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Problem at the 1987 International Mathematical Olympiad:

Given that the polynomial f (x) = x2 + x + p yields primes for

x = 0, 1, 2, . . . ,
[√

p
3

]
. Show that it yields primes for

x = 0, 1, 2, . . . , p − 2.

Example

p = 41,

[√
41
3

]
= 3.

f (0) = 41, f (1) = 43, f (2) = 47, f (3) = 53.
So f (4), . . . , f (39), i.e. 61, 71, 83, 97, 113, . . . , 1601 are all primes.
(First observed by Euler in 1772.)
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Theorem

Let p be prime, and let fp(x) = x2 + x + p. Then the following
conditions are equivalent:

1 p = 2, 3, 5, 11, 17, 41

2 fp(x) is prime for x = 0, 1, 2, . . . ,
[√

p
3

]
.

3 fp(x) is prime for x = 0, 1, 2, . . . , p − 2.

4 Q(
√

1− 4p) has class number one.
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Gauss (”Disquisitiones Arithmeticae“, 1801) stated that Q(
√

D),
where D < 0, has class number one if
D = −1,−2,−3,−7,−11,−19,−43,−67,−163.

He asked if there were other imaginary quadratic fields that had
this property. It was shown independently by Baker and Stark in
1966 that Gauss’ list was complete.

p 2 3 5 11 17 41

1− 4p -7 -11 -19 -43 -67 -163

Christian Skau Gauss and Riemann versus elementary mathematics



Quadratic binary forms

f (x , y) = ax2 + bxy + cy2 ; a, b, c ∈ Z
Discriminant D = b2 − 4ac.

Example

f (x , y) = x2 + y2 ; D = −4.

Equivalent form to f (x , y):

f̃ (x , y) = f (αx + βy , γx + δy),

where αδ − βγ = 1, i.e. [
α β
γ δ

]
∈ SL2(Z)
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[
X
Y

]
=

[
α β
γ δ

] [
x
y

]
=

[
αx + βy
γx + δy

]
∈ Z2[

x
y

]
=

[
δ −β
−γ α

] [
X
Y

]
=

[
δX − βY
−γX + αY

]
∈ Z2
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Example

f̃ (x , y) = 13x2 − 42xy + 34y2 = f (2x − 3y ,−3x + 5y), where
f (x , y) = x2 + y2.
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If f (x , y) and f̃ (x , y) are equivalent forms, they have the same
discriminant.

Clearly f (x , y) and f̃ (x , y) have the same set of values as x and y
run through the integers Z.

Conversely, let g(x , y) and h(x , y) be two forms with the same
discriminant, and assume that g(x , y) and h(x , y) take the same
set of values as x and y run through Z. Then g(x , y) is equivalent
to h(x , y). (We assume the forms are irreducible and primitive, i.e.
the g.c.d. of the coefficients is 1.)
(Schering (1859), Chowla (1966), Perlis (1979))
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ax2 + bxy + cy2 ∼ AX 2 + BXY + CY 2

l l
(a, b, c) ∼ (A,B,C )

[
X
Y

]
=

[
α β
γ δ

] [
x
y

]
,

[
α β
γ δ

]
∈ SL2(Z).

D = b2 − 4ac = B2 − 4AC < 0.
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Associate the complex numbers

w =
−b +

√
D

2a
, w ′ =

−B +
√

D

2A
.

Then

w =
αw ′ + β

γw ′ + δ
.

A form is called reduced if its associated complex number w lies in
the fundamental domain for the modular group SL(2,Z). A form
is reduced if (a, b, c) satisfies −a < b ≤ a < c or 0 ≤ b ≤ a = c .
Every form is equivalent to a unique reduced form.
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w = −b+
√

D
2a

Re
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Let h(D) denote the number of inequivalent forms ax2 + bxy + cy2

of discriminant D = b2 − 4ac(≡ 0 or 1( mod 4)). Gauss proved
that h(D) is finite for all D.

Conjecture

The number of negative discriminants D < 0 which have a given
class number h is finite. In other words, h(D)→∞ as D → −∞.
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Fact

h(D) = 1⇔ Q(
√

D) has class number one,
i.e. the integers AD in

Q(
√

D) =
{
α + β

√
D
∣∣α, β ∈ Q

}
is a unique factorization domain ⇔ AD is a PID.

In our case, where D is of the form 1− 4n,

AD =

{
a + b

√
D

2

∣∣∣∣∣ a, b ∈ Z with same parity

}
.

(AD is the set of solutions to x2 + cx + d = 0; c, d ∈ Z, that lie in
Q(
√

D).

Christian Skau Gauss and Riemann versus elementary mathematics



There are 5 imaginary quadratic fields Q(
√

D) which are Euclidean
w.r.t the norm N(a + β

√
D) = (a + β

√
D)(a− β√D) = α2−Dβ2:

D = −1,−2,−3,−7,−11.

The units of AD are ±1 if D < 0, except for

D = −1{±1,±i} and D = −3

{
±1,±ρ,±ρ2

∣∣∣∣ρ =
−1 +

√−3

2

}
.

Example

Example of a non-unique factorization domain:

A−5 =
{

a + b
√−5

∣∣a, b ∈ Z
}
⊂ Q(

√−5).

6 = 2 · 3 = (1 +
√−5)(1−√−5).
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G. Rabinovitch, ”Eindeutigkeit der Zerlegung in
Primzahlfaktoren in quadratischer Zahlkörpern“.
Proceedings 5th Congress of Mathematicians, Cambridge
1912.

Theorem

Q(
√

1− 4p) has class number one ⇔ fp(x) = x2 + x + p is a
prime for x = 0, 1, 2, . . . , p − 2.

We will prove that if fp(x) is a prime for x = 0, 1, 2, . . . ,
[√

p
3

]
,

then Q(
√

1− 4p) has class number one.
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Proof

We must show that there exists a unique reduced form
ax2 + bxy + cy2, i.e.

− a < b ≤ a < c or 0 ≤ b ≤ a = c (∗)
such that the discriminant D equals 1− 4p, i.e.

D = b2 − 4ac = 1− 4p. (∗∗)
Since D is odd, b must be odd, say b = 2k + 1. By (∗∗) we get
(2k + 1)2 − 4ac = 4k2 + 4k + 1− 4ac = 1− 4p, and so

ac = k2 + k + p = fp(k). (∗ ∗ ∗)
The inequalities (∗), together with (∗∗), yield

−1−
[√

p
3

]
≤ k ≤

[√
p
3

]
. Since fp(−k) = fp(k − 1), we get by

(∗ ∗ ∗) and our assumption that ac is a prime. By (∗) we get
finally that a = 1, b = −1 and so by (∗∗), c = p. So the unique
reduced form is x2 − xy + py2. Hence the class number of
Q(
√

1− 4p) is one.
Christian Skau Gauss and Riemann versus elementary mathematics



The historical continuity of mathematics (Felix Klein
(1894))

Mathematics develops and progresses as old problems are being
understood and clarified by means of new methods.
Simultaneously, as a better and deeper understanding of the old
questions is thus obtained, new problems naturally arise.
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1

1− 1
ps

= 1 +
1

ps
+

1

(p2)s
+

1

(p3)s
+ · · · (Re(s) > 1).

∏
p

1

1− 1
ps

= (1 +
1

2s
+

1

(22)s
+

1

(23)s
+ · · · )

· (1 +
1

3s
+

1

(32)s
+

1

(33)s
+ · · · )

· (1 +
1

5s
+

1

(52)s
+

1

(53)s
+ · · · ) · · · ·

=
∑

i1<i2<···<ik

1

(p
ri1
i1
· · · prik

ik
)s

=
∞∑

n=1

1

ns
= ζ(s)

ζ(s) = 2s · πs−1 · sin
πs

2
· Γ(1− s) · ζ(1− s).

The functional equation for the Riemann zeta-function ζ(s).
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1

ζ(s)
=
∏

p

(
1− 1

ps

)
=

(
1− 1

2s

)(
1− 1

3s

)(
1− 1

5s

)
· · ·

= 1− 1

2s
− 1

3s
− 1

5s
+

1

6s
− 1

7s
+

1

10s
− · · · =

∞∑
n=1

µ(n)

ns

= s

∫ ∞
1

M(x)x−s−1 dx , where M(x) =
∑
n≤x

µ(n) (see next page).

µ(n) =


0 if n is not square-free

1 if n is square-free with an even number of distinct prime factors

−1 if n is square-free with an odd number of distinct prime factors

.

-1

-0.5

0.5

1

10 50403020
n

µ(n)
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∞∑
n=1

µ(n)

ns
= lim

N→∞

N∑
n=1

µ(n)

ns
.

By Abel’s partial summation we get:

N∑
n=1

µ(n)

ns
=

N∑
n=1

M(n)−M(n − 1)

ns

=
M(N)

Ns
−

N−1∑
n=1

M(n){f (n + 1)− f (n)}

=
M(N)

Ns
−

N−1∑
n=1

M(n)

∫ n+1

n

d
dx

(
1

x s

)
dx

=
M(N)

Ns
+ s

∫ N+1

1
M(x)x−s−1dx

−→
N→∞

s

∫ ∞
1

M(x)x−s−1dx
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Theorem (Hadamard and de la Vallée Poussin (1896))

Im

Re

critical line

critical strip

0 11
2

The Riemann zeta function ζ(s) has no
zeros on the line Re(s) = 1.

m
π(x)

x
log x

−→ 1 as x →∞,

where π(x) denotes the number of
primes ≤ x.
(The Prime Number Theorem)
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The Riemann Hypothesis (Riemann (1859))

The (non-trivial) zeros of the zeta-function ζ(s) lie on the
”critical“ line Re(s) = 1

2 .

Littlewood(1912)

The Riemann hypothesis is equivalent to M(x) = o(x1/2+ε) for all
ε > 0, i.e.

M(x)

x1/2+ε
−→ 0 as x →∞, where M(x) =

∑
n≤x

µ(n).
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Farey fractions Fn of order n:

Fn =

{
p

q

∣∣∣∣0 < p

q
≤ 1, q ≤ n

}
.

Let An = |Fn| and let Fn =
{
r1 < r2 < r3 < · · · < rAn = 1

1 = 1
}

.
Let

δ1 = r1− 1

An
, δ2 = r2− 2

An
, δ3 = r3− 3

An
, . . . , δAn = rAn−

An

An
(= 0).

Example

N = 5, F5 =

{
1

5
,

1

4
,

1

3
,

2

5
,

1

2
,

3

5
,

2

3
,

3

4
,

4

5
,

1

1
= 1

}
, A5 = 10.

10 1
10

2
10

3
10

6
10

7
10

8
10

9
10

4
10

5
10

r1 r2 r3 r4 r5 r6 r7 r8 r9 r10
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Theorem (Franel and Landau (1924))

The Riemann hypothesis is true
m

|δ1|+ |δ2|+ · · ·+ |δAn | = o(n1/2+ε) for all ε > 0 as n→∞.
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Proof of ⇑
Let f : [0, 1]→ C. Then

An∑
ν=1

f (rν) =
∞∑

k=1

k∑
j=1

f

(
j

k

)
M
(n

k

)
(∗)

Comment This is the key identity, where the rather irregular
operation of summing f over the Farey fractions can be expressed
more regularly using the function M and a double sum (we show
this later).
Formula (∗) applied to f (x) = e2πix gives

An∑
ν=1

e2πirν =
∞∑

k=1

k∑
j=1

e2πi j
k M

(n

k

)
= M(n)

since
k∑

j=1

e2πi j
k =

{
0 if k 6= 1

1 if k = 1
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Proof of ⇑ (cont.)

Set A = An. Then

M(n) =
A∑
ν=1

e2πirν

=
A∑
ν=1

e2πi[ ν
A

+δν]

=
A∑
ν=1

e2πi ν
A

[
e2πiδν − 1

]
+

A∑
ν=1

e2πi ν
A

so

|M(n)| ≤
A∑
ν=1

∣∣∣e2πiδν − 1
∣∣∣+ 0 ≤ 2

A∑
ν=1

|sin (πδν)| ≤ 2π
A∑
ν=1

|δν |.
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Lemma

With f as in the theorem

An∑
ν=1

f (rν) =
∞∑

k=1

k∑
j=1

f

(
j

k

)
M
(n

k

)
(∗)

Proof:
Let 0 < p ≤ q, p and q relatively prime. The term

f

(
p

q

)
= f

(
2p

2q

)
= f

(
3p

3q

)
= · · ·

occurs on the right hand side of (∗) with the coefficient

M

(
n

q

)
+ M

(
n

2q

)
+ M

(
n

3q

)
+ · · · =

{
1 if q ≤ n

0 if q > n
(∗∗)

and so we get (∗).
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Proof (cont.)

M(x) =
∑
k≤x

µ(k) =
∑

k

µ(k)D
(x

k

)
where

D(x) =

{
1 for x ≥ 1

0 for x < 1
.

By the Möbius inversion (see next page) we get
D(x) =

∑
k M

(
x
k

)
.

Set x = n
q , and we get (∗∗).
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Theorem

Möbius inversion Let f , g : R+ → C.

f (x) =
∑
n≤x

g
(x

n

)
⇔ g(x) =

∑
n≤x

µ(n)f
(x

n

)
Proof:

⇒: ∑
n≤x

µ(n)f
(x

n

)
=
∑
n≤x

µ(n)
∑
m≤ x

n

g
( x

mn

)
=
∑

mn≤x

µ(n)g
( x

mn

)
=
∑
r≤x

g
(x

r

)∑
n|r

µ(n)

= g
(x

1

)
= g(x)
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Proof ⇐

⇐: ∑
n≤x

g
(x

n

)
=
∑
n≤x

∑
m≤ x

n

µ(m)f
( x

mn

)
=
∑

mn≤x

µ(m)f
( x

mn

)
=
∑
r≤x

f
(x

r

)∑
m|r

µ(m)

= f
(x

1

)
= f (x)

We have used that
∑
d |n

µ(d) =

{
1 if n = 1

0 if n > 1.
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Dirichlet’s L-function

L(s, χ) =
∞∑

n=1

χ(n)

ns
=

∏
p prime

(
1− χ(p)

ps

)−1

, Re(s) > 1,

where χ : Z/qZ→ {roots of unity} is a character. L(s, χ) can be
extended to a holomorphic function on C (if χ is not the trivial
character).

The Generalized Riemann Hypothesis (GRH)

The (non-trivial) zeros of L(s, χ) lie on the line Re(s) = 1/2.

Theorem (Dirichlet (1839))

L(1, χ) = 2πh(D)/(const.
√|D|), where D = b2 − 4ac < 0 is the

discriminant of an imaginary quadratic form ax2 + bxy + cy2, and
h(D) is the class number. (χ is a primitive character mod D.)

Christian Skau Gauss and Riemann versus elementary mathematics



Theorem 1 (Hecke (1918))

If GRH is true, then h(D)→∞ as D → −∞.

Theorem 2 (Heilbronn (1934))

If GRH is false, then h(D)→∞ as D → −∞.

Corollary

Gauss’ conjecture about the class number for imaginary quadratic
forms is true.
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