Transport and continuity equations with (very) rough noise

Nikolas Tapia joint with C. Bellingeri (TUB), A. Djurdjevac (FUB) & P. K. Friz (TUB)

FG6

Rough paths and SPDEs December 11, 2020

Introduction

We consider the equation

$$\begin{cases} du_t(x) = \sum_{i=1}^d f_i(x) \cdot \nabla u_t(x) dW_t^i & t \in [0, T], x \in \mathbb{R}^n \\ u_T(x) = g(x) \end{cases}$$

where the vector fields f_1, \ldots, f_d and the function g are "nice" and $W \in \mathcal{C}^{\gamma}$ for some $\gamma \in (0, 1)$.

We also consider the associated continuity equation

$$\begin{cases} \partial_t \mu_t = \sum_{i=1}^d \operatorname{div}(f_i(x)\mu_t) \, dW_t^i \\ \mu_0 = v \end{cases}.$$

Definition

We define the first order differential operators $\Gamma_i := f_i \cdot \nabla$, i.e. if ϕ is C^1 then $\Gamma_i \phi(x) := f_i(x) \cdot \nabla \phi(x)$.

Method of characteristics

If the driver W is smooth we can easily get a solution:

Proposition

Suppose $f_i \in C_b^3$. Take $X^{s,x}$ to be the unique solution of

$$\dot{X}_{t}^{s,x} = \sum_{i=1}^{d} f_{i}(X_{t}^{s,x}) \dot{W}_{t}^{i}, \quad X_{s}^{s,x} = x,$$

and set $u_t(x) := g(X_T^{t,x})$. Then u is a solution to the transport equation.

Proposition (Diehl-Friz-Stannat 2017)

The induced flow $(t, x) \mapsto X^{t,x}$ is a C^1 diffeomorphism in space and

$$\frac{\mathrm{d}}{\mathrm{d}t}X_{T}^{t,x} = -DX_{T}^{t,x}f(x)\dot{W}_{t}, \qquad \frac{\mathrm{d}}{\mathrm{d}t}D_{t}^{s,x} = Df(X_{t}^{s,x})DX_{t}^{s,x}\dot{W}_{t}$$

$$\frac{\mathrm{d}}{\mathrm{d}t}DX_{T}^{t,x}h = -D^{2}X_{T}^{t,x}(f(x),h)\dot{W}_{t} - DX_{T}^{t,x}Df(x)h\dot{W}_{t}$$

Method of characteristics

Proof.

We compute

$$\begin{split} \partial_t u_t(x) &= \nabla g(X_T^{t,x}) \cdot \frac{\mathrm{d}}{\mathrm{d}t} X_t^{s,x} \\ &= -f(x) \cdot \nabla g(X_T^{t,x}) \dot{W}_t + \int_t^T Dg(X_T^{t,x}) Df(X_u^{t,x}) \frac{\mathrm{d}}{\mathrm{d}t} X_u^{t,x} \, \mathrm{d}u \\ &= -f(x) \cdot \nabla g(X_T^{t,x}) \dot{W}_t - \int_t^T Dg(X_T^{t,x}) Df(X_u^{t,x}) DX_u^{t,x} f(x) \dot{W}_u \, \mathrm{d}u \end{split}$$

and

$$f(x) \cdot \nabla u_t(x) \dot{W}_t = Dg(X_T^{t,x}) DX_T^{t,x} f(x) \dot{W}_t$$

$$= f(x) \cdot \nabla g(X_T^{t,x}) \dot{W}_t + \int_t^T Dg(X_T^{t,x}) Df(X_u^{t,x}) DX_u^{t,x} f(x) \dot{W}_u du.$$

Solving ODEs

Signatures are connected to solutions to controlled ODEs.

Proposition (Fliess 1981)

If

$$\dot{X}_{t}^{s,x} = \sum_{i=1}^{d} f_{i}(X_{t}^{s,x}) \dot{W}_{t}^{i}, \quad X_{s}^{s,x} = x$$

then, for any $N \geq 1$

$$X_{t}^{s,x} = \sum_{i=1}^{d} f_{i}(x) \int_{s}^{t} \dot{W}_{\tau}^{i} d\tau + \sum_{i,j=1}^{d} Df_{j}(x) f_{i}(x) \int_{s}^{t} \int_{s}^{\tau_{2}} \dot{W}_{\tau_{1}}^{i} \dot{W}_{\tau_{2}}^{j} d\tau_{1} d\tau_{2}$$

$$+ \sum_{i,j,k=1}^{d} \left(D^{2} f_{k}(x) (f_{j}(x), f_{i}(x)) + Df_{k}(x) Df_{j}(x) f_{i}(x) \right) \int_{s}^{t} \int_{s}^{\tau_{3}} \int_{s}^{\tau_{2}} \dot{W}_{\tau_{1}}^{i} \dot{W}_{\tau_{2}}^{j} \dot{W}_{\tau_{3}}^{k} d\tau_{1} d\tau_{2} d\tau_{3} + \dots + O(|t-s|^{N+1})$$

Let G be the character group of the shuffle algebra. For any truncation level N, there is a metric ρ_N on G^N homogeneous wrt the grading.

Definition (Lyons 1998, Hairer–Kelly 2015)

A weakly geometric rough path of roughness $\gamma \in (0, 1)$ is a γ -Hölder path $\mathbf{W} \colon [0, T] \to (G^N, \rho_N)$, where $N \coloneqq \lfloor \gamma^{-1} \rfloor$.

Let's return to $dX_t = \sum f_i(X_t) dW_t^i$.

Reinterpret in the integral sense:

$$X_t - X_s = \sum_{i=1}^d \int_s^t f_i(X_\tau) dW_\tau^i.$$

Definition (Gubinelli 2003)

Fix $\frac{1}{3} < \gamma < \frac{1}{2}$ and **W** a weakly geometric rough path. A path $X \in \mathcal{C}^{\gamma}$ is controlled by **W** if there exists $X' \in \mathcal{C}^{\gamma}(\mathbb{R}^d)$ such that

$$X_{st} = \sum_{j=1}^{d} \langle j, X_s' \rangle \langle \mathbf{W}_{st}, j \rangle + O(|t-s|^{2\gamma}).$$

Proposition (Gubinelli 2003)

Let (X, X') be controlled by **W**. Then

$$\int_{s}^{t} X_{\tau} \, \mathrm{d}\mathbf{W}_{\tau}^{i} \coloneqq \lim_{|\pi| \to 0} \sum_{[a,b] \in \pi} \left(X_{a} \langle \mathbf{W}_{ab}, i \rangle + \sum_{j=1}^{d} \langle j, X_{a}' \rangle \langle \mathbf{W}_{ab}, ji \rangle \right)$$

exists, and we call it the rough integral of X wrt W.

Remark

Chen's relation can be reformulated as

$$\delta\langle \mathbf{W}_{sut}, i_1 \cdots i_n \rangle = \sum_{j=1}^{n-1} \langle \mathbf{W}_{su}, i_1 \cdots i_j \rangle \langle \mathbf{W}_{ut}, i_{j+1} \cdots i_j \rangle.$$

Proof.

Let $\Xi_{st} = X_s \langle \mathbf{W}_{st}, i \rangle + \sum \langle j, X_s' \rangle \langle \mathbf{W}_{st}, ji \rangle$. Then

$$\delta \Xi_{sut} = -X_{su} \langle \mathbf{W}_{ut}, i \rangle + \sum_{j=1}^{d} (\langle j, X's \rangle \langle \mathbf{W}_{su}, j \rangle \langle \mathbf{W}_{ut}, i \rangle - \langle j, X'_{su} \rangle \langle \mathbf{W}_{ut}, ji \rangle)$$

$$= -\left(X_{su} - \sum_{j=1}^{d} \langle j, X'_{s} \rangle \langle \mathbf{W}_{su}, j \rangle\right) \langle \mathbf{W}_{ut}, i \rangle - \sum_{j=1}^{d} \langle j, X'_{su} \rangle \langle \mathbf{W}_{ut}, ji \rangle$$

Proposition (Gubinelli 2003)

Let $\mathbf{X} = (X, X')$ be a controlled rough path and $\phi \in C^2$. Then $\phi(X)$ is also controlled and $\phi(X)'_t = \phi'(X_t)X'_t$.

Proof.

$$\phi(X_t) - \phi(X_s) = \phi'(X_s)(X_t - X_s) + O(|t - s|^{2\gamma})$$

$$= \sum_{j=1}^d \phi'(X_s)\langle j, X_s' \rangle \langle \mathbf{W}_{st}, j \rangle + O(|t - s|^{2\gamma})$$

Definition (Rough differential equation)

We say that X is a solution to $dX_t = \sum f_i(X_t) dW_t^i$, $X_s = x$ if

$$X_{st} = x + \sum_{i=1}^{d} \int_{s}^{t} f_i(X_{\tau}) d\mathbf{W}_{\tau}^{i}.$$

Theorem (Davie's expansion; Davie 2008)

X is a solution to $dX_t = \sum f_i(X_t) dW_t^i$, $X_s = x$ if and only if X is controlled with $\langle j, X_t' \rangle = f_j(X_t)$ and

$$X_t - x = \sum_{i=1}^d f_i(x) \langle \mathbf{W}_{st}, i \rangle + \sum_{i,j=1}^d Df_j(x) f_i(x) \langle \mathbf{W}_{st}, ij \rangle + o(|t-s|)$$

Theorem (see e.g. Friz-Victoir 2010)

Suppose $f_i \in C_b^3$. Then the Rough IVP

$$dX_t^{s,x} = \sum_{i=1}^d f_i(X_t) dW_t^i, \quad X_s^{s,x} = x$$

has a unique global solution for any x. Moreover, if $f_i \in C_b^{3+k}$ then the solution flow is in C^k and

$$dDX_t^{s,x} = \sum_{i=1}^d Df_i(X_t^{s,x})DX_t^{s,x} dW_t^i, \quad DX_s^{s,x} = I.$$

Let $g \in C^3$ and let $X^{s,x}$ be the solution flow to the Rough IVP with C_b^6 vector fields.

Define $u_t(x) := g(X_T^{t,x})$. Then $u_t \in C^3$ uniformly in t and moreover, for s < t the formula $u_s(x) = u_t(X_t^{s,x})$ holds.

$$u_s(x) - u_t(x) = u_t(X_t^{s,x}) - u_t(x)$$

Let $g \in C^3$ and let $X^{s,x}$ be the solution flow to the Rough IVP with C_b^6 vector fields.

Define $u_t(x) := g(X_T^{t,x})$. Then $u_t \in C^3$ uniformly in t and moreover, for s < t the formula $u_s(x) = u_t(X_t^{s,x})$ holds.

$$u_s(x) - u_t(x) = u_t(X_t^{s,x}) - u_t(x)$$

= $Du_t(x)(X_t^{s,x} - x) + \frac{1}{2}D^2u_t(x)(X_t^{s,x} - x)^2 + o(|t - s|)$

Let $g \in C^3$ and let $X^{s,x}$ be the solution flow to the Rough IVP with C_b^6 vector fields.

Define $u_t(x) := g(X_T^{t,x})$. Then $u_t \in C^3$ uniformly in t and moreover, for s < t the formula $u_s(x) = u_t(X_t^{s,x})$ holds.

$$u_{s}(x) - u_{t}(x) = u_{t}(X_{t}^{s,x}) - u_{t}(x)$$

$$= Du_{t}(x)(X_{t}^{s,x} - x) + \frac{1}{2}D^{2}u_{t}(x)(X_{t}^{s,x} - x)^{2} + o(|t - s|)$$

$$= \sum_{i=1}^{d} Du_{t}(x)f_{i}(x)\langle \mathbf{W}_{st}, i \rangle + \sum_{i,j}^{d} Du_{t}(x)Df_{j}(x)f_{i}(x)\langle \mathbf{W}_{st}, ij \rangle$$

Let $g \in C^3$ and let $X^{s,x}$ be the solution flow to the Rough IVP with C_b^6 vector fields.

Define $u_t(x) := g(X_T^{t,x})$. Then $u_t \in C^3$ uniformly in t and moreover, for s < t the formula $u_s(x) = u_t(X_t^{s,x})$ holds.

$$\begin{aligned} u_{s}(x) - u_{t}(x) &= u_{t}(X_{t}^{s,x}) - u_{t}(x) \\ &= Du_{t}(x)(X_{t}^{s,x} - x) + \frac{1}{2}D^{2}u_{t}(x)(X_{t}^{s,x} - x)^{2} + o(|t - s|) \\ &= \sum_{i=1}^{d} Du_{t}(x)f_{i}(x)\langle \mathbf{W}_{st}, i \rangle + \sum_{i,j}^{d} Du_{t}(x)Df_{j}(x)f_{i}(x)\langle \mathbf{W}_{st}, ij \rangle \\ &+ \frac{1}{2}\sum_{i,j=1}^{d} D^{2}u_{t}(x)(f_{i}(x), f_{j}(x))\langle \mathbf{W}_{st}, i \rangle \langle \mathbf{W}_{st}, j \rangle + o(|t - s|) \end{aligned}$$

Let $g \in C^3$ and let $X^{s,x}$ be the solution flow to the Rough IVP with C_b^6 vector fields.

Define $u_t(x) := g(X_T^{t,x})$. Then $u_t \in C^3$ uniformly in t and moreover, for s < t the formula $u_s(x) = u_t(X_t^{s,x})$ holds.

$$\begin{aligned} u_s(x) - u_t(x) &= u_t(X_t^{s,x}) - u_t(x) \\ &= Du_t(x)(X_t^{s,x} - x) + \frac{1}{2}D^2u_t(x)(X_t^{s,x} - x)^2 + o(|t - s|) \\ &= \sum_{i=1}^d Du_t(x)f_i(x)\langle \mathbf{W}_{st}, i \rangle + \sum_{i,j}^d Du_t(x)Df_j(x)f_i(x)\langle \mathbf{W}_{st}, ij \rangle \\ &+ \frac{1}{2}\sum_{i,j=1}^d D^2u_t(x)(f_i(x), f_j(x))\langle \mathbf{W}_{st}, i \rangle \langle \mathbf{W}_{st}, j \rangle + o(|t - s|) \\ &= \sum_{i=1}^d \Gamma_i u_t(x)\langle \mathbf{W}_{st}, i \rangle + \sum_{i,j=1}^d \Gamma_{ij}u_t(x)\langle \mathbf{W}_{st}, ij \rangle + o(|t - s|). \end{aligned}$$

Also, since
$$\Gamma_i u_s(x) = Du_t(X_t^{s,x})DX_t^{s,x}f_i(x)$$
 we have
$$\Gamma_i u_s(x) - \Gamma_i u_t(x) = Du_t(X_t^{s,x})DX_t^{s,x}f_i(x) - Du_t(x)f_i(x)$$

Also, since
$$\Gamma_i u_s(x) = Du_t(X_t^{s,x})DX_t^{s,x}f_i(x)$$
 we have
$$\Gamma_i u_s(x) - \Gamma_i u_t(x) = Du_t(X_t^{s,x})DX_t^{s,x}f_i(x) - Du_t(x)f_i(x)$$
$$= Du_t(X_t^{s,x})f_i(x) - Du_t(x)f_i(x) + \sum_{j=1}^d Du_t(X_t^{s,x})Df_j(X_t^{s,x})f_i(x)\langle \mathbf{W}_{st}, j \rangle + O(|t-s|^{2\gamma})$$

Also, since
$$\Gamma_i u_s(x) = Du_t(X_t^{s,x})DX_t^{s,x}f_i(x)$$
 we have

$$\begin{split} \Gamma_{i}u_{s}(x) - \Gamma_{i}u_{t}(x) &= Du_{t}(X_{t}^{s,x})DX_{t}^{s,x}f_{i}(x) - Du_{t}(x)f_{i}(x) \\ &= Du_{t}(X_{t}^{s,x})f_{i}(x) - Du_{t}(x)f_{i}(x) + \sum_{j=1}^{d} Du_{t}(X_{t}^{s,x})Df_{j}(X_{t}^{s,x})f_{i}(x)\langle \mathbf{W}_{st}, j \rangle + \mathrm{O}(|t-s|^{2\gamma}) \\ &= D^{2}u_{t}(x)(X_{t}^{s,x} - x, f_{i}(x)) + \sum_{j=1}^{d} Du_{t}(X_{t}^{s,x})Df_{j}(X_{t}^{s,x})f_{i}(x)\langle \mathbf{W}_{st}, j \rangle + \mathrm{O}(|t-s|^{2\gamma}) \end{split}$$

Also, since
$$\Gamma_i u_s(x) = Du_t(X_t^{s,x})DX_t^{s,x}f_i(x)$$
 we have

$$\begin{split} \Gamma_{i}u_{s}(x) - \Gamma_{i}u_{t}(x) &= Du_{t}(X_{t}^{s,x})DX_{t}^{s,x}f_{i}(x) - Du_{t}(x)f_{i}(x) \\ &= Du_{t}(X_{t}^{s,x})f_{i}(x) - Du_{t}(x)f_{i}(x) + \sum_{j=1}^{d} Du_{t}(X_{t}^{s,x})Df_{j}(X_{t}^{s,x})f_{i}(x)\langle \mathbf{W}_{st}, j \rangle + \mathrm{O}(|t-s|^{2\gamma}) \\ &= D^{2}u_{t}(x)(X_{t}^{s,x} - x, f_{i}(x)) + \sum_{j=1}^{d} Du_{t}(X_{t}^{s,x})Df_{j}(X_{t}^{s,x})f_{i}(x)\langle \mathbf{W}_{st}, j \rangle + \mathrm{O}(|t-s|^{2\gamma}) \\ &= \sum_{j=1}^{d} D^{2}u_{t}(x)(f_{j}(x), f_{i}(x))\langle \mathbf{W}_{st}, j \rangle + \sum_{j=1}^{d} Du_{t}(X_{t}^{s,x})Df_{j}(X_{t}^{s,x})f_{i}(x)\langle \mathbf{W}_{st}, j \rangle + \mathrm{O}(|t-s|^{2\gamma}) \end{split}$$

Also, since
$$\Gamma_i u_s(x) = Du_t(X_t^{s,x})DX_t^{s,x}f_i(x)$$
 we have

$$\begin{split} \Gamma_{i}u_{s}(x) - \Gamma_{i}u_{t}(x) &= Du_{t}(X_{t}^{s,x})DX_{t}^{s,x}f_{i}(x) - Du_{t}(x)f_{i}(x) \\ &= Du_{t}(X_{t}^{s,x})f_{i}(x) - Du_{t}(x)f_{i}(x) + \sum_{j=1}^{d} Du_{t}(X_{t}^{s,x})Df_{j}(X_{t}^{s,x})f_{i}(x)\langle \mathbf{W}_{st}, j \rangle + \mathrm{O}(|t-s|^{2\gamma}) \\ &= D^{2}u_{t}(x)(X_{t}^{s,x} - x, f_{i}(x)) + \sum_{j=1}^{d} Du_{t}(X_{t}^{s,x})Df_{j}(X_{t}^{s,x})f_{i}(x)\langle \mathbf{W}_{st}, j \rangle + \mathrm{O}(|t-s|^{2\gamma}) \\ &= \sum_{j=1}^{d} D^{2}u_{t}(x)(f_{j}(x), f_{i}(x))\langle \mathbf{W}_{st}, j \rangle + \sum_{j=1}^{d} Du_{t}(X_{t}^{s,x})Df_{j}(X_{t}^{s,x})f_{i}(x)\langle \mathbf{W}_{st}, j \rangle + \mathrm{O}(|t-s|^{2\gamma}) \\ &= \sum_{j=1}^{d} \Gamma_{ij}u_{t}(x)\langle \mathbf{W}_{st}, j \rangle + \mathrm{O}(|t-s|^{2\gamma}). \end{split}$$

Also, since
$$\Gamma_i u_s(x) = Du_t(X_t^{s,x})DX_t^{s,x}f_i(x)$$
 we have

$$\begin{split} \Gamma_{i}u_{s}(x) - \Gamma_{i}u_{t}(x) &= Du_{t}(X_{t}^{s,x})DX_{t}^{s,x}f_{i}(x) - Du_{t}(x)f_{i}(x) \\ &= Du_{t}(X_{t}^{s,x})f_{i}(x) - Du_{t}(x)f_{i}(x) + \sum_{j=1}^{d} Du_{t}(X_{t}^{s,x})Df_{j}(X_{t}^{s,x})f_{i}(x)\langle \mathbf{W}_{st}, j \rangle + \mathrm{O}(|t-s|^{2\gamma}) \\ &= D^{2}u_{t}(x)(X_{t}^{s,x} - x, f_{i}(x)) + \sum_{j=1}^{d} Du_{t}(X_{t}^{s,x})Df_{j}(X_{t}^{s,x})f_{i}(x)\langle \mathbf{W}_{st}, j \rangle + \mathrm{O}(|t-s|^{2\gamma}) \\ &= \sum_{j=1}^{d} D^{2}u_{t}(x)(f_{j}(x), f_{i}(x))\langle \mathbf{W}_{st}, j \rangle + \sum_{j=1}^{d} Du_{t}(X_{t}^{s,x})Df_{j}(X_{t}^{s,x})f_{i}(x)\langle \mathbf{W}_{st}, j \rangle + \mathrm{O}(|t-s|^{2\gamma}) \\ &= \sum_{j=1}^{d} \Gamma_{ij}u_{t}(x)\langle \mathbf{W}_{st}, j \rangle + \mathrm{O}(|t-s|^{2\gamma}). \end{split}$$

Naturally, $t \mapsto \Gamma_{ij}u_t(x)$ is in \mathscr{C}^{γ} .

Definition (Friz-Hairer 2020)

Let $\gamma \in (\frac{1}{3}, \frac{1}{2})$. A function u is a solution to the rough transport equation if

$$u_s(x) - u_t(x) = \sum_{i=1}^d \Gamma_i u_t(x) \langle \mathbf{W}_{st}, i \rangle + \sum_{i,j=1}^d \Gamma_{ij} u_t(x) \langle \mathbf{W}_{st}, ij \rangle + o(|t-s|),$$

$$\Gamma_i u_s(x) - \Gamma_i u_t(x) = \sum_{j=1}^d \Gamma_{ij} u_t(x) \langle \mathbf{W}_{st}, j \rangle + O(|t-s|^{2\gamma}),$$

$$\Gamma_{ij} u_s(x) - \Gamma_{ij} u_t(x) = O(|t-s|)$$

Theorem (Friz-Hairer 2020)

Suppose $f_i \in C_h^6$, $g \in C^3$. There exists a unique solution to the rough transport equation, in the sense of the previous definition.

General rough paths

Fix $\gamma \in (0, 1)$ and let $N := \lfloor \gamma^{-1} \rfloor$.

Definition (Gubinelli 2010, Hairer-Kelly 2015)

A controlled rough path is a path $X: [0, T] \to \mathbb{R}^d \oplus (\mathbb{R}^d)^{\otimes 2} \oplus \cdots \oplus (\mathbb{R}^d)^{\otimes (N-1)}$ such that

$$\langle v, \mathbf{X}_t \rangle = \sum_{|v'| \leq N - |v|} \langle vv', \mathbf{X}_s \rangle \langle \mathbf{W}_{st}, v' \rangle + O(|t - s|^{(N+1-|v|)\gamma}).$$

Theorem (Hairer-Kelly 2015; Bellingeri 2019; BDFT 2020)

Let X be controlled by W. The limit

$$\int_{s}^{t} X_{\tau} d\mathbf{W}_{\tau}^{i} := \lim_{|\pi| \to 0} \sum_{[a,b] \in \pi} \sum_{|v| \le N-1} \langle v, \mathbf{X}_{a} \rangle \langle \mathbf{W}_{ab}, vi \rangle$$

exists. We call it the rough integral of X wrt to W.

General rough paths

Proposition (BDFT 2020)

Let $\phi \in C^N$ and **X** controlled by **W**. Then $\phi(X)$ is also controlled by **W** and

$$\langle v, \phi(\mathbf{X}_t) \rangle = \sum_{k=1}^{|v|} \frac{1}{k!} \sum_{v=u_1 \sqcup \cdots \sqcup u_k} D^k \phi(X_t) (\langle u_1, \mathbf{X}_s \rangle, \ldots, \langle u_k, \mathbf{X}_s \rangle).$$

Theorem (Gubinelli 2010)

Suppose $f_i \in C_b^{N+1}$. Then there exists a unique solution to the Rough IVP.

Theorem (Hairer-Kelly 2015; BDFT 2020)

X is a solution to the Rough IVP if and only if it is controlled with $\langle v, \mathbf{X}_t^{s,x} \rangle = F_w(X_t^{s,x})$ and

$$X_t^{s,x} = \sum_{|v| \le N} F_v(x) \langle \mathbf{W}_{st}, v \rangle + o(|t - s|)$$

where $F_{\varnothing} = \text{id}$ and $F_{iv}(x) = DF_{v}(x)f_{i}(x)$.

General rough paths

Theorem (BDFT 2020)

Suppose $f_i \in C_b^{N+k+1}$. Then the solution flow of the Rough IVP is of class C^k and

$$dD^{m}X_{t}^{s,x}(h_{1},...,h_{m}) = \sum_{i=1}^{d} \sum_{P \in \mathfrak{P}(m)} D^{|P|}f_{i}(X_{t}^{s,x})(D^{|B_{1}|}X_{t}^{s,x}h_{B_{1}},...,D^{|B_{p}|}X_{t}^{s,x}h_{B_{p}}) dW_{t}^{i}$$

$$= \sum_{i=1}^{d} Df(X_{t}^{s,x})D^{m}X_{t}^{s,x}(h_{1},...,h_{m}) + \gamma_{t}^{m}$$

with initial conditions $X_s^{s,x} = x$, $DX_s^{s,x} = I$ and $D^mX_s^{s,x} = 0$ for $m \ge 2$.

Corollary (BDFT 2020)

The partial derivatives $\partial^{\alpha} X_{t}^{s,x}$ admit the following Davie-type expansion:

$$\partial^{\alpha} X_{t}^{s,x} = \sum_{|v| \leq N} \partial^{\alpha} F_{v}(x) \langle \mathbf{W}_{st}, v \rangle + o(|t - s|).$$

General transport eq.

Proposition (BDFT 2020)

For a smooth function $\phi: \mathbb{R}^n \to \mathbb{R}$,

$$\Gamma_{\nu}\phi(x)=\sum_{k=1}^{|\nu|}\frac{1}{k!}\sum_{\nu=u_1\sqcup\ldots\sqcup u_k}D^k\phi(x)(F_{u_1}(x),\ldots,F_{u_k}(x)).$$

Definition (BDFT 2020)

A function u is a solution to the rough transport equation driven by **W** if for all words with $|v| \leq N$,

$$\Gamma_{v}u_{s}(x)=\sum_{|v'|\leq N-|v|}\Gamma_{vv'}u_{t}(x)\langle \mathbf{W}_{st},v'\rangle+\mathrm{O}(|t-s|^{(N+1-|v|)\gamma}).$$

Theorem (BDFT 2020)

Let $f \in C^{2N+2}$ and $g \in C^{N+1}$. There exists a unique solution of the rough transport equation in the sense of the previous definition.

Continuity eq.

Definition (BDFT 2020)

By a solution of the *rough continuity equation* we mean a path of measures μ_t such that for every s < t we have

$$\mu_t(\Gamma_v \phi) = \sum_{|v'| \le N - |v|} \mu_s(\Gamma_{vv'} \phi) \langle \mathbf{W}_{st}, v' \rangle + O(|t - s|^{(N+1-|v|)\gamma}),$$

uniformly in $\phi \in C_b^{N+1}$.

Theorem (BDFT 2020)

Let $f_i \in C^{2N+2}$ and v a measure on \mathbb{R}^n . There is a unique solution to the continuity equation, in the sense of the previous definition. It is explicitly given by

$$\mu_t(\phi) = \int_0^t \phi(X_t^{0,x}) \, v(\mathrm{d}x).$$

Brace algebras

Let \Im denote the linear span of decorated rooted trees. Consider the grafting operator \sim : $\Im \otimes \Im \to \Im$. For example

It is well known that (\mathfrak{I}, \sim) is a (right) pre-Lie algebra.

The symmetric algebra $S(\mathfrak{T})$ corresponds to forests. Grafting is extended (Guin–Oudom, 2004) to $\mathfrak{T} \otimes S(\mathfrak{T})$ recursively:

$$\tau \curvearrowleft \sigma \tau' \coloneqq (\tau \backsim \sigma) \backsim \tau' - \tau \backsim (\sigma \backsim \tau').$$

Example:

Theorem (Guin-Oudom 2004)

This extension turns T into a symmetric brace algebra.

Let $f, g : \mathbb{R}^d \to \mathbb{R}^d$ be vector fields. Define $f \rhd g := \nabla f \cdot g$. Then (\mathfrak{X}, \rhd) is a right pre-Lie algebra. Indeed,

$$f \triangleright (g \triangleright h) - (f \triangleright g) \triangleright h = -D^2 f(g, h).$$

Proposition (Chapoton-Livernet 2001)

There is a unique pre-Lie morphism $\mathfrak{T} \to \mathfrak{X}$ such that $\bullet_i \mapsto f_i$.

Example:

$$f_{\bullet 1}^2 = f_{\bullet 1} \circ_{\bullet 2} = \nabla f_1 \cdot f_2, \quad f_{\bullet 2} \circ_3 = f_{\bullet 1} \circ_{\bullet 2} \circ_3 = D^2 f_1(f_2, f_3)$$

Lemma (Bayer-Friz-T. 2020)

Let $\tau_1, \ldots, \tau_n \in \mathfrak{T}$ and $\sigma = \sigma_1 \cdots \sigma_k \in \mathcal{S}(\mathfrak{T})$. Then

$$f_{B_i^+(\tau_1\cdots\tau_n)} = \sum_{r=n}^{n+k} \frac{1}{(r-n)!} \sum_{\rho\gamma=\sigma} D^r f_i(f_{\tau_1 \sim \rho_1}, \ldots, f_{\gamma_1}, \ldots)$$

References

- C. Bellingeri. Quasi-geometric rough paths and rough change of variable formula. arXiv: 2009.00903 [math.PR]
- C. Bellingeri, A. Djurdjevac, P. K. Friz, N. Tapia. Transport and continuity equations with (very) rough noise. arXiv: 2002.10432 [math.AP]
- K.-T. Chen. Iterated integrals and exponential homomorphisms. Proc. London Math. Soc. (3) s3-4 (1954), pp. 502-512.
- A. M. Davie. Differential Equations Driven by Rough Paths: An Approach via Discrete Approximation. Appl. Math. Res. eXpress (AMRX) (2008).
- J. Diehl, P. K. Friz, W. Stannat. Stochastic partial differential equations: a rough paths view on weak solutions via Feynman–Kac. Ann. Fac. Sci. Toulous Math. (6) 26(4) (2017), pp. 911–947.
- D. Feyel, A. de La Pradelle. *Curvilinear integrals along enriched paths*. Electron. J. Probab. 11 (2006), paper no. 34, pp. 860–892.
- M. Fliess. Fonctionelles causales non linéaires et indéterminées non commutatives. Bull. Soc. Math. France 109 (1981), pp. 3–40.
- P. K. Friz, M. Hairer, A course on Rough Paths, 2nd, ed. (2020). Universitext, Springer, Cham.
- P. K. Friz, N. Victoir. Multidimensional stochastic processes as Rough Paths. Cambridge Studies in Advanced Mathematics 120, 1st. ed. (2010). CUP.
- [10] M. Gubinelli. Controlling Rough Paths. J. Funct. Anal. 216(1) (2003), pp. 86–140.
- [11] M. Gubinelli. Ramification of Rough Paths. J. Differential Equations 248(4) (2010), pp. 693–271.
- [12] J.-M. Oudom, D. Guin. On the Lie envelopping algebra of a pre-Lie algebra. arXiv:math/0404457 [math.QA]
- [13] M. Hairer, D. Kelly. Geometric versus non-geometric Rough Paths. Ann. Inst. Henri Poincaré Probab. Stat. 51(1) (2015), pp. 207–251.
- [14] T. Lyons. Differential equations driven by rough signals. Rev. Mat. Iberoam. 14 (1998), pp. 215–310.
- [15] T. Lyons, N. Victoir. An extension theorem to Rough Paths. Ann. Inst. Henri Poincaré Anal. Non Linéaire 24(5) (2007), pp. 835–847.
- [16] D. Manchon. Hopf algebras in renormalization. In *Handbook of Algebra* vol. 5, 2008, pp. 365–427.
- [17] R. Ree. Lie elements and an algebra associated with shuffles. Ann. of Math. 68 (1958), pp. 211–220.

