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Regularisation by noise in a nutshell

Regularisation by noise refers to a class of phenomena in which ill-posed
equations become well-posed under the introduction of noise; frequently
observed in ODEs and PDEs.

Why is it important?
The model is a mathematical idealisation, obtained by ignoring less
relevant factors in the dynamics; real systems are always affected by a
background noise
 physically observed solutions should be the ones stable under small
noisy perturbations
 vanishing noise selection criteria for mathematical solutions.

The “regularisation by noise program” ideated by Flandoli amounts to:

1. Find a physically meaningful, arbitrarily small noise restoring
well-posedness in the equation.

2. Identify the zero noise limit (hopefully unique in some reasonable
sense) NB: this step is still mostly open!
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Probabilistic literature on Step 1.

There is now an extensive literature on regularisation for SDEs of the form

xt = x0 +

∫ t

0
b(s, xs)ds + εWt

with W suitable stochastic process (BM, Lévy, fBm), ε > 0. First results
go back to Zvonkin (1974) and Veretennikov (1981).
A (very incomplete!) list of references:

Krylov–Röckner (PTRL 2005): singular b ∈ Lqt L
p
x ;

Flandoli–Gubinelli–Priola (Invent. 2010): flow and link with transport
equation; later improved in works by Flandoli and collaborators;

Works by Priola and collaborators for W Lévy noise;

Works by Da Prato and collaborators for infinite dimensional ODEs
with cylindrical BM;

Nualart–Ouknine (SPA 2002) first considered W fBm; improved by
Lê (EJP 2020).

Proske and collaborators: very rough noises and C∞ regularisation.
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Path-by-path uniqueness

In all of the above: W is a stoch. proc. on filtered (Ω,F , {Ft}t≥0,P),
uniqueness among solutions adapted to Ft . But in principle the equation
pathwise meaningful, i.e. we can fix the realization W (ω) and regard

xt = x0 +

∫ t

0
b(s, xs)ds + Wt(ω) (1)

as an ODE with random coefficients. For x0 ∈ Rd , denote by C (x0, ω) the
random set of solutions to (1).

Theorem (Davie, 2007)

Let W sampled as BM, b measurable and bounded. Then for any x0 ∈ Rd

P(ω ∈ Ω : #C (x0, ω) = 1) = 1

namely path-by-path uniqueness holds.

After Davie, several path-by-path uniqueness results have been established
by Catellier–Gubinelli (2016), Shaposhnikov (2016) and more recently
Harang–Perkowski (2020). Still, we are (partially) in a probabilistic setting.
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An abstract analytic formulation of the problem

For given x0 ∈ Rd and w ∈ C ([0,T ];Rd), we aim at studying the equation

xt = x0 +

∫ t

0
b(s, xs)ds + wt ∀ t ∈ [0,T ] (2)

with w a given continuous path (possibly very rough) and b possibly
distributional (for which the Lebesgue integral in (2) is not clearly defined).
Suppose we can find the following “ingredients”:

a) A Banach space E ⊂ C ([0,T ];Rd) containing {x0 + w : x0 ∈ Rd}.
b) A good definition for T : E → C ([0,T ];Rd) formally given by

(Tx)t =

∫ t

0
b(s, xs)ds ∀ t ∈ [0,T ]

in such a way that I − T leaves E invariant (I identity map).
c) All of the above consistent with the classical setting: for continuous

b, T defined as usual and E includes all classical solutions to (2).

Then under the change of variable γ = x0 + w ∈ E , eq. (2) becomes

xt − (Tx)t = γt ⇔ (I − T )x = γ ⇔ x ∈ (I − T )−1(γ).

so that wellposedness amounts to #(I − T )−1(γ) = 1.
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Mathematical tools available

We have reduced ourselves to the study of the set (I − T )−1(γ) for a map
T : E → E defined map on a Banach space.

Leray–Schauder–Tychonoff, Schaefer’s theorems: if T is a
continuous compact map satisfying suitable conditions, then
#(I − T )−1(γ) ≥ 1 for all γ ∈ E .

Banach–Caccioppoli: if T is Lipschitz with constant c < 1, then
I − T is a bijection with Lipschitz inverse satisfying

‖(I − T )−1(γ1)− (I − T )−1(γ2)‖ ≤ 1

1− c
‖γ1 − γ2‖.

Inverse function theorem: if x ∈ (I −T )−1(γ), T is differentiable in
U neighb. U of x and Dx(I − T ) is an isomorphism of E , then there
exists V neighb. of γ s.t. I − T has a differentiable inverse in V .

Sard’s theorem: if E is finite dimensional and T is C 1, then (I − T )
is locally invertible around Lebesgue-a.e. γ ∈ E .
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Old and new results in this formalism

Consider now the case b : [0,T ]× Rd → Rd , Tx =
∫ ·

0 b(s, xs)ds.

Cauchy–Lipschitz: if b Lipschitz, then (I − T ) is invertible on
E = C ([0,T ];Rd) with Lipschitz inverse.
Sharp: cannot be weakened to any Hölder condition.

Peano: if b continuous, T is continuous compact on
E = C ([0,T ];Rd) and #(I − T )−1(γ) ≥ 1 for every γ ∈ E .
Sharp: cannot be weakened to b measurable bounded.

If b ∈W 1,p with p > d (so W 1,p ↪→ C 0), then #(I − T )−1(x0) = 1
for a.e. x0 ∈ Rd [Caravenna,Crippa 2018]. Sharp: cannot be
weakened to b ∈W 1,p with p < d [Brué, Colombo, de Lellis 2020].

Catellier–Gubinelli: even for distributional b, if w is a “sufficiently
irregular” path, one can define T on a suitable space E = Ew and
show that (I − T ) has a Lipschitz inverse on E .

Natural question in view of Sard’s theorem: what happens for
generic γ? Is (I − T ) invertible around a.e. γ ∈ C 0?
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Catellier and Gubinelli’s idea revisited

For “sufficiently irregular” w , a good choice of “ingredients” is:

a) Ew = w + Cαt ' Cαt for some α > 1/2. Ew is made of paths which
“look like” w at first order and corresponds to CG’s solution Ansatz.

b) For such Ew , T is defined by means of nonlinear Young integrals.

The “irregularity” of w amounts to requiring that the averaged field

Twb(t, z) :=

∫ t

0
b(r , z + wr )dr , Tw

s,tb(z) := Twb(t, z)− Twb(s, z)

is well defined with good space-time regularity. Intuitive picture: wild
oscillations of w allows to trade between space and time regularity for
Twb, even for distributional b. For b continuous, x = θ + w , then∫ t

0
b(r , θr + wr )dr ≈

∑
i

∫ ti+1

ti

b(r , θti + wr )dr =
∑
i

Tw
ti ,ti+1

b(θti ).

Dependending on Twb and θ, the Riemann–Stjeltes sums on the r.h.s.
might converge even if b distributional  nonlinear Young integral.
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Nonlinear Young integration

Notation: As,t(x) = A(t, x)− A(s, x). We say that A : [0,T ]× Rd → Rd is Cαt Cβx if

|As,t(x)−As,t(y)| . |t−s|α |x−y |β , |As,t(x)| . |t−s|α, |A(t, x)−A(t, y)| . |x−y |β ;

optimal constants [[A]]α,β ., ‖A‖α,β ; same A ∈ Cαt C n+β
x .

Theorem (Catellier, Gubinelli, 2012)

Let A ∈ Cαt C
β
x , θ ∈ Cγ([0,T ];Rd) such that α + βγ > 1. Then the

following limit of Riemann-Stjeltes sums is well defined:∫ T

0
A(ds, θs) := lim

|Π|→0

∑
i=1

Ati ,ti+1(θti )

Moreover
∫ ·

0 A(ds, θs) ∈ Cαt and the map (A, θ) 7→
∫ ·

0 A(ds, θs) is
continuous in respective topologies.

Idea of proof: Apply the sewing lemma to Γs,t := As,t(θs). Indeed:

|δΓs,u,t | = |As,t(θs)− As,u(θs)− Au,t(θu)| = |Au,t(θs)− Au,t(θu)|

≤ [[A]]α,β |t − u|α |θs,u|β ≤ [[A]]α,β [[θ]]γ |t − s|α+βγ . �
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Perturbed ODE as nonlinear YDE

Therefore if Twb ∈ Cαt C
1
x for some α > 1/2 and x = θ + w with θ ∈ Cαt ,

(Tx)· =

∫ ·
0
Twb(ds, θs) =:

∫ t

0
b(s, xs)ds

is a well defined element of Cαt and I −T maps Ew into itself. If x , γ ∈ Ew

are given by x = θ+ w , γ = γ̃ + w , then x ∈ (I −T )−1(γ) is equivalent to

θt =

∫ t

0
Twb(ds, θs) + γ̃t (YDE)

which is a nonlinear Young differential equation for the choice
A = Twb; γ = x0 + w corresponds to γ̃t ≡ x0 = θ0 initial data.

Nonlinear YDEs are a generalization of classical YDEs and can be
applied in other classes of problems (see later).

The solution theory we will develop allows to invert I − T on Ew ,
thus not on a neighb. of w in C 0

t but rather along “special directions”
 analogy with Malliavin calculus and Cameron–Martin space.
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Solution theory for nonlinear YDEs

Theorem

Given A ∈ Cαt C
1
x and γ ∈ Cαt , α > 1/2, let C (A, γ) denote the set of

solutions to the NYDE associated to (A, γ).

1) The set C (A, γ) is non-empty, compact, simply connected in C 1/2;
the map (A, γ) 7→ C (A, γ) is measurable in suitable topologies
 if A is random, then C (A, γ) is a random compact set
 can construct measurable selections for (A, γ) 7→ θ ∈ C (A, γ).

2) If A ∈ Cαt C
2
x , then #C (A, γ) = 1 and the solution map

(A, γ) 7→ θ(A, γ) is Frechét differentiable.

3) Restricting to γ = x0 ∈ Rd , to any A ∈ Cαt C
2
x we can associated a

flow of diffeormorphisms ΦA(s, t, x0); A 7→ ΦA continuous.

4) Higher regularity: if A ∈ Cαt C
n+1
x , then ΦA(s, t, ·) belongs to Cn

x .

Proofs sparse in the literature: Catellier–Gubinelli, G.–Gubinelli., Hu–Lê,
G.–Harang; everything can be found in the review arXiv:2009.12884 .
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Solution theory for nonlinear YDEs - II

Global existence of solutions holds under more general growth conditions.
We say that A ∈ Cαt C

β,λ
x if

|As,t(x)− As,t(y)| . |t − s|α|x − y |β(1 + |x |λ + |y |λ);

similar concepts for Cαt C
n+β,λ
x , Cαt C

n+β
loc . Then:

Point 1) holds for A ∈ Cαt C
β,λ
x with α(1 + β) > 1, β + λ ≤ 1;

Point 2) holds for A ∈ Cαt C
β,λ
x ∩ A ∈ Cαt C

1+β
loc , α, β, λ as above.

Explicit expression for the differential of γ 7→ θ(A, γ) in point 2):
Consider wlog the differential around γ ≡ 0, set θ̄ := θ(A, 0) and let
M ∈ Cαt ([0,T ];Rd×d) be the unique solution to

Mt = Id +

∫ t

0
DA(ds, θ̄s)Ms ;

let Nt denote its matrix inverse. Then

d

dε
θ(A, εγ)|ε=0 = Mtγ0 +

∫ t

0
MtNsdγs

 link with Malliavin derivative.
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Back to ODEs and solvability for a.e. w

With these results at hand we can now solve the perturbed ODE

xt = x0 +

∫ t

0
b(s, xs)ds + wt (3)

for distributional b and generic w . Analogy with rough paths: enhance
the data of the problem from (b,w) to (b,w ,Twb) with Twb ∈ Cαt C

2
x , so

(b,w) 7→ (b,w ,Twb) 7→ (ΦTwb,w) 7→ xt = ΦTwb(0, t, x0) + wt

where the first step can be done in a measurable way and all the remaining
one are analytically defined continuous mappings.

Theorem (G.,Gubinelli, 2020)

Let b ∈ Lqt C
−n
x for some q > 2 and n ∈ N; then for almost every

w ∈ C ([0,T ];Rd) it holds Twb ∈ Cαt C
2
x , where “almost every” must be

understood in the sense of prevalence; as a consequence, existence and
uniqueness holds for (3) and I −T is invertible “around” w in the sense of
the set of special directions given by Ew .
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Other applications of nonlinear YDE theory

A) Modulated equations treated by Chouk, Gubinelli (2014-2015):

∂tϕt = Aϕtẇt +N (ϕt)

where A is the generator of a group {etA}t∈R acting isometrically on all
Hα and N is a nonlinearity. Setting Uw

t = ewtA and ψt = (Uw
t )−1ϕt ,

formally ψ satisfies the mild formulation

ψt = ψ0 +

∫ t

0
(Uw

s )−1N (Uw
s ψs)ds =: ψ0 +

∫ t

0
A(ds, ψs)

which can be recast as a nonlinear YDE driven by

As,t(χ) :=

∫ t

s
(Uw

r )−1N (Uw
r χ)dr .

B) McKean–Vlasov nonlinear YDEs treated by Harang, Mayorcas (2020):

Xt = ξ +

∫ t

0
K ∗ L(Xs)(Xs + Zs)ds + Bt

for Z deterministic irregular path; setting A = TZK it is of the form

Xt = ξ +

∫ t

0
Ads ∗ L(Xs)(Xs) + Bt .
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Can we regularise SDEs driven by multiplicative fBm?

Consider now an SDE driven by BH fBm of parameter H > 1/2 of the form

dxt = b1(t, xt)dt + b2(t, xt)dB
H
t ;

take for simplicity of exposition b1 ≡ 0, b2(t, x) = b(x) autonomous.

Since H > 1/2, for regular b the equation is pathwise well-posed in the
Young sense; if b ∈ Cαx with α < 1, explicit counterexamples to uniqueness
are known; if α ≤ 1/H − 1, the Young interpretation breaks down.

Question: can noise cure these pathologies? Leads to consider

xt = x0 +

∫ t

0
b(xs)dBH

s + wt (4)
New difficulties:

If w is very rough, we expect a strong regularising effect, but at the
same time (4) is not pathwise meaningful anymore even for smooth b!

In analogy with above, we expect a central role to be played by

Γwb(t, z)“=”

∫ t

0
b(z + wr )dBH

r
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Wiener integral for fBm

Given h ∈ C ([0,T ];Rd) and κ ∈ (0, 1), define ‖h‖−κ := ‖
∫ ·

0 hsds‖1−κ.

Theorem (Hairer, Li, AP 2020)

Let BH fBm with H > 1/2, κ ∈ (0,H − 1/2), h deterministic, then∥∥∥∫ t

s
hr dB

H
r

∥∥∥
LpΩ

.p,H,T ‖h‖−κ|t − s|H−κ ∀ [s, t] ⊂ [0,T ].

By a density argument, the Wiener integral
∫ t
s hrdB

H
r is then well defined

for all h ∈ C−κ; moreover by Garsia-Rodemich-Rumsay

E
∥∥∥∥∫ ·

0
hr dB

H
r

∥∥∥∥p
H−κ−ε

.p,H,T ,ε ‖h‖p−κ

where by assumption we can take H − κ− ε > 1/2.

Actually already known: [Jolis, JMAA 2007] for h ∈W 1/2−H,2.
Intuitive idea: dBH“=”IH−1/2dB where B standard Bm and Iα fractional integral, so

〈h,dBH〉“=”〈IH−1/2h, dB〉, it suffices IH−1/2h ∈ L2. h ∈ C−κ ⇒ IH−1/2h ∈ CH−1/2−κ−,

so it’s enough to require κ < H − 1/2.
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Construction of multiplicative averaged field

We can now construct Γwb by relying on the regularity of Twb!
If Twb ∈ Cαt C

1
x with α + H > 3/2, taking κ = 1− α, H − κ > 1/2, then

‖Γw
s,tb(x)− Γw

s,tb(y)‖LpΩ =
∥∥∥∫ t

s
[b(x + wr )− b(y + wr )] dBH

r

∥∥∥
LpΩ

.p |t − s|H−κ
∥∥∥∫ ·

0
b(x + wr )dr −

∫ ·
0
b(y + wr )dr

∥∥∥
α

.p ‖Twb‖Cαt C1
x
|t − s|1/2+|x − y |

and now applying a (suitably modified) version of GRR lemma we obtain

Proposition

Suppose Twb ∈ Cαt C
n+β
x for α > 3/2− H and β ∈ (0, 1). Then for any

α′ ∈ (1/2, α + H − 1), β′ < β and λ > 0 it holds

Γwb ∈ Cα
′

t Cn+β′,λ
x P-a.s.

The results from [CG16], [GG20], [HP20] give plenty examples of
deterministic w for which Twb has the desired regularity.
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Solution theory for perturbed SDEs

Let’s go back to the study of
xt = x0 +

∫ t

0

b(xs)dB
H
s + wt (5)

Definition

We say that x : Ω→ C ([0,T ];Rd) is a pathwise solution of (5) if there
exist α, β, λ with α > 1/2, α(1 + β) > 1, β + λ ≤ 1 such that

a) Γwb(ω) is a well defined element of Cαt C
β,λ
x for P-a.e. ω;

b) x(ω) ∈ Ew for P-a.e. ω;

c) θ(ω) := x(ω)− w ∈ C (Γwb(ω), x0) for P-a.e. ω.

Definition

We say that path-by-path wellposedness holds for (5) if a) holds and

P(ω ∈ Ω : #C (Γwb(ω), x0) = 1 for all x0 ∈ Rd) = 1.

Theorem (G.,Harang)

Suppose there exist α, β, λ with α > 1/2, α(1 + β) > 1, β + λ ≤ 1 such

that Γwb(ω) ∈ Cαt C
1+β,λ
x . Then path-by-path wellposedness holds.
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Solution theory for perturbed SDEs - II

Theorem

Let b ∈ C s
x , s ∈ R, w ∈ C 0

t be such that Twb ∈ C
1/2
t C s+ν

x for

s + ν(2H − 1) > 2;

then path-by-path wellposedness holds and eq. (5) admits a random flow
of diffeomorphisms. If s + ν(2H − 1) > n + 1, the flow is spatially Cn.

Theorem (G., Harang)

Let b ∈ C s
x be compactly supported, w sampled as an fBm of parameter

δ ∈ (0, 1), w independent of BH . If

s > 2− 1

δ

(
H − 1

2

)
then uniqueness holds for (5), which admits a random flow of diffeom.
Similarly higher regularity for s > n + 1− (H − 1/2)/δ.

In particular: since H > 1/2, for any s ∈ R we can find δ > 0 small
enough such that the conditions are satisfied!
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Things I couldn’t cover

1 A more detailed explanation of the notion of prevalence: introduced
by Hunt, Sauer, York (1992), notion of “Lebesgue full sets” for
infinite dim. spaces based on characterization via Fubini theorem.

2 The nonlinear Young theory allows to provide a solution theory for

∂tu + b · ∇u + cu + ẇ · ∇u = 0

whenever Twb,Twc ∈ Cαt C
2
x with α > 1/2; this includes transport

and continuity equations perturbed by w . See [GG20], [G20].
3 The results by Gubinelli,Lejay, Tindel (PA 2020) can be generalised to

nonlinear Young parabolic equations of the form

dxt = −Axtdt + B(dt, xt)

with B ∈ Cαt C
2
V ,W for suitable V ,W , see [G20].

4 Work in progress with Harang, Mayorcas: study DDSDEs of the form

Xt = ξ +

∫ t

0
B(s,Xs ,L(Xs))ds + WH

t

with distributional B, generalising the results from [CG16].
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