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1. Basic problem solving techniques

by Peter Hästö

Polya divides problem solving into four stages, Understanding the problem, Devising a plan,
Carrying out the plan and Looking back. Of these stages I would here like to focus on the
second and fourth.

In a standard mathematical proof you will see a neatly written presentation of how to solve
the problem at hand. This is the result of Polya’s stage three. However, to understand where
the solution came from clearly stage two is more important. In the group discussions in this
course we will undertake the difficult endeavor of discussing our solutions as they occurred in
Stage 2. Some practical tricks to achieve this are an informed uninterest in the details (and
results!) of carrying out the plan, and notes in the solution marking what led one to the ideas.

Another stage frequently neglected is the looking back. In this course this function will be
naturally covered by the discussions in the tutor groups. However, to get the most out of these
discussions every participant should be prepared to analyze the problems, which in particular
involves having tried to solve them.

1.1. Induction. Formally induction is quite a simple technique: you verify the initial condition
P0 and the implication Pn ⇒ Pn+1, and remember to use the magic words “follows by induction”.
The difficulty is finding the right proposition and the index on which to work the induction.
Of course, we can also do induction on several indices at the same time (in this case you should
be especially careful about circular reasoning) or of more complex “indices”, such as “n+m” or
“nm”.

Closely related to induction is recursion. In recursion we want to find some object, and
reduce this task to finding one of a set of sub-object. For instance, consider a rectangular
subset of a square lattice, say Rm,n = {(0, 0), . . . , (0, n), (1, 0), . . . , (m,n)}, and all paths going
up and to the right connecting the corners of Rm,n. We want to count the number of such
paths, say rm,n. We can split the set of paths into two disjoint sets, those that pass through
(0, 1) and those that pass through (1, 0). Thus we see that

rm,n = rm,n−1 + rm−1,n.

This is the same recursion as satisfied by the binomial coefficients, and since the initial condi-
tions (ri,1 = r1,i = 1) are also the same, we conclude that

rm,n =

(
m + n

m

)
.

1.2. Combinatorial proofs. We continue with our rectangular lattice and give bijective or
combinatorial proofs of the equation

rm,n =

(
m + n

m

)
=

n∑
k=0

(
n

k

)(
m

k

)
.

For simplicity of notation we assume that n ≤ m throughout this section.
By a combinatorial or bijective proof we mean that both sides of the equation are interpreted

as cardinalities of sets and the equality is shown by finding a bijection between the sets. In
many cases the sets will actually be the same (and the bijection the identity) and the work
goes into the interpretation.

For the above equality we already have the interpretation of the left-hand-side, it is the
number of up-right paths connecting the lower-left corner to the upper-right corner. Fix k ≤ n
and choose a k-element subset M of {0, . . . , n − 1} and a k-element subset N of {1, . . . ,m}.
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We define a bijection from pairs (M, N) to paths as follows. We go right from (0, 0) to (M1, 0),
where M1 is the smallest element in M . Then we go up from (M1, 0) to (M1, N1), where N1

is the smallest element in N . Then we got right to (M2, N1) etc. From (Mk, Nk) we go right
all the way to (m,Nk) and then up to (m, n). Thus we have a path from (0, 0) to (m, n) for
every pair (M, N). To comlpete the proof, we need to check that this correspondence defines
a bijection, but this is left for the reader.

We can define another bijection on the same set to prove the same inequality as follows. Let
D denote the diagonal at distance n from (0, 0), i.e. D = {(n, 0), (n − 1, 1), . . . , (0, n)}. Now
the number of paths from (0, 0) to (n− k, k) equals

(
n
k

)
. The number of paths from (n− k, k)

to (m, n) equals
(

m
m−k

)
=
(

m
k

)
. So the number of paths through (n − k, k) equals

(
n
k

)(
m
k

)
and

since every path passes through one and only one of the points in D, we see that the total
number of paths is

n∑
k=0

(
n

k

)(
m

k

)
.

We leave it to the reader to give combinatorial proofs of the following identities, which are
derived from the formula

(1 + x)n =
n∑

k=0

(
n

k

)
xk

by setting x = 1, setting x = −1 and by differentiating and setting x = 1, respectively:

(1.1)
n∑

k=0

(
n

k

)
= 2n,

n∑
k=0

(−1)k

(
n

k

)
= 0,

n∑
k=0

k

(
n

k

)
= n2n−1.

1.3. Inclusion-Exclusion. Although not covered during the lecture, the principle of inclusion
and exclusion is directly related to combinatorial proofs. The idea is that we constructed our
bijection poorly, so that some elements were counted multiple times (inclusion). We correct the
situation by removing the over-counted elements (exclusion). Typically, we will also over-do
the removal, so we go for another inclusion, then exclusion etc.

As an example, let’s consider the classical derangement problem: n people go to the restau-
rant and leave their coats in a coat-check. There is some mix-up with the tags, and they get
back random coats. What is the probability that someone gets the right coat back?

Now we “estimate” the ways in which at least one person gets the right coat. For each
k = 1, . . . , n we give person k his or her coat, and assign the other coats randomly in (n− 1)!
ways. Obviously, in each case at least one person gets the right coat, and there are a total of n!
such assignments. However, several assignments are multiply counted, namely, an assignment
in which exactly k people get the right coat is counted k times. So we generate assignments
by choosing two-people subsets, giving these people the right coats, and distributing the rest
randomly. There are

(
n
2

)
(n − 2)! such assignments, but again multiple counts. This time we

count a set with k correct assignments
(

k
2

)
times. When we subtract the latter set of assignments

from the former, we see that those assignments where exactly 1 or 2 people get the right coat
are correctly counted, whereas those where exactly k people get the right coat are counted
k −

(
k
2

)
times. Now we see that we can continue this process of generating assignments and

alternatively adding and subtracting them. When we do this also for = 3, . . . n, we see that
the assignments for which exactly k people get the right coat are counted

k∑
i=1

(−1)i+1

(
k

i

)
= 1
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time, by the second formula in (1.1). So in the final tally, every assignment is counted the right
number of times, which means that the total number of ways in which at least one person gets
the right coat is

n!−
(

n

2

)
(n− 2)! +

(
n

3

)
(n− 3)!− . . . + (−1)i

(
n

1

)
+ (−1)i+1

= n!
(
1− 1

2!
+

1

3!
− . . . + (−1)i 1

(n− 1)!
+ (−1)i+1 1

n!

)
=
[n!

e

]
.

where [x] is the integer closest to x. The last expression follows since the sum is just the first
terms in the Taylor expansion of e−1. So the probability asked for is

[
n!
e

]
1
n!

.

1.4. The Pigeon-hole principle. The pigeon-hole principle is very simple: it says that if
f : M → N is a mapping of finite sets M, N , and M has more elements than N , then f is not
an injection, i.e. there exists m1, m2 ∈ M such that f(m1) = f(m2). Stated another way, if
you put n + 1 letters in n pigeon-holes, then at least one pigeon-hole will contain at least two
letters. Of course the difficulty in using this principle is in determining what the pigeon-holes
and letters are in a particular problem.
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2. Abstract algebra

typed by Peter Hästö
based on notes by Alexei Roudakov

2.1. Groups.

2.1.1. Abstract groups. We start our study of algebra by defining an operation which can serve
for instance as a model of addition. Let G be a set and ◦ : G×G → G. We say that (G, ◦) is
a group if

(1) there exists a neutral element e ∈ G, i.e. a ◦ e = e ◦ a = a for all a ∈ G;
(2) every element has an inverse, i.e. for every a ∈ G there exists b ∈ G such that a ◦ b = e;
(3) the operation ◦ is associative, i.e. a ◦ (b ◦ c) = (a ◦ b) ◦ c for all a, b, c ∈ G.

The inverse of the element a is denoted by a−1.
Note that in general we have a ◦ b 6= b ◦ a, i.e. the group is non-commutative. However, if

a◦b = e, then also b◦a = e (prove this). Often a group is written multiplicatively, which means
that we denote the operation by · instead of ◦, and use the usual conventions of omitting this
sign, so a · b is written ab. We say that a group is commutative or abelian if ab = ba for every
pair of elements.

Some examples of groups are: (Z, +), (Q, +),
(
(0,∞), ·

)
. For a natural number k we can

define a group Zk whose elements are the numbers 1, . . . , k with the operation + defined as
addition modulo k. These groups are all commutative

We can also construct new groups from old. For instance, let G be a group and S be a set.
Consider the set M = {f

∣∣f : S → G}. This set is made to a group by defining the element
f ◦M g to be the function from S to G which maps a ∈ S to f(a) ◦G g(a). We call this a
point-wise evaluation.
Exercise: Let G be a finite group with the property that g2 = g · g = e for every g ∈ G.
Show that the number of elements of G is a power of 2.

2.1.2. Permutation groups. Let next S be a finite set. Then a bijection of S to itself is called
a permutation. Note that the composition of two permutations is a permutation. We denote
the group of permutations of {1, . . . , n} by Sn. We use the notation (a1 a2 . . . ak) for the
permutation π with π(ai) = ai+1, π(ak) = a1 and π(a) = a for all other elements. Permutations
of the type (a b) are called transpositions.
Exercise: Let π ∈ Sn and π = σ1 · · ·σk = τ1 · · · τm, where the sigmas and taus are
transpositions. Show that (−1)k = (−1)m.

We can represent a permutation graphically in R2 as follows: for π ∈ Sn connect (i, 1) with
(j,−1) if and only if π(i) = j. The connections should be by a smooth curve which stays
between the lines (x, 1) and (x,−1). (The curves should be drawn so that two curves are never
tangent, at most two curves meet in any one point, and a curve never intersects itself.) Let l
be the number of intersection points in such a graph.
Exercise: Show that (−1)l depends only on π, not on how we draw the diagram. Thus we
may define ε(π) = (−1)l.

Mappings that preserve the natural structure in algebra are called homomorphisms (with
appropriate prefix when necessary, e.g. group homomorphism). Explicitly, let G and H be
groups and f : G → H be a mapping. We say that f is a homomorphism if

(1) f(eG) = eH ;
(2) f(a ◦G b) = f(a) ◦H f(b), for all a, b ∈ G.
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Exercise: Show that if f is a homomorphism, then f(a−1) = f(a)−1.
The set {−1, 1} is a group under normal multiplication, with 1 as neutral element.

Exercise: Let φ : Sn → {−1, 1} be a homomorphism. Show that φ is the identity, or φ = ε
defined in Exercise 2.1.2.

2.1.3. Thoughts on problems with groups. Since groups carry so little structure, they are quite
elusive. However, certain special classes of groups, e.g. abelian groups which are finitely gen-
erated, are quite easy to understand.

One way of specifying some structure of a group, without giving away too much of its
abstractness, is by specifying a relation. For instance, say we have a2 = e for every element
of the group. These kind of problems have been quite popular in the competitions, since their
solutions do not require (or benifit from) extensive knowledge of algebra.

Relations are particularly important when constructing groups from free groups. We say
that G is a free group with generators A satisfying the following property: if F is a group and
φ : A → F is a mapping, there φ extends uniquely to a homomorphism of G. An example
should clarify this – let G = Z and A = {1}. Now the mapping φ : A → F extends to Z
uniquely by φ(k) = kφ(1) (we use φ(k) = φ(k − 1) + φ(1) = kφ(1) and proof by induction).

We can construct a free group as follows: we take a set {a1, . . . , an}, which will be our
generators. Our set is made up of finite sequences (usually called words) (b1, . . . , bl), where
each bi is either aj or a−1

j for some j but the sequence should be without aj and a−1
j as

consecutive elements. The operation on this set is that of concatenation, i.e.

(b1, . . . , bl)(c1, . . . , cl) = (b1, . . . , bl, c1, . . . , cl),

with the understanding that we cancel any aj with a a−1
j that comes next to it, e.g.

(a, b−1, a, c)(c−1, a, a) = (a, b−1, a, a, a).

This defines a group, and the group is freely generated by {a1, . . . , an}.
Once we have a free group G generated by a set {a1, . . . , an}, we can construct other groups

by requiring that a relation hold. A relation is just an element of G “set to” 1, the neutral
element. For instance, in Z we can define the relation k = 1: Then we get the group Zk defined
previously. As another example consider the free group defined as in the previous paragraph
by generators a and b, and require the relation ab = ba (equivalently, aba−1b−1 = 1). Then we
can write the elements in our groups in a “normal form”, with all the a’s preceeding all the b’s,
so our elements are of the form (a, . . . , a, b, . . . , b), which is more conveniantly written ar akbl.
In particular, this group is isomorphic to Z2.

2.2. Other structures. Groups are very flexible, but correspondingly capture only very little
structure. In this section we have a look at two other algebraic strucutes, this time ones with
two operations.

We say that (R, +, ·) is a ring if
(1) (R, +) is a commutative group;
(2) there exists a multiplicative identity 1, i.e. 1a = a1 = a for all a ∈ R;
(3) multiplication is associative, i.e. a(bc) = (ab)c for all a, b, c ∈ R;
(4) the distributive law holds, i.e. a(b+c) = ab+ac and (a+b)c = ac+bc for all a, b, c ∈ R.

Notice that addition in a ring is commutative, but multiplication need not be.
The standard example of a (non-commutative) ring is the set of matrices. Of course (Q, +, ·),

(R, +, ·) and (C, +, ·) are all rings. Another example is given by the set of polynomials over a
ring, where addition and multiplication are defined in a point-wise sense. This means that we
just calculate with polynomials as we always have done, only that the coefficients are now in
some ring.
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We can put more structure on our algebraic object by requiring that also multiplication is
as close as possible to a commutative group. We say that (F, +, ·) is a field if

(1) (F, +, ·) is a ring;
(2) (F \ {0}, ·) is a commutative group

The sets (Q, +, ·), (R, +, ·) and (C, +, ·) are also rings. For a prime number p, calculation
modulo p in Zp is also a field. If k is a composite number (i.e. k has non-trivial divisors), then
Zk is a ring, but not a field: suppose k = mn, where m and n are integers larger than one.
Viewing m and n as elements in Zk, we see that mn = 0, so that the elements cannot have
multiplicative inverses (required in a field). More generally, we see that a ∈ Zk is invertible if
and only if (a, k) = 1, that is, the numbers are relatively prime.
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3. Polynomials over C

by Eugenia Malinnikova

3.1. Definition, Ring of polynomials.

3.1.1. Polynomials as functions. By a polynomial we mean a function of the form

P (x) = anx
n + an−1x

n−1 + ...a1x + a0.

If an 6= then n is called the degree of the polynomial P . To define the class of functions we
should specify:

• the domain of definition,
• what coefficients are allowed.

First, we consider polynomials with real coefficients that are defined on the real line. We
say that a is a root of the polynomial P if P (a) = 0.

Clearly, a polynomial is a smooth function (i.e. it is continuous together with all its deriva-
tives). We will use the standard notation C∞(R) for the class of all smooth functions on real
line R. Polynomials of degree less than or equal to n can be characterized in the following way:

Pn = {f ∈ C∞(R) : f (n+1) ≡ 0}.

Let P be a polynomial of degree n then P is equal to its nth Taylor’s polynomial. From
calculus we know that

ak =
P (k)(0)

k!
, P (x) = anx

n + o(xn) (|x| → ∞).

Remark 3.1. Sometimes it is convenient to rewrite a polynomial as a linear combination of the
powers of x− x0 for some particular point x0

P (x) =
n∑

k=1

bk(x− x0)
k.

Clearly, b0 = P (x0) and P (x0) = 0 if and only if there exists a polynomial Q such that
P (x) = (x− x0)Q(x).

Remark 3.2. Theorems from calculus can be applied for polynomials as they are smooth (in
particular, continuous) functions.

Exercise: Let P be a polynomial.
a) Prove that P has a real root, provided that the degree of P is odd.
b) Suppose that P has k distinct real roots, show that its derivative has at least k− 1 distinct
real roots.

Exercise: a) Prove that each polynomial can be written as the difference of two positive
polynomials.
b) Prove that each polynomial can be written as the difference of two decreasing polynomials.
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3.1.2. Polynomial ring. Let R be a ring. A polynomial P (X) over R is defined as a formal
expression of the form

P (X) = anX
n + an−1X

n−1 + . . . + a1X + a0,

where the coefficients an, . . . , a0 are elements of the ring R and X is considered to be a formal
symbol. Summands in the formula above, akX

k, are called monomials. Polynomials over R
can be added by simply adding the corresponding coefficients as elements of R, and multiplied
using the distributive law and the rules aX = Xa for any a ∈ R and XkX l = Xk+l.
Exercise: Prove that the set of polynomials over R with these operation is a ring. This
ring is denoted by R[X].

3.1.3. Division of polynomials. In this section we consider polynomials over a field F (one may
assume that F is equal to R (real numbers) or C (complex numbers)).

Let S and T be two polynomials over F , T 6= 0. Then there exist unique polynomials Q and
R such that S = QT + R and deg R < deg T (division with remainder).

If R = 0 we say that T divides S.
Exercise: Divide P (X) = X3 + 3X2 − 2X + 1 with remainder by
a) X + 2
b) X2 −X + 2.

A polynomial is called irreducible if it is not divisible by any non-constant polynomial of
lesser degree. We will describe irreducible polynomial over R and C in the next section.

3.2. Polynomials over complex numbers.

3.2.1. Roots of quadratic polynomials and complex numbers. Let P (x) = ax2 + bx + c be a
quadratic polynomial with real coefficients. As we know from school, the number of its real
roots is defined by the sign of the expression b2 − 4ac. If it is non-negative then the real roots
are given by the formula

x1,2 =
−b±

√
b2 − 4ac

2a
.

Let us consider the polynomial x2 + 1. It has no real roots. We will add a formal symbol i
to the field of real numbers and consider the set of formal expressions of the form x+ iy, where
x, y ∈ R. This set with two operations

(x1 + iy1) + (x2 + iy2) = (x1 + x2) + i(y1 + y2)

(x1 + iy1)(x2 + iy2) = (x1y1 − x2y2) + i(y1x2 + x1y2)

is a field, we denote it by C, elements of C are called complex numbers. If z = x+iy is a complex
number then x is called the real part of z, y is called the imaginary part of z, and x−iy is called
the complex conjugate of z. We will use the following notation x = <(z), y = =(z), x− iy = z̄.
Exercise: Check that each quadratic polynomial with complex coefficients has two complex
roots (that may coincide).

Another standard interpretation of complex numbers comes from identifying pairs (x, y) with
points of the plane. If we then consider the polar coordinates, we get

x + iy = r cos φ + ir sin φ = r(cos φ + i sin φ) =: reiφ.

The advantage of the polar form is that the powers of a complex number are easily calculated
in the polar form:

(reiφ)n = rneinφ

Exercise: Find all roots of the polynomial zn − 1.
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3.2.2. Fundamental theorem of algebra and irreducible polynomials.

Theorem 3.3. Any polynomial with complex coefficients has a complex root.

Corollary 3.4. Any polynomial P of degree n over C has exactly n (not necessarily distinct)
complex roots and can be written in the form

(3.5) P (z) = an(z − ζ1) . . . (z − ζn).

It follows from the theorem that all polynomials over C of degree greater than one are
reducible. So irreducible polynomials in C[x] are constants and polynomials of degree one.
Exercise: a) Let P be a polynomial with real coefficients. Prove that if ζ is a root of P ,
then so is ζ̄.
b) Describe all irreducible polynomials over R.

It follows from the last exercise that any polynomial P with real coefficients can be written
in the form:

P (x) = an

m∏
k=1

(x− ak)
s∏

l=1

(x2 + psx + qs),

where ak are the real roots of the polynomial and quadratic polynomials x2 + psx + qs have no
real roots.
Exercise: Let P be a polynomial over R such that P (x) ≥ 0 for any x ∈ R. Prove that
there exist two polynomials Q and R over R such that P = Q2 + R2.
(Hint: Use the statement above and the following identity (a2 + b2)(c2 + d2) = (ac + bd)2 +
(ad− bc)2.)

3.2.3. Roots of the derivative. Let A be a set of complex numbers, we consider elements of A
as points on the plane. The convex hull of A is the intersection of all half-planes that contain
A. In other words, the convex hull of A is the smallest convex set that contains A. If A is a
finite set, then its convex hull is a polygon.

The following result on the roots of the derivative of a polynomial is both beautiful and
useful.

Theorem 3.6. Let ζ1, . . . , ζn be all roots of the polynomial P ∈ C[z]. Then all roots of P ′ lie
in the convex hull of {ζ1, . . . , ζn}.

Proof. Using the definition of the convex hull, we see that it suffices to prove that if all roots
of P lie in a half-plane E, then all roots of P ′ lie in E. By a linear change of variables,
Q(z) = P (αz + β), we see that it is enough to prove this when E is the upper half-plane, i.e.
E = {z = x + iy : y ≥ 0}.

Suppose that =(ζk) ≥ 0 for k = 1, . . . , n. As we know from the previous subsubsection,
P (z) = a(z − ζ1) . . . (z − ζn). We take the derivative of the product of n functions

P ′(z) = a

n∑
k=1

(z − ζ1) . . . ̂(z − ζk) . . . (z − ζn),

where the hat over a factor means that the factor is omitted. Now the ratio P ′/P can be
written in a simple way

(3.7)
P ′(z)

P (z)
=

n∑
k=1

1

z − ζk

.
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Assuming that =(η) < 0, we will show that P ′(η) 6= 0. We apply the above formula

P ′(η)

P (η)
=

n∑
k=1

1

η − ζk

=
n∑

k=1

η − ζk

|η − ζk|2
,

and take the imaginary parts

=
(

P ′(η)

P (η)

)
=

n∑
k=1

=
(

η̄ − ζ̄k

|η − ζk|2

)
=

n∑
k=1

−=(η) + =(ζk)

|η − ζk|2
> 0.

It follows that P ′(η) 6= 0 and the theorem is proved. �

One can get formula (3.7) by taking the derivative of log P (z). This formula has many
applications, in particular, it is useful in the next exercise.

Exercise: Let P be a polynomial of degree n that has n distinct real roots x1, . . . , xn.
Prove that
a)
∑n

k=1
P ′′(xk)
P ′(xk)

= 0,

b) for any c > 0 the set {x ∈ R : P ′(x)
P (x)

> c} is a union of finitely many disjoint intervals of
total combined lengths n

c
.

3.3. Different ways to determine polynomial.

3.3.1. Roots and Coefficients. Any polynomial over C is determined by its leading coefficient
and its roots. (We use the convention here that every polynomial of degree n has n complex
roots and formula (3.5) is valid; some of the roots may coincide.) On the other hand each
polynomial is determined by its coefficients. The relations between the roots and the coefficients
are described below.

Theorem 3.8. (Viet) Suppose that polynomial P (z) =
∑n

k=0 akz
k has roots ζ1, . . . , ζn then

a0 = (−1)nan

n∏
j=1

ζj, a1 = (−1)n−1an

n∑
k=1

ζ1 . . . ζ̂k . . . ζn,

...

an−2 = an

∑
j 6=l

ζjζl, an−1 = −an

n∑
k=1

ζk.

In other words, ak is equal to (−1)n−kan times the sum of all products of k elements of
{ζ1, . . . ζn}.

Exercise: Let P (x) = xn +an−1x
n−1 + . . .+a1x+a0 be a polynomial with real coefficients.

Suppose that P has n distinct positive roots. Prove that

(−an−1)
n > nn|a0|.
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3.3.2. Polynomial interpolation. Each polynomial of degree less than n + 1 is determined by
its values at n+1 distinct points. In fact, suppose that two polynomials P1 and P2 coincide at
n + 1 points and deg P1 ≤ n, deg P2 ≤ n. Then the difference P1−P2 is a polynomial of degree
less than n + 1 that has n + 1 distinct roots, and so P1 − P2 = 0.

Theorem 3.9 (Lagrange interpolation formula). Let P be a polynomial of degree less than
n + 1 and P (zj) = aj, j = 1, . . . , n + 1. Then

P (z) =
n+1∑
j=1

aj
(z − z1) . . . ̂(z − zj) . . . (z − zn+1)

(zj − z1) . . . ̂(zj − zj) . . . (zj − zn+1)
.

It is easy to see that the above polynomial satisfies P (zj) = aj and we noted before that
there exists unique polynomial of degree less than n + 1 that solves the interpolation problem.
Exercise: (Newton interpolation) There is another way to write down the same polynomial:

P (z) = b1 + (z − z1) (b2 + (z − z2) (. . . (bn−1 + (z − zn)bn) . . .)) ,

where coefficient bk depend on a1, . . . ak and x1, . . . , xk.
a) Write down formulas for b1 and b2.
b) Find Newton and Lagrange interpolation polynomials for the data P (0) = 3, P (1/2) =
4, P (1) = 6.

13



4. Linear algebra

by Peter Hästö

4.1. Linear, or vector, spaces. We start by recalling the basic definitions of vector spaces.
Algebraically, a vector space is made up of a commutative group (V, ·), a field (K, +, ·) and a
scalar multiplication · : K × V → V which satisfy the following properties:

(1) a(u + v) = au + av;
(2) (a + b)v = av + bv;
(3) a(bv) = (ab)v; and
(4) 1v = v.

Here a, b ∈ K, u, v ∈ V , 1 is the unit element of K and 0 is the zero element of V and K. In
this case we say that V is a vector space over K.

Some examples of groups: any field is a vector space over itself; Kn is a vector space over
K, for any field; n-by-n matrices over a field K, and more generally linear transformations of
a field K; R is a vector space over Q.

Some further important terms (V is a vector space over K):
• a vector subspace of V is a subset V ′ of V such that (V ′, K) is a vector space in the

inherited operations;
• v is a linear combination of {vi}i if v =

∑
aivi, where ai ∈ K;

• the span of a set {vi}i is the smallest subspace containing all the vectors, or, equivalently,
the set of all finite linear combinations of vectors in {vi}i;

• {vi}i is linearly independent if any vector in the span of {vi}i can be written as a linear
combination in exactly one way, or, equivalently, if the equation

∑
aivi = 0 has only

the solutions a1 = . . . = ak = 0;
• {vi}i is a basis for V if the set spans V and is linearly independent;
• the dimension of V is the number of elements in a basis of V .

4.2. Linear operators. Another very important concept related to vector spaces, emphasized
by the alternative name linear spaces, is that of linear operators. If V and V ′ are vector spaces
on K, then we say that the operator T : V → V ′ is linear if

T (au + bv) = aT (u) + bT (v)

for all a, b ∈ K and u, v ∈ V . Recall that if we have chosen bases for finite vector spaces V
and V ′, then we may represent a linear transformation by a matrix.

Some important words here are (V, V ′ are vector spaces over K, T is a linear operator from
V to V ′):

• the image of T is T (V );
• the kernel of T is T−1(0), i.e. all those elements of V that map to 0;
• for finite dimensional V ′, the rank of T is the dimension of the image of T .

To understand the action of a linear operator, it is useful to single out some vectors for this
the operation is especially simple. This leads us to Eigenvectors. We say that v ∈ V \ {0} is
an Eigenvector corresponding to the Eigenvalue λ ∈ K if T (v) = λv.

A “Euclidean style” descriptions of the procedure for determining the Eigenvalues and vectors
follows. Recall the following procedure for calculating the eigenvectors of the matrix

A =

(
7 2
−2 2

)
:

14



First, calculate

det(A− λI) = det

(
7− λ 2
−2 2− λ

)
= (7− λ)(2− λ) + 4 = (λ− 3)(λ− 6).

This gives the eigenvalues λ1 = 3 and λ2 = 6.
Second, look at the first eigenvalue, 3. Solve the equation (A− 3I)v1 = 0:(

4 2
−2 −1

)(
x
y

)
=

(
4x + 2y
−2x− y

)
=

(
0
0

)
.

Hence v1 =

(
1
−2

)
.

Then, look at the second eigenvalue, 6. Solve the equation (A− 6I)v2 = 0:(
1 2
−2 −4

)(
x
y

)
=

(
x + 2y
−2x− 4y

)
=

(
0
0

)
.

Hence v2 =

(
2
−1

)
.

Why does this procedure give all the eigenvectors of the matrix A, i.e. all non-zero vectors
such that Av = λv?

Problems.
(1) Find a basis for the image and the kernel of(

1 3
3 4

)
considered as a linear transformation of a two-dimensional vector space

a) over R,
b) over Z5.

(2) Let V be the vector space whose elements are arithmetic sequences, (a, a+k, a+2k, a+
3k, . . .), a, k ∈ R. Find a basis of this space and thus determine its dimension. Give an
example of a one-dimensional subspace.

(3) Let L1(Rn) be the set of all continuous functions f : Rn → R for which∫
Rn

|f(x)| dx < ∞.

Show that L1(Rn) is infinite dimensional by finding a subspace with infinitely many
basis vectors.

(4) Define R+ = {x > 0}. Show that
(
R+
)2 is not a subspace of the vector space R2. Let

V be the set of 2-vectors over R+, i.e. the elements of V are vectors of the form
(

a
b

)
,

a, b ∈ R+. We define an addition on V by(
a
b

)
⊕
(

c
d

)
=
(

ac
bd

)
and a scalar multiplication by

k
(

a
b

)
=
(

alog k

blog k

)
.

We define addition and multiplication in R+ by l⊕ k = lk (i.e. addition corresponds to
ordinary multiplication) and l � k = exp{log(l) log(k)}. Show that V is a vector space
over R+.

15



(5) Let P0 = {(0, y, z)} and P1 = {(x, y, z) : x + y + z = 0}. Let A : R3 → R3 be a linear
transformation such that A(Pk) = Pk. Show that the dimension of the kernel of A is 0
or 1. Give examples which show that both cases can occur.

(6) Let V and W be vector spaces. Suppose that T : V → W is a linear transformation
with the following properties:

a) if T (x) = T (y) then x = y (i.e. T is one-to-one, or injective)
b) for any w ∈ W there exists v ∈ V such that T (v) = w (i.e. T is onto, or surjective).

Show that T is an isomorphism.
(7) Consider the field Q of rational numbers (i.e. fractions of integers). We consider R as

a vector space over Q.
(a) Find a 2-dimensional subspace of R.
(b) Show that the equation f(x + y) = f(x) + f(y) has a solution not of the form

f(x) = cx on this subspace.

4.3. Determinants. In this section we recall one abstract way of defining the determinant of
a matrix.

Let v1, . . . vn, x and y be row vectors with n elements (in some field K, e.g. R). Then det
is defined as the unique function which takes n-tuples of vectors with n components, that is
elements of Kn, and satisfies the following conditions:

• det is multilinear, i.e.

det(ax + by, v2, . . . , vn) = a det(x, v2, . . . , vn) + b det(y, v2, . . . , vn),

where a, b ∈ K and the same holds for all other vectors vi.
• det is antisymmetric, i.e.

det(v1, v2, . . . , vn) = − det(v2, v1, . . . , vn),

and the same for all other swaps of vectors (not necessarily adjacent).
• det(In) = 1.

Let us start by checking that det is uniquely determined by these conditions, i.e. that there
are not two different functions satisfying them. We make the following observations:

Lemma 4.1. If vi = vj for i 6= j, then det(v1, . . . , vn) = 0.

Proof. We use property (2) of the determinant to swap vi and vj:

det(v1, . . . , vi, . . . , vj, . . . , vn) = − det(v1, . . . , vj, . . . , vi, . . . , vn).

But since vi = vj we obviously have

det(v1, . . . , vi, . . . , vj, . . . , vn) = det(v1, . . . , vj, . . . , vi, . . . , vn).

From this the claim directly follows. �

Corollary 4.2. Let a ∈ K. Then

det(v1, . . . , vi, . . . , vn) = det(v1, . . . , vi + avj, . . . , vn).

Proof. By Property (1) of the determinant,

det(v1, . . . , vi + avj, . . . , vn) = det(v1, . . . , vi, . . . , vn) + a det(v1, . . . , vj, . . . , vn).

But by the previous lemma, the latter term is zero. �

Lemma 4.3. If vi = 0, then det(v1, . . . , vn) = 0.
16



Proof. Let a ∈ R, a 6= 1. By Property (1),
det(v1, . . . , avi, . . . , vn) = a det(v1, . . . , vi, . . . , vn).

Since vi = 0 it follows trivially that avi = vi. Therefore the two determinants in the previous
equation are the same. Thus the equations is

(a− 1) det(v1, . . . , vi, . . . , vn) = 0.

Since a− 1 6= 0, this implies the claim. �

We consider the matrix A whose ith row is given by vi. We denote det(v1, . . . , vn) also by
det(A).

Theorem 4.4. The function det : (V n)n → R is uniquely determined by the conditions (1)–(3).

Proof. We consider the matrix A whose ith row is given by vi. Let us say that A is brought
to row-reduced echelon form by performing k row swaps, and by dividing the rows by the
constants k1, . . . , kn (look up the description of the algorithm to produce the row-reduced
echelon form in the book, if necessary). Then each of the row-swaps produces a factor −1 in
front of the determinant (by Property (2)) and division of a row by ki produces a factor of ki

in front (by Property (1)). Subtracting a multiple of the row containing the pivotal element
has no effect of the determinant, by Corollary 4.2.

There are then two possibilities: if the rref is In, then
det(A) = (−1)kk1 · · · kn det(In) = (−1)kk1 · · · kn.

If, on the other hand, rref is not In, then it contains at least one zero-row (since A is n-by-n).
Then, by Lemma 4.3, det(A) = 0. We have thus put forth an algorithm for computing the
determinant of any matrix A – clearly this implies that the determinant function is uniquely
defined. �

In the proof of the previous theorem we saw one of the fundamental properties of the deter-
minant:

Corollary 4.5. The determinant of A is 0 if and only if A is not invertible.

Proof. The square matrix A is invertible if and only if its rref is In. In the previous proof we
saw that this is precisely the case when A is invertible. �

Also of great importance is the following product formula for the determinant:

Theorem 4.6. Let A and B be n-by-n square matrices. Then det(AB) = det(A) det(B).

Proof. Suppose first that B is not invertible. Then det(A) det(B) = 0, so we must show that
det(AB) = 0, as well. Let x be a non-zero vector such that Bx = 0 (exists, since B is not
invertible). Then ABx = A(Bx) = A0 = 0, and so AB is not invertible (since an invertible
matrix does not take a non-zero vector to zero).

If B is invertible, we can consider the function

D(A) =
det(AB)

det(B)
.

We can check that this function satisfies the conditions (1)–(3) above. Since the determinant
was the unique function satisfying these conditions, this implies that D(A) = det(A). �

The following results follow directly by applying the formula in the previous theorem.

Corollary 4.7. Let A be an invertible matrix. Then det(A−1) = (det(A))−1.

Corollary 4.8. Let A and B be similar n-by-n matrices. Then det(B) = det(A).
17



Proof. There exists an invertible matrix S such that B = S−1AS (by the definition of begin
similar). Thus

det(B) = det(S−1AS) = det(S−1) det(A) det(S) = det(S)−1 det(S) det(A) = det(A). �

If T is a linear operator, we know that its matrix in two different bases are similar. In view
of the previous corollary, it makes sense to define the determinant of this operator to be the
determinant of any of these matrices.

Using the multilinearity of the determinant (Property (1)), one can derive the so-called
Laplace expansion for the determinant of a matrix.

4.4. Representation of a matrix. We view a matrix as representing a linear transformation
from a (finite dimensional) vector space to itself when we have chosen a bases for the spaces.
If we choose different bases, then the matrix will be different. However, the matrices for the
transformation are similar, i.e. A′ = SAS−1 for some invertible matrix S. This leads to the
question of choosing S so that A′ is as simple as possible for a given A. In many senses the
Jordan normal form is this simplest representation. We know that not every matrix can be
diagonalized. The Jordan normal form is in some sense the closest you can get to a diagonal
matrix. In order to present the proper context for the JNF, we need to introduce some concepts.

4.4.1. Decomposition. Let V and W be vector spaces. Their direct sum, V ⊕W , is defined as
pairs of vectors (v, w), v ∈ V , w ∈ W with the following addition:

(v1, w1)⊕ (v2, w2) := (v1 + v2, w1 + w2).

(Note that the additions on the right-hand-side are in the vector spaces V and W .)
Exercise: Show that V ⊕W is a vector space.

Let S and T be linear operators on V and W , respectively. Then we define S ⊕ T by

S ⊕ T (v ⊕ w) := (S(v), T (w)).

Exercise: Show that S ⊕ T is linear operator.
Let T be a linear operator on the finite vector space V . We say that the subspace V ′ ⊂ V

is invariant under T if T (V ′) ⊂ V ′. If dim(V ) = n and dim(V ′) = m then T is represented by
a block matrix of the form (

A B
0 C

)
,

where A is m-by-m and C is (n − m)-by-(n − m). In other words the fact that we know an
invariant subspace gives us significant structural information about the matrix of the transfor-
mation. Suppose next that T happens to be such a linear operator as to have V ′ and V ′′ as
invariant subspaces. Suppose further that V ′ ∩ V ′′ = ∅ and V = V ′ ⊕ V ′′. Then the matrix of
T in a suitably chosen basis is (

A O
0 C

)
,

where A and C have the same dimensions as before.

4.4.2. Jordan normal form. We next define some sort of an iterated Eigenvector: we say that
v lies in the root space R(λ) of the linear operator T if (V − λI)mv = 0 for some m. Clearly, if
v is an Eigenvector corresponding to the Eigenvalue λ then v ∈ R(λ). It turns out that V can
be decomposed into its root-spaces:
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Theorem 4.9. Let T be a linear operator on the finite dimensional vector spaces V . Suppose
T has Eigenvalues λ1, . . . , λk. Then

V = R(λ1)⊕ . . .⊕R(λk).

In view of what was said in the previous section, this implies that T is represented by a
matrix of block-diagonal type, with one block for each distinct Eigenvalue. It turns out that
we can even do much better than this.

Theorem 4.10 (Jordan Normal Form). Let T be a linear operator on the finite dimensional
vector spaces V . Then T has a representation in block diagonal form where every block has the
form 

λ 1 0 . . . 0
0 λ 1 . . . 0

· · ·
0 0 . . . 0 λ

 ,

where the diagonal entries are Eigenvalues of T and the entries immediately above the diagonal
are 1’s.

Note that the matrix given in the previous theorem is as a whole of the form with Eigenvalues
on the diagonal and 1’s and 0’s immediately above the diagonal. Thus T is represented as the
sum of a diagonal operator and a nilpotent operator. (Recall that a linear operator T on the
vector space V is said to be nilpotent if there exists k > 0 such that T k(v) = 0 for every v ∈ V .)
Exercise: Let V be the space of functions of the form f(x) = exp(x), where p(x) is
polynomial of degree at most n − 1. Find a basis of V in which the matrix of the operator
d/dx is the n× n Jordan block with λ on the diagonal.

Problems.
(1) Let A ∈ MR(n, n). What is the smallest value of n if Am+1 = 0, but Am 6= 0. Give an

example when n = 3.
(2) Let A ∈ MR(n, m) and B ∈ MR(m,n). If AB is invertible, what can you say about the

relationship between n and m?
(3) Let A and B be square matrices. If AB + A + B = 0, show that A and B commute,

i.e. that AB = BA.
(4) The following are some properties of matrix multiplication:

• AI = IA = I,
• (AB)C = A(BC), and
• AB 6= BA,

where A, B, C, I are n by n matrices, and I denotes the identity. Describe how matrix
multiplication is defined (i.e. the logic of the definition), and why it implies these
properties.

(5) Among all unit vectors  x
y
z

 ∈ R3

find the one for which ax + by + cz is maximal, where a, b and c are nonzero constants.
Can you interpret this result in terms of the dot product?

(6) Consider the vector space V of all symmetric 2-by-2 real matrices which have eigenvector
v1 =

(
1
1

)
(the matrix may or may not have other eigenvectors). We make it an inner

product space by defining
〈A, B〉 = tr(AT B),
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where tr denotes the trace, i.e. the sum of the diagonal entries. Find an orthogonal
basis of V .

(7) Find all inner products on the vector space R2. (Hint: Recall that every inner product
is represented by a matrix, but not the other way around.)

Find all complex inner products on C2. (Hint: Recall that every complex inner
product is represented by a complex matrix, but not the other way around.)

(8) In constructing a model of a certain kind of fluid a complicated equation arises involving
traces and determinants of symmetric matrices. In order to show that one of the terms
is negligible compared to the others, the inequality

tr(A) ≥ n det(A)1/n

is needed. Show that it holds for all symmetric n-by-n real matrices A. Recall that the
trace of A, tr(A), is the sum of the elements on the diagonal.

(9) Consider vectors in R2 with vectors v1 = (x1, y1) and v2 = (x2, y2). Define a bilinear
form by

ρ(v1, v2) = x1x2 + x1y2 + x2y1 + kx2y1.

For which values of k is this (a) symmetric, (b) bilinear and (c) an inner product.
(10) Define inner products spaces such that the Cauchy-Schwarz inequality allows you to

affirm the following inequalities:(
n∑

i=1

viwi

)2

≤

(
n∑

i=1

v2
i

)(
n∑

i=1

w2
i

)
.

(∫ b

a

f(x)g(x) dx

)2

≤
(∫ b

a

f(x)2dx

)(∫ b

a

g(x)2dx

)
.

(11) Consider the space of second degree polynomials. Define an inner product by the
formula

〈p, q〉 =

∫ b

a

p(x)q(x) dx.

For which choises, if any, of a, b ∈ R is the standard basis {1, x, x2} orthogonal?
(12) Let V be an inner product space. Suppose v is orthogonal to each of w1, . . . , wk. Show

that v is orthogonal to span{w1, . . . , wk}. Show also that any set of orthogonal vectors
is linearly independent.

(13) Let {e1, . . . , en} be an orthonormal basis of a Euclidean space. Prove Bessel’s inequality
k∑

i=1

〈v, ei〉2 ≤ ‖v‖2,

and Parseval’s identity

〈v, w〉 =
n∑

i=1

〈v, ei〉〈ei, w〉.
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5. Matrix calculus

by Torbjørn Helvik

5.1. A matrix is a linear map. A m × n matrix A defines a linear map Rn → Rm. The
vector x is mapped to the vector Ax. Conversely, every linear map f : Rn → Rm can be
represented by a m× n matrix A such that f(x) = Ax. Note that A depends on the choice of
basis for Rn. When not stating otherwise we use the standard euclidian basis. Composition of
linear maps are given by matrix products: If g : Rm → Rk is represented by B then

(g ◦ f)(x) = BAx

There is a simple way of finding the matrix that represents a map f in a given basis. Assume
that f : Rn → Rm and let (ei)

n
i=1 constitute a basis for Rn. Write x =

∑
i xiei. Then

f(x) = f(
∑

i

xiei) =
∑

i

xif(ei) = Ax

with the i’th column of A being f(ei).
Exercise: Find the matrices in the standard basis representing the following operations
on R3:

(1) Reflection through the x−y plane
(2) Rotation by π/2 in the x−y plane, followed by a rotation by −π/2 in the y−z plane
(3) Projection onto the plane defined by x = y.

Let A be a m × n matrix. The rank of A is the number of linearly independent column
vectors of A. This is equal to the number of linearly independent row vectors of A. For the
rest of this section, define k = rank(A)

We now look at some important subspaces of Rn and Rm related to A. Recall that for any
map f : X → Y

Im f = {y ∈ Y : ∃x ∈ X with f(x) = y} = f(X)

ker f = {x ∈ X : f(x) = 0} = f−1(0)

We first look at the image of A. Taking the product Ax is the same as taking a linear
combination of the columns of A. In fact if we write the columns of A as {v1, v2, . . . , vn}, then
Ax =

∑
i xivi.

Therefore,
Im A = span{v1, . . . , vn} ⊆ Rm

This is a k-dimensional linear subspace of Rm. Let us denote the orthogonal component of
Im A by X, such that Rm = Im A ⊕X. We claim that X = ker AT (recall that the kernel is
the subspace consisting of all vectors that is mapped to 0 by the matrix). Indeed, if y ∈ Im A
and x ∈ ker AT , then

zT y = zT (Ax) = (AT z)x = 0

One can also show that dim(ker AT ) = m− k. The same relation is of course valid for Im AT

and ker A.
To sum up, the four fundamental subspaces of the matrix A are connected in the following

way
Rn = ImAT ⊕ ker A (dimensions k and n− k)

Rm = ImA⊕ ker AT (dimensions k and m− k)
The first pair is invariant under row operations on A and the second pair under column oper-
ations.
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Let A be a square matrix. If there exists a matrix B such that AB = I we call B the inverse
of A and write B = A−1. In this case, we say that A is invertible (or non-singular). It is also
the case that BA = I.

The following are equivalent
• A is invertible
• det(A) 6= 0
• 0 is not an eigenvalue of A
• rank(A) = n

The inverse of a 2× 2 matrix is given by the formula[
a b
c d

]−1

=
1

ad− cb

[
d −b
−c a

]
Inverses of larger matrices can be found by Gauss-Jordan elimination.
Exercise: Let A and B be square matrices. If AB + A + B = 0, show that AB = BA.

5.2. The characteristic polynomial. The characteristic polynomial cA(x) of the square n×n
matrix A is defined as

cA(x) = det(A− xI)

The roots of cA are the eigenvalues of A. The multiplicity of λ as a root in cA(x) is the
algebraic multiplicity of λ. The geometric multiplicity of λ is the dimension of the eigenspace
corresponding to λ (that is, the dimension of ker(A−λI)). The geometric multiplicity is never
larger than the algebraic multiplicity.

Lemma 5.1. The geometric multiplicity of λ = 0 is n− k iff rank(A) = k.

Exercise: Prove this
Write

cA(x) = xn + an−1x
n−1 + · · ·+ a0

The coefficients an−1 and a0 of cT are particulary useful:

an−1 = Trace(A) =
∑

λia0 = Det(A) =
∏

λi

Similar matrices have the same characteristic polynomial:

Lemma 5.2. If B = S−1AS, with S invertible, then cB(x) = cA(x)

Also:

Lemma 5.3. If A and B are square, cAB(x) = cBA(x).

One can look at polynomials of matrices. The following result can be useful:

Lemma 5.4. If p is a polynomial such that p(A) = 0, then p(λ) = 0 for all eigenvalues λ of
A.

Exercise: Prove this.
The Cayley-Hamilton theorem says that any matrix satisfies its own characteristic equation:

Theorem 5.5 (Cayley-Hamilton).
cA(A) = 0

Exercise: a) Show that for any m ∈ N there exists a real m × m matrix A such that
A3 = A + I.

b) Show that det A > 0 for every real m×m matrix satisfying A3 = A + I.
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5.3. Diagonalization. Let A be a n×n matrix with n independent eigenvectors {x1, . . . , xn}.
Let S be the matrix with these eigenvectors as column vectors, and let Λ be a diagonal matrix
with the eigenvalues λ1, . . . , λn on the diagonal. Then

A = SΛS−1

This is called the diagonal form of A. A is not diagonalizable if it has less than n independent
eigenvectors. But note that repeated eigenvalues is no problem as long as their algebraic mul-
tiplicity equals their geometric multiplicity. Also, there is no connection between invertibility
and diagonalizability.

Lemma 5.6. A real symmetric matrix can be diagonalized by a orthogonal matrix ST S = I,
and a Hermitian matrix can be diagonalized by a unitary matrix (SHS = I).

Lemma 5.7. If A and B are diagonalizable, they share the same eigenvector matrix S iff AB
= BA.

Note that An = SΛnS−1, and Λn is found simply by squaring all elements since Λ is diagonal.
This is an important use of the diagonal form.

If some eigenvalues has lower geometric multiplicity than algebraic, A is not diagonalizable.
The best we can do in this case is the Jordan form. If A has s independent eigenvectors, it is
similar to a matrix with s blocks:

M−1AM = J =


J1

·
·

Js


Each block is a triangular matrix with a single eigenvalue λi and a single eigenvector:

Ji =


λi 1

· ·
· 1

λi


The same eigenvalue λi may appear in several blocks if it corresponds to several independent
eigenvectors.
Exercise:

Let A and B be square matrices of the same size. If

rank(AB −BA) = 1,

show that (AB −BA)2 = 0.

5.4. A few more tricks. The following is general trick that can be helpful. In a matrix
multiplication AB, one can divide A into submatrices of the size n×m and B into submatrices
of size m × n, and do the multiplication as if these were the elements of the matrix. This is
perhaps best communicated by an example. Let A to F be n× n matrices. Then[

A B
C D

]
·
[
E
F

]
=

[
AE + BF
CE + DF

]
Also, note that if A is a matrix with row vectors (aT

1 , aT
2 , . . . , aT

n ) and B is a matrix with
column vectors (b1, b2, . . . , bn), then the rows of AB are (aT

1 B, . . . , aT
nB) and the columns of

AB are (Ab1, . . . , Abn). This can be utilized to construct matrixes that perform operations
such as permutations on the rows or columns of a matrix C.
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5.5. Non-negative matrices. NB: This section is not important for the competition, but the
Perron-Frobenius theorem is a strong result that one should know about.

Let A be a k × k matrix. We say A is non-negative if aij ≥ 0∀ i, j.

Definition 5.8. Let A be a non-negative matrix, and let a
(n)
ij denote the (i, j)-elements of An.

We say A is
• Irreducible if for any pair i, j there is some n > 0, such that a

(n)
ij > 0.

• Irreducible and aperiodic if there is some n > 0, such that a
(n)
ij > 0 for all pairs i, j.

Theorem 5.9 (Perron-Frobenius Theorem). Let A be a non-negative k × k matrix.
(1) A has a real eigenvalue λ ≥ 0, and λ ≥ |µ| where µ is any other eigenvalue. If A is

irreducible then λ > 0 and if A also is aperiodic, then λ > |µ|.
(2) We have mini(

∑k
j=1 aij) ≤ λ ≤ maxi(

∑k
j=1 aij)

(3) λ has a non-negative eigenvector u, and a non-negative left eigenvector v.
(4) If A is irreducible, then λ is a simple root of the characteristic polynomial, and the

corresponding eigenvectors are strictly positive.
(5) If A is irreducible, then λ is the only eigenvalue of A with a non-negative eigenvector.
(6) If u and v are the right and left eigenvector, normalized such that v · u = 1, then

lim
n→∞

1

λn
An = uv

Note that his implies that any stochastic matrix has 1 as the largest eigenvalue λ (a matrix
is stochastic if all row sums are 1).
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6. Sequences and series

by Eugenia Malinnikova

6.1. Sequences and limits.

6.1.1. Basic facts and examples. We begin with some simple rules and theorems that are useful
when calculating limits:

(1) Each monotone sequence has a limit (either finite or infinite).
(2) Let {xn}n, {an}n, {bn}n be sequences of real numbers such that an ≤ xn ≤ bn for each

n. If the limits limn→∞ an and limn→∞ bn exist and are equal, then limn→∞ xn exists
and

lim
n→∞

xn = lim
n→∞

an = lim
n→∞

bn.

(3) A sequence {xn}n has a limit if and only if lim supn→∞ xn = lim infn→∞ xn, where

lim sup
n→∞

xn = lim
n→∞

sup
k≥n

xk and lim inf
n→∞

xn = lim
n→∞

inf
k≥n

xk.

(4) If the sequence {xn}n is defined by xn = f(n) for some function f and limx→∞ f(x)
exists, then limn→∞ xn exists and is equal to limx→∞ f(x).

Exercise: Calculate limn→∞(
√

n2 + n− n).

As usual in such kind of problems we should prove that the limit exists and find it. Here are
several solutions that use a number of simple rules listed above.
Solution 1: We have

√
n2 + n− n =

n√
n2 + n + n

=
1√

1 + 1/n + 1
.

Then clearly, limn→∞(
√

n2 + n− n) = 1
2
.

Solution 2: It is easy to check that n + n−1
2n

<
√

n2 + n < n + 1
2
. Thus we have n−1

2n
<√

n2 + n− n < 1
2
. Now, clearly, the first and the last terms converge to 1

2
when n goes to ∞.

Applying the "squeezing" rule we get the limit exists and limn→∞(
√

n2 + n− n) = 1
2

Exercise: Let {an} be a seguence such that a1 = 1, an+1 > 3
2
an.

a) Prove that the sequence {
(

2
3

)n−1
an} has a finite limit or tends to infinity.

b) For any α > 1 there exists a sequence with these properties such that

lim
n→∞

(
2

3

)n−1

an = α.

Solution: a) The sequence {
(

2
3

)n−1
an} is increasing since an+1 > 3

2
an. Thus it either has

a finite limit or tends to infinity.
b) For any α > 1 there exists a sequance {bn} such that b1 = 1, bn+1 > bn and bn tends to α
when n goes to infinity. (Can you write down a formula that defines such a sequence?) Now
let an =

(
3
2

)n−1
bn. �

Sometimes it is easier to prove that the limit exists first, and then use that information to
calculate the limit. Moreover we may assume that the limit exists, then calculate it and finally
prove that the assuption is true.
Exercise: We consider the Fibonacci sequence F0 = 1, F1 = 1, Fn+1 = Fn + Fn−1.
Calculate limn→∞

Fn+1

Fn
.
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Solution: It is clear that the sequence is bounded, 1 ≤ Fn+1

Fn
≤ 2, if we calculate the first

few terms we will see that it is not monotone. Suppose that this sequence has a limit φ. Then

φ = lim
n→∞

Fn+1

Fn

= lim
n→∞

Fn + Fn−1

Fn

= lim
n→∞

(1 +
Fn−1

Fn

) = 1 +
1

φ
.

Thus φ is equal to the positive solution of the quadratic equation x2 − x − 1 = 0, i.e. φ =
1
2
(1 +

√
5).

Now we want to estimate |Fn+1

Fn
− φ| =

∣∣∣(1 + Fn−1

Fn

)
−
(
1 + 1

φ

)∣∣∣ . We denote an = Fn+1

Fn
, then

we have

|an − φ| =
∣∣∣∣ 1

an−1

− 1

φ

∣∣∣∣ =
|φ− an−1|

an−1φ
<
|φ− an−1|

φ
.

Thus |an − φ| tends to zero as n goes to infinity and we get limn→∞
Fn+1

Fn
= φ. �

Problems.
(1) Calculate limn→∞

1n+2n+...+nn

nn .

(2) Let x1 =
√

a, xn+1 =
√

a + xn for n ≥ 1, where a ≥ 1. Find limn→∞ xn.

(3) Let x1 = 2005, xn+1 = 1
4−3xn

for n ≥ 1. Find limn→∞ xn.

(4) Let a1 = 1, an = 1
n

∑n−1
k=1 akan−k for n ≥ 2. Show that

(i) lim supn→∞ |an|1/n < 2−1/2,
(ii) lim supn→∞ |an|1/n ≥ 2

3
.

(5) Find limN→∞
ln2 N

N

∑N−2
k=2

1
ln k ln(N−k)

.

6.2. Series.

6.2.1. Basic facts on convergence.
(1) The series

∑∞
n=1 an converges if and only if for any ε > 0 there exists N such that∣∣∣∣∣

m∑
k=n

ak

∣∣∣∣∣ ≤ ε,

whenever m ≥ n ≥ N .
(2) Let α = lim supn→∞ |an|

1
n . If α < 1 then the series

∑∞
n=1 an conveges, if α > 1 then the

series
∑∞

n=1 an diverges.
(3) If lim supn→∞

∣∣∣an+1

an

∣∣∣ < 1, then
∑∞

n=1 an converges.
(4) If an > an+1 > 0 and limn→∞ an = 0, then the series

∑∞
n=1(−1)nan converges.

Exercise: Does there exist a bijective map π : N → N such that
∑∞

n=1
π(n)
n2 < ∞?

Hint: Consider tk =
∑3k+1

n=3k+1
π(n)
n2 , take terms with π(n) ≥ 3k and prove that tk ≥ 1

9
for

each k.

Exercise: Find out if the series
∑∞

n=1(−1)nan converges or diverges, where
a) an = 10n

n!
, b) an = 2nn!

nn , c) an = sin(nπ/4)
ln n

.
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6.2.2. Integral test, Series as Riemann sums. The simplest version of the integral test, that is
used very often to determine if a series is convergent or divergent, is the following:
If f : [1,∞) → [0,∞) is a non-increasing function then

∑∞
n=1 f(n) < ∞ if and only if∫∞

1
f(x)dx < ∞.

In particular, we use that test to determine for which values of p series
∑

1
np ,

∑
1

n lnp n
converge. Sometimes this test is convinient to combine with some prior estimates of the terms
of a series.
Exercise: Let ν(n) be the number of digits of (the decimal representation) of n. Find out
if the series

∑ ν(n)
n2 converges.

Solution: We note that ν(n) = k means 10k−1 ≤ n < 10k. Therefor ν(n) ≤ (ln 10)−10 ln n+

1 and
∑ ν(n)

n2 < ∞. �

In general, it might be useful to write down a series as a Riemann some for an integral.
(Unformal rule, if you see lim

∑
an, try to compaire

∑
an to some integral.)

Exercise: Find limt↗1(1− t)
∑

tn

1+tn
.

Hint:
∑

tn

1+tn
=
∑

en ln t

1+en ln t = (− ln t)−1
∑

(e−n ln t + 1)−1.

6.2.3. Summation by parts. Let An =
∑n

k=1 ak, then

m∑
n=1

anbn =
m−1∑

1

An(bn − bn+1) + Ambm.

To prove the above formula write an = An − An−1, rewrite the sum as two sums as change
the summation index in the second sum to combine terms with An. This calculation explains
two following tests:

The series
∑∞

n=1 anbn converges if
(i)
∑∞

n=1 an < ∞ and {bn} is a monotone bounded sequence,
or
(ii) An =

∑n
k=1 ak are bounded and the sequence {bn} is monotone and tends to zero.

Exercise: Prove that
∑∞

n=1
sin n

n
< ∞.

Hint: Take an = sin n, bn = 1/n and prove that sn = a1 + ... + an are bounded.

Exercise: Suppose that b1 ≥ b2 ≥ b3 ≥ ... and limn→∞ bn = 0. Show that
∑∞

n=1 2nbn < ∞
if and only if

∑∞
n=1 2n(bn − bn+1) < ∞.

Hint:
∑N

n=1 2nbn =
∑N−1

n=1 (2n+1−2)(bn−bn+1)+(2N+1−2)bN , prove first that
∑∞

n=1 2n(bn−
bn+1) < ∞ implies limN→∞ 2NbN = 0.

6.2.4. Series summation. General methods
(1) If an = bn+1 − bn and b = limn→∞ bn then

∑∞
n=1 an = b− b1.

(2) If
∑∞

n=1 an < ∞ then
∑∞

n=1 an = limx↗1

∑∞
n=1 anx

n.
(3) To find a sum of the form

∑∞
n=1 an cos nx or

∑∞
n=1 an sin nx it is useful to write this

sum as a real or imaginary part of the sum
∑∞

n=1 anz
n.

Exercise: Find
∑∞

n=1 an, where
a) an = 1

n(n+m)
, b) an = 1

n2n , c) an = n2

n!
, d) an = sin nx

n
.
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Solution: a) an = 1
m(n+m)

− 1
mn

,
∑∞

n=1 an = 1
m

(1 + 1
2

+ 1
3

+ ... 1
m

).
b)

∞∑
n=1

an = lim
x↗1

∞∑
n=1

xn

n2n
= lim

x↗1

∞∑
n=1

∫ x

0

tn−1

2n
dt = lim

x↗1

∫ x

0

1

2− t
dt = ln 2.

Justify the calculation!
c) an = n

(n−1)!
, we write the series as a power series once again, but now nxn−1 is the derivative

of xn:
∞∑

n=1

an = lim
x↗1

∞∑
n=1

nxn−1

(n− 1)!
= lim

x↗1
(
∞∑

n=1

xn

(n− 1)!
)′ = lim

x↗1
(xex)′ = 2e.

d) Let z = eix, then sin nx = =zn and
∞∑

n=1

an = =

(
∞∑

n=1

zn

n

)
= =(− ln(1− z)) = −=(ln(1− eix).

Further, we have 1− eix = eix/2(e−ix/2 − eix/2) = −ieix/2 sin x/2 and

−=(ln(1− eix) = − ln(−ieix/2) =
π − x

2
.

We get
∞∑

n=1

sin nx

n
=

π − x

2
.

Check that all calculations may be justified for x ∈ (0, π], find out why this argument does not
work for x = 0. �

Problems.
(1) Suppose that an ≥ 0 and

∑∞
n=1 an < ∞. Prove that

∑∞
n=1

√
an

n
< ∞.

(2) Suppose
∑∞

n=1 an < ∞. Do the following sums have to converge as well?
a)a1 + a2 + a4 + a3 + a8 + a7 + a6 + a5 + a16 + a15 + ... + a9 + a32 + ...,
b)a1 + a2 + a3 + a4 + a5 + a7 + a6 + a8 + a9 + a11 + a13 + a15 + a10 + a12 + a14 + a16 + ....

(3) Suppose that an > 0,
∑∞

n=1 an = ∞ and sn = a1 + ... + an. Prove that
a)
∑∞

n=1
an

an+1
= ∞,

b)
∑∞

n=1
an

sn
= ∞,

c)
∑∞

n=1
an

s2
n

< ∞.

(4) Let {εn}∞n=1 be a sequence of positive real numbers such that limn→∞ εn = 0. Find
limn→∞

1
n

∑n
k=1 ln

(
k
n

+ εn

)
.

(5) (i) Prove that limx→∞
∑∞

n=1
nx

(n2+x)2
= 1

2
.

(ii)Prove that there is a positive constant c such that for every x ∈ [1,∞) we have∣∣∣∣∣
∞∑

n=1

nx

(n2 + x)2 −
1

2

∣∣∣∣∣ ≤ c

x
.

(6) For which x the series
∑∞

n=1 ln
(
1 + (−1)n

nx

)
converges?
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(7) Show that
∑∞

n=1
(−1)n−1 sin(ln n)

nα converges if and only if α > 0

(8) Find out if the series
∑∞

n=1
sin n sin n2

n
converges or not.

(9) Let b0 = 1,

bn = 2 +
√

bn−1 − 2

√
1 +

√
bn−1.

Calculate
∑∞

n=1 2nbn.

(10) Calculate the sums of the following series
∑∞

n=1
cosnx

n
.
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7. Problem sets

NOTE: Many of the following problems were taken from sources such as the International
Mathematics Competition for University Students, or the Putnam Competition. No claim of
originality is made on the parts of the authors, and the problems are included for educational
purposes only.

7.1. Basics.
7.1.1 Let n be a fixed positive integer. How many ways are there to write n as a sum of positive

integers, n = a1 + a2 + . . . + ak, with k an arbitrary positive integer and a1 ≤ a2 ≤ . . . ≤
ak ≤ a1 + 1 For example, with 4 there are four ways: 4, 2 + 2, 1 + 1 + 2, 1 + 1 + 1 + 1.

7.1.2 Let S be an infinite set of real numbers such that |s1 + s2 + . . . + sk| < 1 for every finite
subset {s1, s2, . . . , sk} ⊂ S. Show that S is countable.

7.1.3 a) Show that the unit square can be partitioned into n smaller squares if n is large
enough.
b) Let d > 2. Show that there is a constant N(d) such that, whenever n ≥ N(d), a
d-dimensional unit cube can be partitioned into n smaller cubes.

7.1.4 Let An = {1, 2, . . . n}, where n ≥ 3. Let F be the family of all non-constant functions
f : An → An satisfying the following conditions:
(1) f(k) ≤ f(k + 1) for k = 1, 2, . . . n− 1;
(2) f(k) = f(f(k + 1)) for k = 1, 2, . . . n− 1.
Find the number of functions in F .

7.1.5 Let r, s, t be positive integers which are pairwise relative prime. Suppose that a and b are
elements of a commutative multiplicative group with unit e such that ar = bs = (ab)t = e.
Show that a = b = e.

7.1.6 Let X be a set of
(
2k−4
k−2

)
+ 1 real numbers, k ≥ 2. Prove that there exists a monotone

sequence (xi)
k
i=1 ⊂ X such that

|xi+1 − x1| ≥ 2|xi − x1|
for all i = 1, . . . , k − 1.

7.2. Abstract algebra.
7.2.1 Let G be a group and a be an element in G. The minimal positive integer n such that

an = e is called the order of element a and is denoted ord a. Show that for any a ∈ G
a: if gcd(k, ord a) = 1, then ord(ak) = ord a;
b: if ord(a) = 2, then ord(aba) = ord b for any b ∈ G;
c: ord(ab) = ord(ba) for any b ∈ G.

7.2.2 Consider permutations of {1, ..., n}. They form a group with composition as the opera-
tion, which is denoted Sn. As usual π ∈ Sn and π = (a1, ..., ak) means π(ai) = ai+1, i =
1, ..., k − 1, π(ak) = a1 and π(b) = b for b 6= a1, ..., ak.

Let k be odd and a1, ...ak−1, b1, ..., bk, ..., c1, ..., ck+1 be different elements of {1, ..., n}.
Show that

ord ((a1, ...ak−1)(b1, ..., bk)(c1, ..., ck+1)) =
(k − 1)k(k + 1)

2
.

7.2.3 Let G be a group with a fixed element a. We consider a graph with the vertex set G and
for each x ∈ G we put an edge between x and ax. Show that this graph is a union of
cycles of size n = ord a.

7.2.4 Let G be the subgroup of GL2(R) generated by A and B, where

A =

(
2 0
0 1

)
, B =

(
1 1
0 1

)
.
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Let H consist of all matrices
(

a11 a12

a21 a22

)
in G for which a11 = a22 = 1.

a) Show that H is an abelian subgroup of G.
b) Show that H is not finitely generated.

7.2.5 Suppose that in a not necessarily commutative ring R the square of any element is 0.
Prove that abc + abc = 0 for any three elements a, b, c.

7.2.6 Let a1, a2, .., a51 be non-zero elements of a field. We simultaneously replace each element
with the sum of the 50 remainings ones. In this way we get a sequence b1, ..., b51. If the
new sequence is a permutation of the original one, what can the characteristic of the field
be?

7.3. Polynomials over C.
7.3.1 Let P0, P1, ..., Pn−1 be the vertices of a regular n-gon inscribed in the unit circle. Prove

that |P1P0||P2P0|...|Pn−1P0| = n.
7.3.2 Let all roots of an nth degree polynomial P (z) with complex coefficients lie on the unit

circle in the complex plane. Prove that all roots of the polynomial 2zP ′(z) − nP (z) lie
on the same circle.

7.3.3 Let P (z) be an algebraic polynomial of degree n having only real zeros and real coeffi-
cients. (a) Prove that (n− 1) (P ′(x))2 ≥ nP (x)P ′′(x) for every real x. (b) Examine the
case of equality.

7.3.4 Consider the following set of polynomials:

P =
{

f : f =
3∑

k=0

akx
k, ak ∈ R, |f(±1)| ≤ 1, |f(±1/2)| ≤ 1

}
.

Evaluate supf∈P max−1≤x≤1 |f ′′(x)| and find all polynomials f ∈ P for which the above
supremum is attainded.

7.3.5 Let p(x) = x5 +x and q(x) = x5 +x2 find all pairs (w, z) of complex numbers with w 6= z
for which p(w) = p(z) and q(w) = q(z).

7.3.6 Let p(z) be a polynomial of degree n ≥ 1 with complex coefficients. Prove that there
exist at least n + 1 complex numbers z for which p(z) is 0 or 1.

7.4. Linear algebra.
7.4.1 Find the maximum of x3 − 3x on the set {x : x4 + 36 ≤ 13x2}.
7.4.2 Let S be a set of real numbers which is closed under multiplication, i.e. a, b ∈ S implies

ab ∈ S. Let T and U be disjoint subsets of S whose union is S. Given that the product
of any three (not necessarily distinct) elements of T is in T and that the product of any
three elements of U is in U , show that at least one of the two subsets T , U is closed under
multiplication.

7.4.3 Let V be a real vector space, and let f, f1, f2 . . . fk be linear maps from V to R. Suppose
that f(x) = 0 whenever f1(x) = f2(x) = . . . = fk(x) = 0. Prove that f is a linear
combination of f1, f2, . . . , fk.

7.4.4 Consider the field Q of rational numbers (i.e. fractions of integers). We consider R as a
vector space over Q.

(a) Find a 2-dimensional subspace of R.
(b) Show that the equation f(x + y) = f(x) + f(y) has a solution not of the form

f(x) = cx on this subspace.
7.4.5 Let A : R3 → R3 be linear. Suppose that Av and v are orthogonal for every v ∈ V .

(a) Show that AT = −A.
(b) Show that there exists u ∈ R3 such that Av = u× v.
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7.4.6 Recall that a function A is an involution if A2 is the identity. Let V be a finite dimensional
real vector space.

(a) Let A : V → V be an involution. Show that there exists a basis of V consisting of
Eigenvectors of V .

(b) Find the largest number of pairwise commutative involutions on V .
7.4.7 Let A and B be complex matrices which satisfy the equation AB + A + B = 0, where 0

is the additive neutral element. Show that AB = BA.
7.4.8 Let α ∈ R \ {0}. Suppose that F and G are linear maps (operators) from Rn into Rn

satisfying F ◦G−G ◦ F = αF .
a) Show that F k ◦G−G ◦ F k = αkF k for all k ∈ N.
b) Show that F k = 0 for some k.

7.4.9 Let A be an n× n diagonal matrix with characteristic polynomial

(x− c1)
d1(x− c2)

d2 · · · (x− ck)
dk ,

where c1, c2, . . . , ck are distinct (which means that c1 appears d1 times on the diagonal,
c2 appears d2 times on the diagonal, etc., and d1 +d2 + . . .+dk = n). Let V be the space
of all n× n matrices B such that AB = BA. Prove that the dimension of V is

d2
1 + d2

2 + . . . + d2
k.

7.4.10 For n ≥ 1 let M be an n × n complex matrix with distinct eigenvalues λ1, λ2, . . . , λk,
with multiplicities m1, m2, . . . ,mk, respectively. Consider the linear operator LM defined
by LM(X) = MX + XMT , for any complex n × n matrix X. Find its eigenvalues
and their multiplicities. (MT denotes the transpose of M ; that is, if M = (mk,l), then
MT = (ml,k).)

7.4.11 Let A be an n× n matrix with complex entries and suppose that n > 1. Prove that

AA = In ⇐⇒ ∃S ∈ GLn(C) such that A = SS
−1

.

(If A = [aij] then A = [aij], where aij is the complex conjugate of aij; GLn(C) denotes the
set of all n× n invertible matrices with complex entries, and In is the identity matrix.)

7.5. Matrix calculus.
7.5.1 Compute the determinant of the n× n matrix A = [aij], where

aij =

{
(−1)|i−j| if i 6= j

2 if i = j

7.5.2 Let A be a real 4× 2 matrix and B be a real 2× 4 matrix such that

AB =


1 0 −1 0
0 1 0 −1
−1 0 1 0
0 −1 0 1


Find BA.

7.5.3 Let M be an invertible 2n× 2n matrix, represented in block form as

M =

[
A B
C D

]
and M−1 =

[
E F
G H

]
Show that det M · det H = det A.

7.5.4 Let X be a non-singular matrix with columns (v1, v2, . . . , vn). Let Y be the matrix with
columns (v2, v3, . . . , vn, 0). Show that the matrixes A = Y X−1 and B = X−1Y have rank
n− 1 and have only 0’s for eigenvalues.
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7.5.5 a) Let the mapping f : Mn → R from the space of all real n × n matrices to the reals
be linear (ie. f(A + B) = f(A) + f(B) and f(cA) = cf(A)). Prove that there exists a
unique matrix C ∈ Mn such that f(A) = Trace(AC).

b) If in addition f(AB) = f(BA) for any A, B ∈ Mn, prove that there exists α ∈ R such
that f(A) = α · Trace(A).

7.5.6 For a n×n real matrix A, eA is defined as
∑∞

n=0
1
n!

An. Prove or disprove that for all real
polynomials p and square matrices A and B, p(eAB) is nilpotent if and only if p(eBA) is
nilpotent. (The matrix A is nilpotent if Ak = 0 for some k ∈ N.)

7.6. Sequences and series.

7.6.1 Calculate lim
n→∞

1n + 2n + ... + nn

nn
.

7.6.2 Let x1 = 2005, xn+1 = 1
4−3xn

for n ≥ 1. Find limn→∞ xn.

7.6.3 Let a0 =
√

2, b0 = 2,

an+1 =

√
2−

√
4− a2

n, bn+1 =
2bn

2 +
√

4 + b2
n

.

a) Prove that the sequences {an} and {bn} are decreasing and converge to 0.
b) Prove that the sequence {2nan} is increasing, the sequence {2nbn} is decreasing and
those two sequences converge to the same limit.
c) Prove that there is a positive constant c such that for all n the following inequality
holds 0 < bn − an < c

8n .

7.6.4 Suppose
∑∞

n=1 an < ∞. Do the following sums have to converge as well?
a) a1 + a2 + a4 + a3 + a8 + a7 + a6 + a5 + a16 + a15 + ... + a9 + a32 + ...,
b) a1 + a2 + a3 + a4 + a5 + a7 + a6 + a8 + a9 + a11 + a13 + a15 + a10 + a12 + a14 + a16 + ....

7.6.5 Suppose that an > 0,
∑∞

n=1 an = ∞ and sn = a1 + ... + an. Prove that
a)
∑∞

n=1
an

an+1
= ∞,

b)
∑∞

n=1
an

sn
= ∞,

c)
∑∞

n=1
an

s2
n

< ∞.

7.6.6 Let {εn}∞n=1 be a sequence of positive real numbers such that limn→∞ εn = 0. Find
limn→∞

1
n

∑n
k=1 ln

(
k
n

+ εn

)
.

7.7. Calculus.
7.7.1 Let f : R2 → R be given by f(x, y) = (X2 − y2)e−x2−y2 .

a) Prove that f attains its minimum and its maximum.
b) Determine all points (x, y) such that ∂f

∂x
(x, y) = ∂f

∂y
(x, y) = 0 and determine for which

of them f has global or local minimum or maximum.

7.7.2 Find lim
t→1−

(1− t)
∞∑

n=1

tn

1 + tn
, where t → 1− means that t approaches 1 from below.

7.7.3 Let f be a continuous function on [0, 1] such that for every x ∈ [0, 1] we have∫ 1

x

f(t) dt ≥ 1− x2

2
.
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Show that ∫ 1

0

f(t)2 dt ≥ 1

3
.

7.7.4 Suppose n is a natural number. Evaluate∫ π

−π

sin nx

(1 + 2x) sin x
dx

.
7.7.5 Let F : (1,∞) → R be the function defined by

F (x) :=

∫ x2

x

dt

ln t
.

Show that F is one-to-one (i.e. injective) and find the range (i.e. set of values) of F.
7.7.6 Prove that ∫ 1

0

∫ 1

0

dx dy

x−1 + | ln y| − 1
≤ 1.
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8. Hints

8.1. Basics.
8.1.1 Write down occurences for first few k.
8.1.2 How many elements can be larger than 1/k?
8.1.3 Both parts can be solved by looking at only two types subdivision operations, such as

one cube is divided into 2d cubes.
8.1.4 “Plot” the function. How many fixed-points can f have?
8.1.5 There exist integers u, v such that ru + sv = 1.
8.1.6 It is easier to construct such a sequence if you already have a sequence of lenght k− 1. . .

8.2. Abstract algebra.
8.2.1 You’re on your own here, sorry. . .
8.2.2 Let π be the permutation in question. πi(a1) = a1 if and only if i is a multiple of k − 1.

Similarly for b1 and c1. If πj fixes these three elements, then it fixes everything.
8.2.3 In the graph you move from x to ax to a2x to a3x and so on.
8.2.4 H is isomorphic to (has the same structure as) a subgroup of R. For part b recall that

the generators in particular are elements of H.
8.2.5 Look at squares like (a + b)2, (ab + c2), etc.
8.2.6 What is

∑
bi −

∑
ai? Recall that the characteristic is always a prime.

8.3. Polynomials over C.
8.3.1 Use complex numbers.
8.3.2 Find the product of the roots of Q(z) = 2zP ′(z)− nP (z). Then try to prove that Q has

no roots outside the unit circle; the formula for P ′/P from the lecture notes could be
useful.

8.3.3 It is enough to prove the inequality for x = 0.
8.3.4 Try interpolation, for example.
8.3.5 It is not very difficult now, just write down the system and be patient in doing calcula-

tions.
8.3.6 If a is a root of p of multiplicity k, then a is a root of p′ of multiplicity k − 1.

8.4. Linear algebra.
8.4.1 This is really a second degree problem.
8.4.2 Use four elements, two in each of T and U .
8.4.3 Assume that f1, . . . , fk are linearly independent, and determine what the coefficient of f

would have to be.
8.4.4

√
2 6∈ Q.

8.4.5 Check what A does to basis vectors.
8.4.6 A can be diagonalized (see Section 4.2). What are the Eigenvalues of A?
8.4.7 A matrix A always commutes with its. . .
8.4.8 Use a telescoping sum. For (b), consider eigenvalues of a suitable operator (not of F or

G).
8.4.9 Block matrices are useful here.

8.4.10 Construct the eigenvectors of LM(X) out of the eigenvectors of M and their transposes.
8.4.11 Construct S as a linear combination of A and In.
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