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Rough paths on Banach spaces



Rough paths

A rough path on an interval [0,T ] with values in a Banach space
E consists of continuous maps

X : [0,T ]→ E , X : [0,T ]2 → E ⊗ E .

such that Chen’s relation holds for all s, u, t ∈ [0,T ]

Xs,t − Xs,u − Xu,t = Xs,u ⊗ Xu,t

and X is α-Hölder and X is 2α-Hölder. Denote by Cα([0,T ],E )
the space of all α-Hölder rough paths.
Warning (Tensor norms)
All of this requires us to choose a tensor norm to make sense of
the analytic conditions!



Geometric picture for rough paths

Choose a suitable tensor norm and construct A := ∏
n∈N E⊗n .

Then A is a Fréchet algebra which contains interesting subalgebras.

Define the Lie polynomials as P1 := E and recursively Pn ⊆ A as
the closure of the space

Pn−1 + {[x , y ] := x ⊗ y − y ⊗ x | x ∈ E , y ∈ Pn−1}.

P∞ = {∑n∈N pn | pn ∈ E⊗n ∩
⋃

m∈N Pm} (Lie series).

1. Pn is a nilpotent Lie algebra (after truncation) and P∞ is a
Lie algebra.

2. The exponential series converges on Pn and yields a Lie group
Gn := exp(Pn), n ∈ N ∪ {∞}

We describe rough paths with α ∈]1/3, 1/2[ and will thus
specialise to n = 2.



Geometric picture for rough paths II

Writing the rough path (X ,X) for α > 1/3 additively we have

Xst := 1 + Xt − Xs + Xs,t ∈ G2.

Chen’s relation then becomes Xst = XsuXut . To make sense of the
Hölder condition we introduce the metric

|X| = max{‖X‖, ‖X‖1/2
2 } d(x.y) := |x−1y|

dα(X,Y) := sup
s 6=t

d(Xst ,Yst)
|t − s|α .

Then Cα([0,T ],E ) ∼= Cα([0,T ],G2)



Weakly geometric vs geometric rough paths

For α ∈ (1/3, 1/2) let Xst = 1 + Xst + +mahtbbXst be an α-rough
path, it is called

• geometric rough path if it is in the closure of

S2(X )st = 1 + Xt − Xs +
∫ t

s
(Xr − Xs)⊗ dXr

of curves Xt of bounded variation
• weakly geometric if the symmetric part of X(2)

st equals
1
2Xst ⊗ Xst

well known fact
Every geometric rough path is weakly geometric and if E is
finite-dimensional every weakly geometric rough path is
geometric up to Hölder tuning.



Geometric vs. weakly geometric in
infinite dimensions



Theorem, Grong, Nilssen S. 2020
For α ∈ (1/3, 1/2), E a Hilbert space, let C α

g ([0,T ],E ) and
C α

wg ([0,T ],E ) denote geometric rough paths and weakly
geometric rough paths. Then for any β ∈ (1/3, α), we have
inclusions

C α
g ([0,T ],E ) ⊂ C α

wp([0,T ],E ) ⊂ C β
g ([0,T ],E ).

Is actually the consequence of a more general theorem, for which
we need to recall the Carnot-Caratheodory (CC) metric on G2:

ρ(X,Y) := ρ(1,X−1Y),

ρ(1,Z) := inf
{∫
‖ċt‖dt | c bounded variation, cts. c0 = 0, S2(c) = Y

}



For Mcc := {z ∈ G2 | ρ(1, z) <∞} we let C([0,T ],Mcc) be the
continuous curves with respect to ρ.
Theorem (Grong, Nilssen, S. 2020)
Let α ∈]1/3, 1/2[ and β ∈]1/3, α[. Assume that

1. For some C > 0 and all z ∈ G2 we have d(1, z) ≤ Cρ(1, z),
2. The metric space (Mcc , ρ) is a complete, geodesic space.
3. The set Cα([0,T ],G2) ∩ C([0,T ],Mcc) is dense in

Cα([0,T ],G2) relative to the metric dβ.

Then for any X ∈ Cα([0,T ],G2) there exists a sequence of
bounded variation paths Xn such that

Xn = S2(xn)→ X in Cβ([0,T ],E ).



Some remarks

Problems in generalising the result to Banach spaces
The proof exploits that in a Hilbert space projections onto closed
subspaces are length shortening.Such projections are in general
rare in Banach spaces.

We also use several specific identifications of tensor products of
Hilbert spaces.

Applications... or why should you care?

1. Wong-Zakai type results for rough paths on Banach spaces
2. applicable to unbounded drivers (from rough PDE theory)



Thank you for your attention!

More information:
Grong, Nilssen, S.: Geometric rough paths on infinite dimensional

spaces, arXiv:2006.06362.
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