node with marginal success
probability closest to 1/2 if this is not a sibling to a node in the smaller set.
This selection strategy appears unnatural for petroleum prospect selection.
There are two main reasons the Shannon entropy chooses differently from
the other measures. One is that the distribution of the BN is heterogeneous,
letting observations have different impact on their neighborhoods. The Shan-
non entropy measure does not take into account the impact on unobserved
nodes, while the other measures do. Also, the other measures are explicitly
by design equally interested in the outcome in all nodes, regardless of their
correlation.

The difference between the Shannon entropy measure and the others is
most clearly illustrated in the case where B consists of one node. Given the
marginal probabilities for the number of nodes in L, we can now compute
the Shannon Entropy reduction without knowing anything about the net-
work structure. For all the possible Bayesian networks that have the same
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number of nodes with the same marginal probabilities, we get the same en-
tropy reduction, regardless of network structure. The Shannon entropy does
not see the network structure, it only sees the marginal properties of B. This
is illustrated in Sect. 4.1.

The balance between searching large self-effect or other probability up-
dates is nearly equivalent for the Variance measure and the Node-wise En-
tropy measure. The Prediction Error measure just counts the probability
update part whenever it has potential to be large enough to change the pre-
diction of the unobserved nodes. That is, it acknowledges some and ignores
the updates which are too small to shift a prediction. For the petroleum ex-
ample, these three measures make similar choices for the smallest observation
sizes, m = 1, 2, 3, 4, while at m = 5, the Prediction Error only sees self-effects
of adding a node, and thus evaluates more like the Shannon Entropy crite-
rion at this point. The Variance measure, or the Node-wise Entropy measure,
seems to give the best balance in choosing an observation set with small inter-
nal correlation and simultaneously valuing all information obtained through
probability updates.

For many applications such as spatial statistics, Shannon Entropy has
been successfully applied to monitor environmental variables. In those mod-
els, the marginal probability distributions are very similar for the observable
variables, which eliminates the issue of putting too much weight on the in-
dividual behavior of a variable. The learning structure is also often homoge-
neous, as the probability updates for neighboring variables is similar for all
observable variables. That is, in most of those models, the main concern is
to avoid overlapping information from correlated sources, a task the Shan-
non Entropy handles very well. However, for BNs with complex correlation
structure, one of our contributions is that Shannon Entropy has limitations
partly because it ends up not valuing probability updates outside the cur-
rent observation set. Hence, it aims to select the observation set we are most
uncertain about in itself.

When just seeking to remove as much uncertainty as possible from the
joint distribution as a whole, not really worrying about each variable in itself,
the Shannon entropy is a good choice, and has largely appreciated theoretical
properties. In this paper we emphasise that in the Shannon Entropy setting,
two very correlated variables combined are viewed very similarly as one of
them alone. We acknowledge that this could be a practical view in other
applications.

We consider applications similar to the oil exploration case presented in
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Sect. 5 when we evaluate the information measures. We consider a set of
observable nodes, of which we are restricted to observe a subset. After the
observations, we want to minimize the combined uncertainty of all observable
nodes, e.g. in order to make an optimal decision for each of the observable
nodes. Oil exploration has several phases, and the step considered in this
paper is an initial exploration phase where we try to learn more about the
whole area covered in the BN. Subsequent phases would also include more
exploration wells, as well as appraisal wells for areas where oil is found. We
recommend using a Variance measure, a Node-wise Entropy measure, or a
Prediction Error measure for cases where we care about each of the observable
variables after the observations are made. The Prediction Error could safely
be used in cases where a 0/1-loss function makes sense. This is the closest
we get to when the associated costs and incomes for the decision problem is
well known, and the optimal would be a Value of Information analysis.

7 Future work

This paper assumes a set L ⊆ V to represent both the observable nodes and
the scoring nodes. A future study of cases where these two sets differ would
be interesting. In some applications, the desired effect of the observations
might be to make a more informed choice of action or strategy to influence
the realization of a future random variable which also is correlated with the
observable variables.

In this paper, we only deal with small observation set sizes m for the
prospects. This makes the comparison of all possible observation sets com-
putationally feasible. We wrote all our code in C++ using the Junction Tree
Algorithm for fast probability updates. In order to work with larger net-
works and observation sets, one needs useful approximations or maybe a
sophisticated stochastic search.

Appendix: Proof of Theorem 1

Proof. Let ∅ ⊆ A ⊂ B ⊆ L.
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The Shannon Entropy measure has

µShE(A) = −E[XL]

[
logP

(
XL\A|XA

)]
= −E[XL]

[
log
(
P
(
XL\B|XB

)
P
(
XB\A|XA

))]
= −E[XL]

[
logP

(
XL\B|XB

)]
− E[XL]

[
logP

(
XB\A|XA

)]
≥ −E[XL]

[
logP

(
XL\B|XB

)]
= µShE(B),

with equality if and only if the distribution P
(
XB\A|XA

)
is trivial for each

assignment to XA.
Observe that fNwE and fV ar are strictly concave, since

f ′′NwE =
−1

p(1− p)
and f ′′V ar = −2 ∀p ∈ 〈0, 1〉 ,

while fPrE is concave on [0, 1] and linear on [0, 1/2] and on [1/2, 1]. Fix an
i ∈ L, and assume a measure term of the form

µi(B) = E[XB ]f (P (Xi = 1|XB)) ,

for a concave function f : [0, 1] → R with f−1(0) = {0, 1}. For a given as-
signment XA = xA to the random variables in A, P (Xi = 1|XB) is a function
of XB\A and thus a Random Variable. By Jensen’s inequality,

f(P (Xi = 1|XA)) ≥ E[XB\A|XA]f(P (Xi = 1|XB)),

with equality if and only if f is linear on
[
minxB\A{P (Xi = 1|XB)},maxxB\A{P (Xi = 1|XB)}

]
.

If i ∈ B, the right hand side of the inequality is zero-valued, and we have
equality if and only if P (Xi|XA) is trivial as well. If i ∈ L \ B and f is
strictly concave, the inequality is strict unless

P (Xi = 1|XB) ≡ P (Xi = 1|XA) .

Since the assignment XA = xA was arbitrary,

E[XA] [f(P (Xi = 1|XA))] ≥ E[XB ] [f(P (Xi = 1|XB))] ,

and the claims follow.
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Figure 10: The optimal size 6 observation set marked with dotted circles;
for the Shannon Entropy measure (top), the Variance measure (middle) and
the Prediction Error measure (bottom). All three measures spread their
observation set .
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