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Abstract: We examine the situation where a decision maker is considering
investing in a number of projects with uncertain revenues. Before making a
decision, the investor has the option to purchase data which carry informa-
tion about the outcomes from pertinent projects. When these projects are
correlated, the data are informative about all the projects. The value of in-
formation is the maximum amount the investor would pay to acquire these
data.

In this paper we discuss the case where the outcome of each project is modelled
by an exponential family. When the distribution is non-Gaussian, the value
of information does not have a closed form expression. We use the Laplace
approximation and matrix approximations to derive an analytical expression
to the value of information, and examine its sensitivity under different param-
eter settings and distributions. In the Gaussian case the proposed technique
is exact. Our analytical method is compared against the alternative Monte-
Carlo method, and we show similarity of results for various sample sizes of
the data. The closed form results are much faster to compute. Application of
the method is presented in a spatial decision problem for treating the Bovine
Tuberculosis in the United Kingdom, and for rock fall avoidance decisions in
a Norwegian mine.

Keywords: Decision analysis; Generalised linear mixed model; Laplace ap-
proximation; Sampling design; Value of Information.

1 Introduction

In many situations one must make decisions under uncertainty. One goal of statistical
modeling and methodology is to help resolve difficult decision problems. The planning
and evaluation of various data acquisition schemes for making improved decision is also
a field where statistics is expected to contribute. We apply value of information (VOI)
analysis to study whether a data set is likely to help us make sufficiently better decisions,
i.e. whether it is worthwhile acquiring. We also use VOI analysis for the comparison of
various possible experiments. The VOI is a monetary amount, which is computed from
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the statistical model as well as the costs and revenues of the decision situations. A recent
review of decision analysis and the VOI is provided in Howard and Abbas (2015).

We consider the situation with dependent projects having uncertain profits. In our
applications the projects will be associated with spatial coordinates, and their correlation
depends on the distance between projects. Our framework also holds for other kinds
of dependence. We assume that the decision maker freely selects projects with positive
expected monetary value. Initially, the investor has prior knowledge about the outcome
of projects, including dependence, and the overall prior value of projects. There is much
at stake, and one can purchase some data before making the decisions. With the option to
purchase some data, the posterior value of projects can be computed. When the projects
are correlated, the data will be informative of the probability distribution at all projects.
The VOI is the difference between the expected posterior value averaged over all possible
data sets, and the prior value.

Mathematically speaking, we consider the set S of spatial projects. The latent variable
of interest is denoted xs, s ∈ S. We allow for the components of X = {xs, s ∈ S} to be
correlated and normally distributed. The decision is tied to this variable. The potential
outcomes of experiments are denoted ys, s ∈ S. The distribution of ys is defined to
be conditionally independent of the outcomes of the other experiments with mean g(xs)
where g(·) denotes the inverse link function. In the examples discussed in this paper the
outcome of each experiment is either binary or a count variable. The generalised linear
model (GLM) is used for modelling data of this type where the response y is then assumed
to follow a conditional distribution in the form of the exponential family.

Suppose that the cost of making a decision at any site s is Cs = C > 0, while the
revenue is a fixed amount Rs = R times the expectation of the binary or count variable.
When no data are available, the prior value (PV) is

PV(S) =
∑

s∈S

max{0, R× Ex g(xs)− C}, (1)

i.e. a risk-neutral decision maker will make the decision at site s if it is expected to have
profit, otherwise the decision maker will avoid this site. The decision maker is free to
select as many sites as are profitable, thus the sum over all sites. Note that in some
situations the objective is to maximize the negative loss, rather than the revenues.

Now suppose that there is the potential of obtaining data y, where each experiment
s ∈ S could be performed multiple times, ms say. These data are informative of the
latent variable xs and can be used to update our belief about the outcome of experiment
s. Under these circumstances, our posterior value (PoV) for the experiments S given this
potential is

PoV(S|S) = Ey

∑

s∈S

max{0, R× Ex[g(xs)|y]− C}. (2)

The difference of (2) from (1) is the VOI provided by the experiments S, i.e

VOI(S|S) = PoV(S|S)− PV(S). (3)
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It can be shown by an application of Jensen’s inequality that VOI(S|S) ≥ 0 ∀S. Thus,
there is always the incentive of collecting more data. However, one must weight this infor-
mation against its cost so accurate calculation of (3) is important for planning purposes.
Moreover, when the optimal experiment set S is sought, these calculations need to be
quick. From a computational point of view, calculation of (1) is straightforward and in
some cases it can be written in closed-form. The calculation of (2) is more difficult due to
the intractable conditional expectation inside the maximum, and the outer expectation
over the data.

The case where the outcome of each experiment is normally distributed has been
studied by Bhattacharjya et al. (2013). The contribution of this paper is to extend these
results to the general exponential family case. In some sense the context is similar to
that of spatial design. This is usually done based on entropy, see e.g. Fuentes et al.
(2007), prediction variance, see e.g. Evangelou and Zhu (2012), or prediction error, see
e.g. Peyrard et al. (2013). The main difference between these measures of information
and VOI analysis is that the latter is based on decision theoretic concepts and tied to
monetary units. The VOI analysis is commonly done for medical applications, see e.g.
Willan and Pinto (2005) on clinical trials and Welton et al. (2008) on medical prioritisa-
tion, and in the context of conservation biology, see Moore and McCarthy (2010); Moore
and Runge (2012), but this has not been done in the setting with latent models incor-
porating dependence and GLM likelihoods. Analytical expressions can also be useful in
sequential decision problems (Morgan and Cressie, 1997). The contribution of our paper
is to formulate analytical results for the large class of hierarchical GLMs.

The remaining of the paper is organised as follows. Section 2 presents some pertinent
asymptotic results for the conditional mean and variance of the latent process. These
results are used in Section 3 to derive the approximation to the VOI for different models.
In Section 4 we present computational results where we compare the proposed approxi-
mation to the Monte-Carlo method and discuss the sensitivity of our approximation to
the parameters of the model. In Section 5 we illustrate our method to applications and
finally, in Section 6 we present our conclusions. Some technical derivations are given in
the Appendix.

2 Some asymptotic results for GLMs

We denote the latent process at S by x := {x1, . . . , xn}. Let further µ := Ex x be the mean
and Σ := Vx x be the covariance matrix of x, and write the conditionally independent
distribution of yij|xi in the form

p(yij|xi) ∝ exp

∫ gi

yij

yij − u

τ 2v(u)
du, i = 1, . . . , n, j = 1, . . . ,mi

where gi := g(xi), τ
2 is called the dispersion parameter and v(·) is the variance function.

The case v(u) = u gives the Poisson distribution and the case v(u) = u(1 − u) gives the
Bernoulli distribution, while v(u) = 1 is the normal distribution (McCullagh and Nelder,
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1999). Let y = {yij , i = 1, . . . , n, j = 1, . . . ,mi}. In this section we derive a Gaussian
approximation to the distribution p(xs|y) using Laplace’s method.

2.1 Laplace approximation

Laplace’s method approximates multidimensional integrals of the form

I =

∫

f(x)e−h(x) dx,

as h(·) → ∞, around
x̂ := argmin

x

h(x).

The first order approximation is

I ≈ f(x̂)e−h(x̂)

∣

∣

∣

∣

1

2π
Ĥ

∣

∣

∣

∣

−1/2

,

where Ĥ denotes the Hessian matrix of h(·) evaluated at x̂.
When the Laplace approximation is applied to ratios of integrals of the form

If
I1

=

∫

f(x)e−h(x) dx
∫

e−h(x) dx
,

the approximation to first order is
If
I1

≈ f(x̂). (4)

If the dimension of x is fixed, the asymptotic error of (4) is O(h−1) as h(x) → ∞. The
requirement h(x) → ∞ is equivalent to mi → ∞ for all i in our setting. The case where
n → ∞ has been studied in Shun and McCullagh (1995) and Evangelou et al. (2011) who
showed that the approximation error for the geo-spatial case becomes O(nh−1) to the first
order.

The Laplace approximation is a consequence of the Gaussian approximation to e−h(x).
In particular, application of second order Taylor expansion to h(x) around x̂ gives

e−h(x) = e−h(x̂) exp

{

−1

2
(x− x̂)TĤ(x− x̂)

}

,

so if e−h(x) represents a pdf, then it can be approximated by the Gaussian pdf with mean
x̂ and variance Ĥ−1.

2.2 Gaussian approximation to the conditional distribution of

x|y
Consider the conditional distribution of x|y. This distribution is in general not available
in closed-form. A Gaussian approximation to this distribution is derived using

p(x|y) ∝ p(y|x)p(x) = p(x,y),
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where p(y|x) =
∏

p(yij|xi) and p(x) is the multivariate normal pdf with mean µ and
variance Σ. To that end, let

x̂ := argmax
x

p(y|x)p(x),

and Ĥ := Σ−1+D̂ denotes the negative Hessian of log p(y,x) with respect to x evaluated
at x̂. The matrix D is diagonal with ith element miv(gi)τ

−2 if a canonical link is used.
Then, an approximation to the mean and variance of x|y is

Ex[x|y] ≈ x̂

Vx[x|y] ≈ Ĥ−1.
(5)

This motivates approximation of the conditional distribution of x|y by the normal distri-
bution with mean and variance given by (5), i.e

x|y ∼ Nn(x̂, Ĥ
−1). (6)

Using the result in (6), we can predict xs at any given experiment s. Let cs denote
the covariance between xs and x. Then,

κs := Ex[xs|x] = µs + cT

sΣ
−1(x− µ),

ξ2s := Vx[xs|x] = σ2
s − cT

sΣ
−1cs,

νs := Ex[xs|y] ≈ µs + cT

sΣ
−1(x̂− µ).

(7)

The notation ≈ will be used here to denote the first order Laplace approximation.
Since the mean and variance in (5) depend on y only through x̂,

Ex[x|x̂] ≈ x̂

Vx[x|x̂] ≈ Ĥ−1.
(8)

By an application of the law of iterated expectations on the left and right-hand sides
of (8) we have

µ = Ex x = Ex̂[Ex[x|x̂]] ≈ Ex̂[x̂]

Σ = Vx x = Vx̂ Ex[x|x̂] + Ex̂ Vx[x|x̂] ≈ Vx̂ x̂+ Ex̂ Ĥ
−1

⇒ Vx̂ x̂ ≈ Σ− Ex̂ Ĥ
−1 = ΣEx̂(Σ + D̂−1)−1Σ =: Ψ,

(9)

where in the last line we used Ĥ−1 = (Σ−1+D̂)−1 = Σ−Σ(Σ+D̂−1)−1Σ. Asymptotically,
the distribution of x̂ is the n-dimensional multivariate normal with mean µ and variance
Ψ. Note that the elements of D̂−1 are negligible for large mi. In this case, the matrix Ψ
is approximated by Ψ ≃ Σ(Σ +K)−1Σ where K = ExD

−1. Applying this result to (7),
we have

Ey[νs] ≈ µs,

Vy[νs] ≈ cT

s(Σ +K)−1cs =: χ2
s.

(10)

Equation (10) is the main result of this section and is used for the approximation of VOI
as we show next.
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3 Approximation to the VOI

In this section we show how the results from section 2 are used to derive the contribution
VOI(s|S) of a single site s to the VOI.

Consider first the expectation Ex[g(xs)|y] and define

Mg(κs, ξs) = Ex[g(xs)|x].

Then, by an application of (4),

Ex[g(xs)|y] = Ex[Ex[g(xs)|x]|y]
= Ex[Mg(κs, ξs)|y]
≈ Mg(νs, ξs). (11)

By combining (1), (2), (3) and (11), we have

VOI(s|S) = Ey max{0, R× Ex[g(xs)|y]− C} −max{0, R× Ey[Ex g(xs)|y]− C}
≈ Ey max{0, R×Mg(νs, ξs)− C} −max{0, R× Ey Mg(νs, ξs)− C}
= Eνs max{0, R×Mg(νs, ξs)− C} −max{0, R× Eνs Mg(νs, ξs)− C}. (12)

The last expectation is with respect to the distribution of νs which from (10) can be taken
to be νs ∼ N(µs, χ

2
s). This result can be readily applied to the different distributions

considered.

3.1 Normal-identity model

We consider first the case where ys|xs is normally distributed with variance τ 2 and g(x) =
x so the variance function v(g) = 1. Then K = diag{τ 2/ms, s ∈ S} and Mg(κs, ξs) = κs.
This gives, for a = C/R,

VOI(s|S) = Rχsφ

(

µs − a

χs

)

+R(µs − a)Φ

(

µs − a

χs

)

−Rmax{0, µs − a}.

Note that in this case the approximation is exact.
Based on the closed form expression one can easily gauge the effect of input parameters

on the VOI. For instance, when µs → ±∞, the Gaussian density φ
(

µs−a
χs

)

→ 0. The

cumulative function Φ
(

µs−a
χs

)

goes to 0 or 1 in these cases, and the posterior value cancels

with the prior value Rmax{0, µs − a}. Thus, the VOI goes towards zero for very low or
high values of the prior mean. Data will not help us make better decisions for extreme
prior means. For intermediate values of the prior mean parameter the data will likely
help us in the decision making and the VOI is positive.
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3.2 Poisson-log model

In this case g(x) = ex, and its expectation becomes Mg(κs, ξs) = exp(κs +
1
2
ξ2s ). For the

Poisson model v(g) = g, and we get K = diag{τ 2/ms exp(−µs +
1
2
σ2
s), s ∈ S}. Then, for

a = log(C/R) and using Lemma 1 in the Appendix,

VOI(s|S) = Eνs max

{

0, R× exp

(

νs +
1

2
ξ2s

)

− C

}

−max

{

0, R× Eνs exp

(

νs +
1

2
ξ2s

)

− C

}

= R exp

(

µs +
1

2
ξ2s +

1

2
χ2
s

)

Φ

(

χs +
µs +

1
2
ξ2s − a

χs

)

−ReaΦ

(

µs +
1
2
ξ2s − a

χs

)

−Rmax

{

0, exp

(

µs +
1

2
ξ2s +

1

2
χ2
s

)

− ea
}

. (13)

The closed form facilitates interpretation. When the prior mean µs gets large, the
cumulative functions in (13) go to 1. This means the VOI goes to 0. The variance χ2

s

is influenced by the correlation in the model. We have χs = 0 if the outcome at site s
is independent of the data. In this case the cumulative functions again go to either 0,
0.5, or 1, depending on whether µs +

1
2
ξ2s − a is negative, zero or positive, and the VOI

contribution at s becomes 0.

3.3 Binomial-logit model

In this case we need C < R otherwise the problem becomes trivial. For v(g) = g(1− g),
we have, by an application of Lemma 2 in the Appendix,

K = diag

{

τ 2

ms

(

2 + exp
(

−µs + σ2
s/2
)

+ exp
(

µs + σ2
s/2
))

, s ∈ S

}

.

The inverse link function is g(x) = (1+e−x)−1. Then, Mg(κs, ξ
2
s ) ≈ g

(

κs/
√

1 + α2ξ2s

)

.

This approximation uses the Gaussian approximation to the logistic-normal integral (Demi-
denko, 2004), derived in the Appendix (section 7.2).

For a = log((C/R)/(1− (C/R))) we have

VOI(s|S) = Eνs max
{

0, R× g
(

νs/
√

1 + α2ξ2s

)

− C
}

−max
{

0, R× Eνs g
(

νs/
√

1 + α2ξ2s

)

− C
}

= RΛa

(

µs
√

1 + α2ξ2s
,

χ2
s

1 + α2ξ2s

)

−Rg(a)Φ

(

µs − a
√

1 + α2ξ2s
χs

)

−Rmax
{

0,Λ(µs, ξ
2
s + χ2

s)− g(a)
}

,

where Λ(·) and Λa(·) denote the complete and incomplete logistic-normal integrals. See
Appendix (section 7.2). As in the other cases at the limits µ → +∞ and µ → −∞ the
functions Λ, Λa and Φ tend to 1 or 0 respectively and the VOI tends to 0.
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4 Computational Experiments

In this section we compare the approximations to the VOI derived in section 3 against
the Monte-Carlo sampling. We also perform a sensitivity analysis of the proposed ap-
proximation. The general setup consists of the spatial domain [0, 1]2 with the possible
experiments consisting of the n = 25 pairs S = {sij = ( i

4
, j
4
) i, j = 0, 1, . . . , 4}. We define

S = {sij : i, j odd} and compute VOI(sij|S) with Cs = C = 0.5 and R = 1.
The latent component x is assumed to have mean at location sij equal to µij =

−1 + (i + j)/4 and variance-covariance matrix σ2R(ρ) where R(ρ) is the matrix whose
elements are of the form exp(−ρ‖sij − si′j′‖). Larger values of the parameter ρ decrease
the correlation between experiments.

The outcome of each experiment is taken to be from the exponential family. We
consider the Gaussian, Poisson and binomial cases, with m replications and dispersion
parameter τ 2.

4.1 Comparison with Monte-Carlo

In this section we fix σ2 = 10, τ 2 = 1, ρ = 0.6 and perform computations for m = 10b,
b = 0, . . . , 4. The Monte-Carlo method was implemented as follows:

1. Sample NO times y
(i)
S ∼ p(yS) on S. This is done in two steps, first a sample

x
(i)
S ∼ p(xS) on S is taken and then y

(i)
S ∼ p(yS|x(i)

S ).

2. For i = 1, . . . , NO

Compute a Monte-Carlo approximation A
(i)
S

to the expectation Ex[g(xS)|y(i)
S ].

This is computed using importance sampling with NI samples and proposal
distribution equal to the Gaussian approximation to p(xS|y(i)

S ).

3. Approximate the VOI by

VOI(s|S) ≃ 1

NO

NO
∑

i=1

max
{

0, R× A(i)
s − C

}

−max

{

0, R×
[

1

NO

NO
∑

i=1

A(i)
s

]

− C

}

for s ∈ S.

For our computations we used NO = NI = 104 samples for all cases.
Figure 1 shows the square-root mean square difference between the analytical approxi-

mation to the VOI and the Monte-Carlo approximation for each of the three distributions
considered. As the analytical approximation is exact for the Gaussian case, that case
indicates the increase in the Monte-Carlo error as m increases. This is due to the larger
variance of the simulated y, which increases the variability of the Monte-Carlo average.
For the Poisson and binomial cases the mean square difference between the two meth-
ods drops as m increases which can be explained by the improvement of the analytical
approximation for large m.
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Figure 1: Comparison between the analytical and Monte-Carlo approximations to VOI.

4.2 Sensitivity analysis

In this section we fix m = 100 and compute the VOI as a function of the parameters σ2,
τ 2 and ρ. We choose 3×3×3 combinations with σ2, τ 2 ∈ {0.1, 1, 10} and ρ ∈ {0.2, 0.6, 1}.
The analytical approximation to the VOI is computed for each combination and for the
three families considered. The results are plotted in Figure 2.

The pattern corresponding to the three distributions is similar. The variance param-
eter σ2 has the largest impact and τ 2 the least. The effect of the correlation parameter ρ
is more apparent when the σ2 is large. Also the VOI decreases as the sites become less
correlated to each other. For the Poisson distribution we notice a relatively faster decline
in VOI when ρ increases.

The case where the range of the mean µ varies together with the other parameters
was also considered but not shown. In this case the results support our interpretation in
Section 3 that the effect of the mean is larger for intermediate values, when we are most
indifferent and the data can be more helpful.

5 Examples

5.1 Poisson spatio-temporal model for disease pretesting

We consider the bovine tuberculosis (BTB) data collected during the years 1989 to 2002
from farms in Cornwall, UK. The data consist of the locations of infected farms found
upon inspection during the fourteen-year period. The data were analysed by Diggle et al.
(2005) among others.

To formulate the decision problem, we take the role of the monitoring agency that
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Figure 2: Results from the sensitivity study. For each distribution we plot the approximate
VOI against the different parameter values considered.

decides whether to test for the disease or not. To that end, the entire spatial region is
split into 90 grid cells with maximum width 8Km and maximum height 8Km as shown in
Figure 3. If all cattle within a cell are inspected and all infected farms are eliminated, then
that particular cell is considered “treated” for that year. Thus, the reward for treating
cell s at time t (number of years since 1988) is −Cs −R1ys,t, where Cs is the search cost
proportional to the area of the cell s, R1 is the loss occurring when an infected farm is
found and therefore eliminated, and ys,t is the number of infected farms at time t in cell s.
Alternatively, the agency may decide to “skip” cell s, in which case the reward is −R2ys,t.
We set R2 > R1 because an infected farm can incur higher losses if it remains undetected.
With these rewards, the prior value for treating cell s at time t is

PVt(s) = max {−Cs −R1 Ey ys,t,−R2 Ey ys,t} , (14)

i.e. the agency’s decision is to treat cell s if its expected loss is less than the expected
loss when the cell is skipped.

Let us also suppose that, prior to treatment, the monitoring agency has the option to
administer a pretest to a sample of cattle from each farm within a cell. The pretest can
be used to gain information, denoted y, about the distribution of the disease and help
decide which cells to treat. Suppose that the cells S = {s1, . . . , sn} have been chosen for
the pretest. Then, the posterior value for treating cell s at time t provided by S is

PoVt(s|S) = Ey max {−Cs −R1 Ey[ys,t|y],−R2 Ey[ys,t|y]} . (15)

By combining (14) and (15), the VOI for treating cell s at time t provided by the pretest
S becomes

VOIt(s|S) = Ey max {−Cs −R1 Ey[ys,t|y],−R2 Ey[ys,t|y]} −max {−Cs −R1 Ey ys,t,−R2 Ey ys,t}
= Ey max {−Cs + (R2 −R1)Ey[ys,t|y], 0} −R2 Ey Ey[ys,t|y]

−max {−Cs + (R2 −R1)Ey ys,t, 0}+R2 Ey ys,t

= Ey max {0, (R2 −R1)Ey[ys,t|y]− Cs} −max {0, (R2 −R1)Ey ys,t − Cs} .
(16)
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Figure 3: Sampling grid for the BTB example. The numbers show the total number of
infected farms in that cell across the years 1989 to 1998; the empty cells correspond to
zero counts.
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We now specify our modelling framework. Let xs,t denote the logarithmic disease
intensity at cell s at time t, s ∈ S, t ∈ T. For the purposes of this example, we model
{xs,t} as a separable spatio-temporal Gaussian process with constant mean, i.e.

xs,t = β0 + ηs + ǫt,

where {ηs} is a spatial conditional autoregressive process (CAR) on a square lattice
(Cressie, 1993, Section 6.3.2) and {ǫt} is a temporal CAR process. Specific details on
the spatial and temporal model are given in the Appendix. Conditional on xs,t, the num-
ber of infected farms ys,t within cell s at time t is Poisson distributed with mean mse

xs,t

where ms denotes the area of cell s divided by 64 in Km2. The cost Cs for cell s is also
set to Cs = ms while the difference in revenue R2 − R1 = 1. Then, the VOI from (16)
becomes

VOIt(s|S) = ms Ey max {0,Ex[exp(xs,t)|y]− 1} −msmax {0,Ex exp(xs,t)− 1} .

For any given year t, we assume that all data prior to that year were observed and use
them to estimate the parameters of our model by maximum likelihood. Given parameter
estimates, the plug-in predictive distribution of xt is the normal distribution with mean
and variance given by (19) in the Appendix.

We assume that the agency is able to pretest a total of n = 9 cells (10% of the total).
The choice of the pretest cells is done as follows. The posterior value for pretesting
each cell is calculated and the cell S1 = {s1} that corresponds to the highest VOI(S|S1)
is selected. The remaining 89 cells are searched again to obtain S2 = {s1, s2} which
corresponds to the highest VOI(S|S2). This procedure is repeated until we obtain S9 =
{s1, . . . , s9}. More generally, the choice of the pretest locations can also be seen as a
spatial design problem.

After the pretest locations are selected, the pretest is administered and the correspond-
ing cells are observed. The data from the pretest cells are augmented with the existing
data and the model is refitted and a new prior value for each cell is computed. Figure 4
shows the treatment scheme before and after the pretest. The middle column of Figure 4
shows that the strategy for identifying pretest cells tends to give tests near borders of
the gray-white zones, i.e. zones where we are most indifferent and additional information
would assist the decision making. In some cases pretesting increases the number of treated
cells and in others it is reduced.

5.2 Poisson for joint counts affecting stability in mining

We consider decisions related to rock support in mining operations, where one would
avoid rock fall. The strength of the rock mass depends on a number of attributes such as
joint intensity, rock mechanical properties, fluid components, faulting, and so on, see e.g.
Nilsen et al. (2003). The joints of the rocks are critical here, and it is the focus of our
example from a mine in Norway (Ellefmo and Eidsvik, 2009).

Figure 5 shows the joint frequency data set. Ellefmo and Eidsvik (2009) analysed
the data using a Poisson likelihood model and a Gaussian latent log intensity. The
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Figure 4: The grey cells indicate for each year: treated cells without pretesting (left
column), pretest cells (middle), treated cells after pretesting (right).
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Figure 5: Top: Illustration of a joint frequency count data set. The dots indicate locations
of joint counts data. Larger dots mean larger number of joints. The largest count is 93,
the smallest is 0. There are 1615 locations in about 100 boreholes. Bottom: Histogram
of the joint counts.
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authors used a Gaussian model with constant mean and covariance structure defined by
a nugget effect plus an exponential anisotropic covariance function. Based on the Laplace
approximation parameter values were specified to: mean 1.55, partial sill 0.13, nugget
0.04 and in-strike correlation 300 metres. The range perpendicular to the ore strike was
set to a quarter of the in-strike correlation length, i.e. 75 metres.

In the current paper we consider the prospective analysis of joint measurements of a
similar type. We assume we know the statistical model, including its parameters specified
like above with the constant mean and the covariance parameters. A set of 52 critical
tunneling locations near depth 250 metres have been selected. The decision to add support
at any of these locations comes with the cost of bolting equipment and labor, but ensures
that rock fall will not occur at this location. Without the added support at a location
we assume the cost of rock fall depends on the uncertain joint intensity at that location.
We use VOI analysis to evaluate which borehole information would be more informative
in such a decision situation.

According to what was described above, let Cs be the cost of adding support at
location s and RsEx[exp(dsxs)] be the expected loss associated with rock fall at the same
location when we do not add support. Note that Cs, Rs and ds will depend on rock
mechanical properties, fluid composition, geometric considerations, cost of rock mass
transport, and other engineering inputs. For simplicity, these input variables have been
set to Cs = C = 20, 000 and Rs = R = 100 money units ($), and ds = d = 3. The prior
value for this decision problem becomes PV(S) =

∑

s∈S max{−C,−REx[exp(dxs)]}.
Letting y denote a generic joint count data set acquired according to a specific spatial

design S, the posterior value is given by PoV(S|S) = Ey

∑

s∈S max{−C,−REx[exp(dxs)|y]}.
By similar arguments as in Section 5.1, we get

VOI(S|S) = Ey

∑

s∈S

max{0, REx[exp(dxs)|y]− C} −
∑

s∈S

max{0, REx exp(dxs)− C},

which can be approximated using the methods presented in Section 3.
In this example the mean for the joint intensity is relatively large, and the prior decision

is to add support at all locations. By collecting borehole data we will pull these decisions
more clearly towards added support, or towards avoiding support when the neighboring
joint count observations are small, indicating that more support is likely not necessary.
The VOI depends on the spatial acquisition design S. We compare the VOI of gathering
the entire set of 1615 borehole data against the three partial designs mentioned in Table 1.
The boreholes for the partial designs were chosen randomly but in a way that samples
from smaller designs consisted of a subset of samples from larger ones. The VOI for each
design considered is also shown in Table 1. The VOI decreases when we collect less data,
but the decrease is slower than one would expect from the fractional splitting of the data.
Moreover, the spatial dependence clearly influences the VOI since the strategy with more
boreholes and coarser core samples of joint counts has a much higher VOI, even though
the data size is the same for the last two options.

These VOI results must be compared with the price levels of the different data acqui-
sition schemes. We compare the option defined by a quarter of the boreholes with that of
every second observation in half of the boreholes (Half-Half). The number of data is then
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Design Data size VOI ($)
All boreholes 1615 216,000
Half of the boreholes 768 165,000
Every second observation in half of the boreholes 383 159,000
A quarter of the boreholes 383 96,000

Table 1: Comparison of different designs for the mining example.
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Figure 6: Decision regions for two possible data acquisition schemes in the mining joint
example.

the same, so the processing of joint counts data is assumed equal for the two schemes,
but the cost of drilling is twice as large for the Half-Half option. The notion of decision
regions for data collection here relies on selecting the largest option as follows:

Decision = argmax
(

VOIHalf-Half − PriceHalf-Half,VOIQuarter − PriceQuarter, 0
)

.

Figure 6 shows the decision regions as a function of the price of drilling per metre
(first axis) and the price of processing per sample (second axis). When the drilling cost
increases, the Quarter option is better. If the prices become very large, the decision is to
purchase no data.

6 Discussion

In this paper we derive approximations to the value of information for the generalised
linear mixed model with correlated random effects, with particular focus to the spatial
case. Our method consists of a mix of Laplace approximation techniques and matrix
approximations, together with an approximation to the logistic-normal integral for the
binomial model. Under certain conditions on the sample size the approximation is com-
parable to, and significantly faster than Monte-Carlo integration. In fact, we find that
the Monte-Carlo method exhibits larger error when the sample size is large which is in
contrast with the error of our analytical approximation.
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The VOI can be seen as a design criterion where the objective is expressed in monetary
units. In this case budget constraints can be used naturally within a design framework. We
illustrated elements of this for the bovine tuberculosis and the mining stability examples.

Because of the inherent correlation in the response variable, the outcome from one
site can provide information about the outcome at other sites and indeed in our compu-
tations we find that the stronger the correlation the higher the value. We observe strong
sensitivity to the variance of the random effects, but the variability in the response is less
influential. This suggests that misspecification of the variance may lead to incorrect esti-
mates of the true VOI. A methodology which incorporates parameter uncertainty into the
approximation would be useful in addressing this point for example by integrating them
out in a Bayesian approach as in Diggle and Lophaven (2006). A second open question
is incorporating parameter learning as data arrive sequentially, and to phrase the overall
problem as a sequential decision problem.

7 Appendix

7.1 Some preliminary results

Lemma 1.
∫

∞

A

exp(χz)φ(z) dz = exp(
χ2

2
)Φ(χ− A).

Proof.

∫

∞

A

exp(χz)φ(z) dz =

∫

∞

A

exp(−1

2
z2 + χz)

1√
2π

dz

=

∫

∞

A

exp{−1

2
(z2 − 2χz + χ2 − χ2)} 1√

2π
dz

= exp(
χ2

2
)

∫

∞

A

exp{−1

2
(z − χ)2} 1√

2π
dz

= exp(
χ2

2
){1− Φ(A− χ)}

= exp(
χ2

2
)Φ(χ− A).

Lemma 2. If z ∼ N(µ, σ2), then

Ez[exp(−z)(1 + exp(z))2] = 2 + exp(−µ+ σ2/2) + exp(µ+ σ2/2).
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Proof.

Ez[exp(−z)(1 + exp(z))2] =

∫

(2 + exp(−σu− µ) + exp(σu+ µ))φ(u) du

= 2 + e−µ

∫

exp(−σu)φ(u) du+ eµ
∫

exp(σu)φ(u) du

= 2 + exp(−µ+ σ2/2) + exp(µ+ σ2/2).

7.2 Approximation to the logistic-normal integral

Let g(x) = (1 + e−x)−1 and consider

Λ(µ, σ2) :=

∫

∞

−∞

g(x)σ−1φ

(

x− µ

σ

)

dx, (17)

Λa(µ, σ
2) :=

∫

∞

a

g(x)σ−1φ

(

x− µ

σ

)

dx. (18)

The above integrals do not have a closed-form solution. The one in (17) is known as
the logistic-normal integral. Demidenko (2004) discusses different approximations to it in
Section 7.1.2. The one in (18) will be referred to as the incomplete logistic-normal integral.
By an application of the dominated convergence theorem, both integrals converge to 0 as
µ tends to −∞ and to 1 as µ tends to +∞ with σ constant.

One can approximate the logistic function g(x) by the Gaussian CDF Φ(αx) for an
appropriate α > 0. Depending on the criterion, α =

√

π/8 and α = 16/(π
√
75) are two

choices mentioned in Demidenko (2004). Let us assume that an appropriate α is chosen.
Then, define the approximations to (17) and (18)

Λ̂(µ, σ2;α) := Φ

(

αµ√
1 + α2σ2

)

≈ g

(

µ√
1 + α2σ2

)

,

Λ̂a(µ, σ
2;α) :=

∫

∞

a

Φ(αx)× 1

σ
φ

(

x− µ

σ

)

dx

= Φ

(

µ− a

σ

)

− Pr

(

Z1 <
µ− a

σ
, Z2 < ασZ1 − αµ

)

= Φ

(

µ− a

σ

)

− Φ2

(

µ− a

σ
,− αµ√

1 + α2σ2
;− ασ√

1 + α2σ2

)

,

where Z1 and Z2 are independent standard normal random variables and Φ2(x, y; r) de-
notes the bivariate standard normal CDF with correlation r.

7.3 Details on the spatiotemporal model

In this section we describe the spatiotemporal model used in the BTB example.
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For the spatial component of the model, let N = 90 be the total number of cells and
let κi denote the number of neighbours of the cell si, i = 1, . . . , N . In our model, each
cell has at most four neighbours. Next, define the N ×N matrices P = diag{κi} and B
where the (i, j) element of B equals 1 if si and sj are neighbours and 0 otherwise. Then,
the joint distribution of η = (η1, . . . , ηN) is set to

η ∼ NN(0, u
2Ξ), Ξ = (P − hB)−1,

where h is a scalar parameter.
A similar definition applies for the temporal component of the model. Here the notion

of neighbour corresponds to consecutive time points in {1, 2, . . . , t} we define the diagonal
matrix Q and the adjacency matrix C such that the joint distribution of ǫ = (ǫ1, . . . , ǫt)
is

ǫ ∼ Nt(0, v
2Υ), Υ = (Q− kC)−1,

with scalar parameter k.
For the purposes of this example we fix h = 0.25 and k = 0.5 and use the available

data to estimate β0, u
2 and v2. These parameters are estimated by maximum likelihood

given all available data after integrating out η and ǫ by Laplace approximation. Given
the parameter estimates we derive a plug-in predictive distribution to xt as discussed in
Evangelou et al. (2011), i.e.

xt ∼ NN(µ̂t, Σ̂t), (19)

The mean and variance of (19) are the required mean and variance terms for computing
the VOI.
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