

1777-1855

1826-1866

Gauss and Riemann versus elementary mathematics Given that the polynomial $f(x) = x^2 + x + p$ yields primes for $x = 0, 1, 2, ..., \left[\sqrt{\frac{p}{3}}\right]$. Show that it yields primes for x = 0, 1, 2, ..., p - 2.

Example

$$p = 41, \left[\sqrt{\frac{41}{3}}\right] = 3.$$

 $f(0) = 41, f(1) = 43, f(2) = 47, f(3) = 53.$
So $f(4), \dots, f(39)$, i.e. $61, 71, 83, 97, 113, \dots, 1601$ are all primes.
(First observed by Euler in 1772.)

Theorem

Let p be prime, and let $f_p(x) = x^2 + x + p$. Then the following conditions are equivalent:

$$p = 2, 3, 5, 11, 17, 41$$

2
$$f_p(x)$$
 is prime for $x = 0, 1, 2, ..., \left| \sqrt{\frac{p}{3}} \right|$.

3
$$f_p(x)$$
 is prime for $x = 0, 1, 2, ..., p - 2$

$$\mathbb{Q}(\sqrt{1-4p})$$
 has class number one.

The prime numbers between 5000 and 7498

 $41 < \sqrt{\frac{P}{3}} < 50$

		5189		5527	-		the second se		the second se					
	5003	5197	5387	5531	5693	5861	6053	6229	1 100	66.97				1 7202
	5009	5209	5393	5557	5701	5867	6055	6247	6367	6577	6761	6947	7103	7307
	5011	5227	5399	5563	5711	5869	6067	6257	6373	6581	6763	6949	7109	7309
	5021	4	5407	,,,,,,	6717	5879	6073	6262	6379	6599	6779	69591	7121	7321
	5023	5231	5413	5569	3/1/		6079	0205	6389	6607	6781	6061	17127	7331
		5233	deres	5573	5/37	5881	6089	6269	6397	6619	6791		7100	7333
	5039	5237	5417	5581	5741	5891	6091	6271	6400	6637	(1000	6967	1/129	17349
	5051	5261	15419	5591	5743	5903	6101	6277	0421	6652	67931	6971	7151	7261
	5059	5273	5431	5623	5749	5923	6101	6287	6427	16650	6803	6977	7159	7360
	5077	1 5270	5437		5770	5927	0115	6299	6449	0039	6823	6983	7177	/509
	5081	52/9	5441	5639	5703	6030	6121		6451	10001	6827	6991	7187	7393
	6007	15281	6442	5641	3763	3939	6131	6301	6469	6673	6829		7193	7411
	5087	5297	5445	5647	5791	5955	6133	6311	6473	6679	6022	6997	1100	7417
	5099	5303	2449	5651	5801	5981	6143	6317	6403	6689	0055	7001	7207	7433
	1 5101	5309	5471	5653	5807	5987	6151	6323	6461	6691	6841	7013	7211	7451
	5107	\$323	5477	1660-	5813	6007	6161	6329	0491	6701 1	6857	7019	7213	7487
	5113	5323	5479	30371	5821	6011	0105		6521	0/01	6863	7027	7219	/45/
	5110	63.63	5483	1 2029		6020	6175	0337	6529	6703	6869		7229	7459
	5147	2097	55011	5669	5827	6027	6197	6343	6547	6709	6871	7059		7477
	5197	5351	5503	5683	5839	6037	6199	6353	1 6551	6719	6993	7043	7237	7481
	2122	5381	5505	5689	5843	6043	6203	6359	6553	6733	6000	7057	7243	17487
- 1	5167		55071		5849	6047	6211	6361	6663	6737	0899	7069	7247	7490
	5171		5519		5851		6217		6565		0907	7079	7253	1.109
	5179		5521						0009		6911		7283	
					5857		6221		6571		6917	1	7307	
													7297	

Christian Skau Gauss and Riemann versus elementary mathematics

Gauss ("Disquisitiones Arithmeticae", 1801) stated that $\mathbb{Q}(\sqrt{D})$, where D < 0, has class number one if D = -1, -2, -3, -7, -11, -19, -43, -67, -163.

He asked if there were other imaginary quadratic fields that had this property. It was shown independently by Baker and Stark in 1966 that Gauss' list was complete.

Quadratic binary forms

$$f(x,y) = ax^2 + bxy + cy^2$$
; $a, b, c \in \mathbb{Z}$
Discriminant $D = b^2 - 4ac$.

Example

$$f(x, y) = x^2 + y^2$$
; $D = -4$.

Equivalent form to f(x, y):

$$\tilde{f}(x, y) = f(\alpha x + \beta y, \gamma x + \delta y),$$

where $\alpha\delta-\beta\gamma=$ 1, i.e.

$$egin{bmatrix} lpha & eta \ \gamma & \delta \end{bmatrix} \in \operatorname{SL}_2(\mathbb{Z})$$

$$\begin{bmatrix} X \\ Y \end{bmatrix} = \begin{bmatrix} \alpha & \beta \\ \gamma & \delta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \alpha x + \beta y \\ \gamma x + \delta y \end{bmatrix} \in \mathbb{Z}^{2}$$
$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \delta & -\beta \\ -\gamma & \alpha \end{bmatrix} \begin{bmatrix} X \\ Y \end{bmatrix} = \begin{bmatrix} \delta X - \beta Y \\ -\gamma X + \alpha Y \end{bmatrix} \in \mathbb{Z}^{2}$$

Example

$$\tilde{f}(x, y) = 13x^2 - 42xy + 34y^2 = f(2x - 3y, -3x + 5y)$$
, where $f(x, y) = x^2 + y^2$.

If f(x, y) and $\tilde{f}(x, y)$ are equivalent forms, they have the same discriminant.

Clearly f(x, y) and $\tilde{f}(x, y)$ have the same set of values as x and y run through the integers \mathbb{Z} .

Conversely, let g(x, y) and h(x, y) be two forms with the same discriminant, and assume that g(x, y) and h(x, y) take the same set of values as x and y run through \mathbb{Z} . Then g(x, y) is equivalent to h(x, y). (We assume the forms are irreducible and primitive, i.e. the g.c.d. of the coefficients is 1.) (Schering (1859), Chowla (1966), Perlis (1979))

$$\begin{array}{rcl} ax^2 + bxy + cy^2 & \sim & AX^2 + BXY + CY^2 \\ \uparrow & & \uparrow \\ (a, b, c) & \sim & (A, B, C) \end{array}$$

$$\begin{bmatrix} X \\ Y \end{bmatrix} = \begin{bmatrix} \alpha & \beta \\ \gamma & \delta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}, \quad \begin{bmatrix} \alpha & \beta \\ \gamma & \delta \end{bmatrix} \in \mathrm{SL}_2(\mathbb{Z}).$$
$$D = b^2 - 4ac = B^2 - 4AC < 0.$$

Associate the complex numbers

$$w=rac{-b+\sqrt{D}}{2a}, \qquad w'=rac{-B+\sqrt{D}}{2A}.$$

Then

$$w = \frac{\alpha w' + \beta}{\gamma w' + \delta}.$$

A form is called <u>reduced</u> if its associated complex number w lies in the fundamental domain for the modular group $SL(2, \mathbb{Z})$. A form is reduced if (a, b, c) satisfies $-a < b \le a < c$ or $0 \le b \le a = c$. Every form is equivalent to a unique reduced form.

Let h(D) denote the number of inequivalent forms $ax^2 + bxy + cy^2$ of discriminant $D = b^2 - 4ac (\equiv 0 \text{ or } 1 \pmod{4})$. Gauss proved that h(D) is finite for all D.

Conjecture

The number of negative discriminants D < 0 which have a given class number h is finite. In other words, $h(D) \rightarrow \infty$ as $D \rightarrow -\infty$.

Fact

 $h(D) = 1 \Leftrightarrow \mathbb{Q}(\sqrt{D})$ has class number one, i.e. the integers A_D in

$$\mathbb{Q}(\sqrt{D}) = \left\{ \alpha + \beta \sqrt{D} \big| \alpha, \beta \in \mathbb{Q} \right\}$$

is a unique factorization domain $\Leftrightarrow A_D$ is a PID.

In our case, where D is of the form 1 - 4n,

$$A_D = \left\{ \left. rac{a+b\sqrt{D}}{2}
ight| a,b\in\mathbb{Z} ext{ with same parity}
ight\}.$$

 $(A_D \text{ is the set of solutions to } x^2 + cx + d = 0; c, d \in \mathbb{Z}$, that lie in $\mathbb{Q}(\sqrt{D})$.

There are 5 imaginary quadratic fields $\mathbb{Q}(\sqrt{D})$ which are Euclidean w.r.t the norm $N(a + \beta\sqrt{D}) = (a + \beta\sqrt{D})(a - \beta\sqrt{D}) = \alpha^2 - D\beta^2$: D = -1, -2, -3, -7, -11.

The units of A_D are ± 1 if D < 0, except for

$$D = -1\{\pm 1, \pm i\}$$
 and $D = -3\left\{\pm 1, \pm
ho, \pm
ho^2 \left|
ho = rac{-1 + \sqrt{-3}}{2}
ight\}$

Example

Example of a non-unique factorization domain:

$$A_{-5}=\left\{ a+b\sqrt{-5}ig|a,b\in\mathbb{Z}
ight\} \subset\mathbb{Q}(\sqrt{-5}).$$

$$6 = 2 \cdot 3 = (1 + \sqrt{-5})(1 - \sqrt{-5}).$$

G. Rabinovitch, "Eindeutigkeit der Zerlegung in Primzahlfaktoren in quadratischer Zahlkörpern". Proceedings 5th Congress of Mathematicians, Cambridge 1912.

Theorem

 $\mathbb{Q}(\sqrt{1-4p})$ has class number one $\Leftrightarrow f_p(x) = x^2 + x + p$ is a prime for x = 0, 1, 2, ..., p - 2.

We will prove that if $f_p(x)$ is a prime for $x = 0, 1, 2, ..., \lfloor \sqrt{\frac{p}{3}} \rfloor$, then $\mathbb{Q}(\sqrt{1-4p})$ has class number one.

Proof

We must show that there exists a unique reduced form $ax^2 + bxy + cy^2$, i.e.

$$-a < b \le a < c$$
 or $0 \le b \le a = c$ (*)

such that the discriminant D equals 1 - 4p, i.e.

$$D = b^2 - 4ac = 1 - 4p.$$
 (**)

Since *D* is odd, *b* must be odd, say b = 2k + 1. By (**) we get $(2k + 1)^2 - 4ac = 4k^2 + 4k + 1 - 4ac = 1 - 4p$, and so

$$ac = k^2 + k + p = f_p(k).$$
 (***)

The inequalities (*), together with (**), yield $-1 - \left[\sqrt{\frac{p}{3}}\right] \le k \le \left[\sqrt{\frac{p}{3}}\right]$. Since $f_p(-k) = f_p(k-1)$, we get by (* * *) and our assumption that *ac* is a prime. By (*) we get finally that a = 1, b = -1 and so by (**), c = p. So the unique reduced form is $x^2 - xy + py^2$. Hence the class number of $\mathbb{Q}(\sqrt{1-4p})$ is one.

The historical continuity of mathematics (Felix Klein (1894))

Mathematics develops and progresses as old problems are being understood and clarified by means of new methods. Simultaneously, as a better and deeper understanding of the old questions is thus obtained, new problems naturally arise.

$$\begin{split} \frac{1}{1-\frac{1}{p^{s}}} &= 1+\frac{1}{p^{s}}+\frac{1}{(p^{2})^{s}}+\frac{1}{(p^{3})^{s}}+\cdots \quad (\operatorname{Re}(s)>1).\\ \prod_{p}\frac{1}{1-\frac{1}{p^{s}}} &= (1+\frac{1}{2^{s}}+\frac{1}{(2^{2})^{s}}+\frac{1}{(2^{3})^{s}}+\cdots)\\ &\quad \cdot (1+\frac{1}{3^{s}}+\frac{1}{(3^{2})^{s}}+\frac{1}{(3^{3})^{s}}+\cdots)\\ &\quad \cdot (1+\frac{1}{5^{s}}+\frac{1}{(5^{2})^{s}}+\frac{1}{(5^{3})^{s}}+\cdots)\cdots \\ &= \sum_{i_{1}< i_{2}< \cdots < i_{k}}\frac{1}{(p_{i_{1}}^{r_{i_{1}}}\cdots p_{i_{k}}^{r_{i_{k}}})^{s}}\\ &= \sum_{n=1}^{\infty}\frac{1}{n^{s}} = \zeta(s)\\ &\zeta(s) = 2^{s}\cdot\pi^{s-1}\cdot\sin\frac{\pi s}{2}\cdot\Gamma(1-s)\cdot\zeta(1-s). \end{split}$$
 The functional equation for the Riemann zeta-function $\zeta(s). \end{split}$

$$\begin{aligned} \frac{1}{\zeta(s)} &= \prod_{p} \left(1 - \frac{1}{p^{s}} \right) = \left(1 - \frac{1}{2^{s}} \right) \left(1 - \frac{1}{3^{s}} \right) \left(1 - \frac{1}{5^{s}} \right) \cdots \\ &= 1 - \frac{1}{2^{s}} - \frac{1}{3^{s}} - \frac{1}{5^{s}} + \frac{1}{6^{s}} - \frac{1}{7^{s}} + \frac{1}{10^{s}} - \cdots = \sum_{n=1}^{\infty} \frac{\mu(n)}{n^{s}} \\ &= s \int_{1}^{\infty} M(x) x^{-s-1} \, \mathrm{d}x, \text{ where } M(x) = \sum_{n \le x} \mu(n) \text{ (see next page)}. \end{aligned}$$

 $\mu(n) = \begin{cases} 0 & \text{if } n \text{ is not square-free} \\ 1 & \text{if } n \text{ is square-free with an even number of distinct prime factors} \\ -1 & \text{if } n \text{ is square-free with an odd number of distinct prime factors} \end{cases}$

Christian Skau Gauss and Riemann versus elementary mathematics

$$\sum_{n=1}^{\infty} \frac{\mu(n)}{n^s} = \lim_{N \to \infty} \sum_{n=1}^{N} \frac{\mu(n)}{n^s}.$$

By Abel's partial summation we get:

$$\sum_{n=1}^{N} \frac{\mu(n)}{n^s} = \sum_{n=1}^{N} \frac{M(n) - M(n-1)}{n^s}$$
$$= \frac{M(N)}{N^s} - \sum_{n=1}^{N-1} M(n) \{f(n+1) - f(n)\}$$
$$= \frac{M(N)}{N^s} - \sum_{n=1}^{N-1} M(n) \int_n^{n+1} \frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{1}{x^s}\right) \mathrm{d}x$$
$$= \frac{M(N)}{N^s} + s \int_1^{N+1} M(x) x^{-s-1} \mathrm{d}x$$
$$\xrightarrow[N \to \infty]{} s \int_1^{\infty} M(x) x^{-s-1} \mathrm{d}x$$

Theorem (Hadamard and de la Vallée Poussin (1896))

The Riemann Hypothesis (Riemann (1859))

The (non-trivial) zeros of the zeta-function $\zeta(s)$ lie on the "critical" line $\operatorname{Re}(s) = \frac{1}{2}$.

Littlewood(1912)

The Riemann hypothesis is equivalent to $M(x) = o(x^{1/2+\epsilon})$ for all $\epsilon > 0$, i.e.

$$\frac{M(x)}{x^{1/2+\epsilon}} \longrightarrow 0 \text{ as } x \to \infty, \text{ where } M(x) = \sum_{n \le x} \mu(n).$$

Farey fractions \mathcal{F}_n of order *n*:

$$\mathcal{F}_n = \left\{ \frac{p}{q} \left| 0 < \frac{p}{q} \le 1, \ q \le n \right\}.$$
et $A_n = |\mathcal{F}_n|$ and let $\mathcal{F}_n = \left\{ r_1 < r_2 < r_3 < \cdots < r_{A_n} = \frac{1}{1} = 1 \right\}.$ et

$$\delta_1 = r_1 - \frac{1}{A_n}, \ \delta_2 = r_2 - \frac{2}{A_n}, \ \delta_3 = r_3 - \frac{3}{A_n}, \dots, \delta_{A_n} = r_{A_n} - \frac{A_n}{A_n} \ (= 0).$$

Example

Christian Skau

Gauss and Riemann versus elementary mathematics

Theorem (Franel and Landau (1924))

The Riemann hypothesis is true

$$(\delta_1| + |\delta_2| + \dots + |\delta_{A_n}| = o(n^{1/2 + \epsilon}) \text{ for all } \epsilon > 0 \text{ as } n \to \infty.$$

Proof of ↑

Let $f : [0,1] \rightarrow \mathbb{C}$. Then

$$\sum_{\nu=1}^{A_n} f(r_{\nu}) = \sum_{k=1}^{\infty} \sum_{j=1}^k f\left(\frac{j}{k}\right) M\left(\frac{n}{k}\right) \tag{*}$$

<u>Comment</u> This is the key identity, where the rather irregular operation of summing f over the Farey fractions can be expressed more regularly using the function M and a double sum (we show this later).

Formula (*) applied to $f(x) = e^{2\pi i x}$ gives

$$\sum_{\nu=1}^{A_n} e^{2\pi i r_{\nu}} = \sum_{k=1}^{\infty} \sum_{j=1}^{k} e^{2\pi i \frac{j}{k}} M\left(\frac{n}{k}\right) = M(n)$$

since
$$\sum_{j=1}^{k} e^{2\pi i \frac{j}{k}} = \begin{cases} 0 & \text{if } k \neq 1\\ 1 & \text{if } k = 1 \end{cases}$$

Proof of \Uparrow (cont.)

Set $A = A_n$. Then

$$\begin{split} \mathcal{M}(n) &= \sum_{\nu=1}^{A} \mathrm{e}^{2\pi \mathrm{i} r_{\nu}} \\ &= \sum_{\nu=1}^{A} \mathrm{e}^{2\pi \mathrm{i} \left[\frac{\nu}{A} + \delta_{\nu}\right]} \\ &= \sum_{\nu=1}^{A} \mathrm{e}^{2\pi \mathrm{i} \frac{\nu}{A}} \left[\mathrm{e}^{2\pi \mathrm{i} \delta_{\nu}} - 1 \right] + \sum_{\nu=1}^{A} \mathrm{e}^{2\pi \mathrm{i} \frac{\nu}{A}} \end{split}$$

so

$$|M(n)|\leq \sum_{
u=1}^{A}\left|\mathrm{e}^{2\pi\mathrm{i}\delta_{
u}}-1
ight|+0\leq 2\sum_{
u=1}^{A}\left|\sin\left(\pi\delta_{
u}
ight)
ight|\leq 2\pi\sum_{
u=1}^{A}\left|\delta_{
u}
ight|.$$

Lemma

With f as in the theorem

$$\sum_{\nu=1}^{A_n} f(r_{\nu}) = \sum_{k=1}^{\infty} \sum_{j=1}^k f\left(\frac{j}{k}\right) M\left(\frac{n}{k}\right) \tag{*}$$

Proof:

Let 0 , p and q relatively prime. The term

$$f\left(\frac{p}{q}\right) = f\left(\frac{2p}{2q}\right) = f\left(\frac{3p}{3q}\right) = \cdots$$

occurs on the right hand side of (*) with the coefficient

$$M\left(\frac{n}{q}\right) + M\left(\frac{n}{2q}\right) + M\left(\frac{n}{3q}\right) + \dots = \begin{cases} 1 & \text{if } q \le n \\ 0 & \text{if } q > n \end{cases} \quad (**)$$

and so we get (*).

$$M(x) = \sum_{k \le x} \mu(k) = \sum_{k} \mu(k) D\left(\frac{x}{k}\right)$$

where

$$D(x) = egin{cases} 1 & ext{for } x \geq 1 \ 0 & ext{for } x < 1 \end{cases}.$$

By the Möbius inversion (see next page) we get $D(x) = \sum_{k} M\left(\frac{x}{k}\right)$. Set $x = \frac{n}{q}$, and we get (**).

Theorem

Möbius inversion Let $f, g : \mathbb{R}_+ \to \mathbb{C}$.

$$f(x) = \sum_{n \le x} g\left(\frac{x}{n}\right) \Leftrightarrow g(x) = \sum_{n \le x} \mu(n) f\left(\frac{x}{n}\right)$$

Proof:

 \Rightarrow :

$$\sum_{n \le x} \mu(n) f\left(\frac{x}{n}\right) = \sum_{n \le x} \mu(n) \sum_{m \le \frac{x}{n}} g\left(\frac{x}{mn}\right)$$
$$= \sum_{mn \le x} \mu(n) g\left(\frac{x}{mn}\right)$$
$$= \sum_{r \le x} g\left(\frac{x}{r}\right) \sum_{n|r} \mu(n)$$
$$= g\left(\frac{x}{1}\right) = g(x)$$

$\mathsf{Proof} \Leftarrow$

⇐:

$$\sum_{n \le x} g\left(\frac{x}{n}\right) = \sum_{n \le x} \sum_{m \le \frac{x}{n}} \mu(m) f\left(\frac{x}{mn}\right)$$
$$= \sum_{mn \le x} \mu(m) f\left(\frac{x}{mn}\right)$$
$$= \sum_{r \le x} f\left(\frac{x}{r}\right) \sum_{m|r} \mu(m)$$
$$= f\left(\frac{x}{1}\right) = f(x)$$

$$\left(ext{We have used that } \sum_{d \mid n} \mu(d) = egin{cases} 1 & ext{if } n = 1 \ 0 & ext{if } n > 1. \end{array}
ight)$$

$$L(s,\chi) = \sum_{n=1}^{\infty} \frac{\chi(n)}{n^s} = \prod_{p \text{ prime}} \left(1 - \frac{\chi(p)}{p^s}\right)^{-1}, \quad \text{Re}(s) > 1,$$

where $\chi : \mathbb{Z}/q\mathbb{Z} \to \{\text{roots of unity}\}\ \text{is a character.}\ L(s, \chi)\ \text{can be}\ \text{extended to a holomorphic function on } \mathbb{C}\ (\text{if }\chi\ \text{is not the trivial character}).$

The Generalized Riemann Hypothesis (GRH)

The (non-trivial) zeros of $L(s, \chi)$ lie on the line $\operatorname{Re}(s) = 1/2$.

Theorem (Dirichlet (1839))

 $L(1,\chi) = 2\pi h(D)/(const.\sqrt{|D|})$, where $D = b^2 - 4ac < 0$ is the discriminant of an imaginary quadratic form $ax^2 + bxy + cy^2$, and h(D) is the class number. (χ is a primitive character mod D.)

Theorem 1 (Hecke (1918))

If GRH is true, then $h(D) \rightarrow \infty$ as $D \rightarrow -\infty$.

Theorem 2 (Heilbronn (1934))

If GRH is false, then $h(D) \rightarrow \infty$ as $D \rightarrow -\infty$.

Corollary

Gauss' conjecture about the class number for imaginary quadratic forms is true.

D. Goldfeld.

Gauss' class number problem for imaginary quadratic fields. Bulletin AMS 13 (1985), 23-37.

P. Ribenboim.

Euler's famous prime generating polynomial and the class number of imaginary fields.

L'Enseign Math. 34 (1988), 23-42.

J. Oesterlé.

Le problème de Gauss sur le nombre de classes.

L'Enseign Math. 34 (1988), 47-67.

J. Sandbakken.

Et merkverdig problem av Euler og den endelige avklaringen av de tre klassiske problemer stilt av Gauss. NORMAT 38 (1990), 101-111.

H. M. Edwards. *Riemann's zeta function*. Dover Publications, 1974.

W. Narkiewicz.

The development of prime number theory. Springer Verlag, 2000.