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How many prime factors does a number with 100 digits
have?

Let n be a positive integer, we denote by ω(n) the number of
distinct prime factors of n and by Ω(n) the number or prime
factors of n with multiplicities.

Then our question is :
Suppose that

1099 ≤ n < 10100.

What can be said about ω(n) and Ω(n)?
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Bertrand’s postulate

For any n ≥ 2 there
exists a prime
number p,
n < p < 2n.

Stated by Bertrand in
1845 and checked by
him for n ≤ 3000000

Joseph Bertrand
(1822-1900)
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Proof

The result was proved
by Chebyshev in
1850, the proof
appeared also in
Edmund Landau’s
Handbuch der Lehre
von der Verteilung der
Primzahlen, 1903.
Two-page proof was
given by Ramanujan
in 1919.

Pafnuty Lvovich
Chebyshev
(1821-1894)
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Proof "From the Book" I

• If
(2n

n

)
is divisible by pk where p is a prime number then

(i) pk ≤ 2n (ii) if p >
√
2n then k = 1.

• Assume that there are no prime numbers between n and
2n then all prime factors of

(2n
n

)
are less than or equal to

2n/3.

•
∏

p≤m p < 4m by induction (from m to 2m + 1)!
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Proof "From the Book" II

4n = (1 + 1)2n ≤ (2n + 1)

(
2n
n

)
≤

(2n + 1)
∏

p≤
√

2n

pk(p)
∏

p≤2n/3

p ≤

(2n + 1)(2n)
√

2n42n/3.

It gives
4n/3 ≤ (2n + 1)(2n)

√
2n

which is false for n > 1000.
For n ≤ 1000 check by taking a sequence of prime numbers
2, 3, 5, 7, 13, 23, 43, 83, 163, 317, 631, 1009.
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How many prime factors does a number with 100 digits
have?

Let n be a positive integer, we denote by ω(n) the number of
distinct prime factors of n and by Ω(n) the number or prime
factors of n with multiplicities.

Then our question is :
Suppose that

10m−1 ≤ n < 10m.

What can be said about ω(n) and Ω(n)?
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Deterministic answer

Clearly,

1 ≤ ω(n) ≤ Ω(n) ≤ m
log 10
log 2

.

Moreover,
ω(n) ≤ C

m
logm

.

The inequalities are precise but "equalities" occur relatively
rare.

What is the typical value of ω(n) when 10m−1 ≤ n < 10m?
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A picture, thanks to Harald

ω(n) for n between 510000 and 511000

5.1 5.101 5.102 5.103 5.104 5.105 5.106 5.107 5.108 5.109 5.11

x 105

0
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(n), number of prime factors
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Average number of prime factors
Let us estimate the average number of prime factors for
integers not greater than n,

1
n

∑
k≤n

ω(k) =
1
n

∑
k≤n

∑
p|k

1 =

1
n

∑
p≤n

∑
k≤n:p|k

1 =
1
n

∑
p≤n

[
n
p

]
≈
∑
p≤n

1
p

Elementary estimate∑
p≤n

1
p

= log log n + O(1).

Then
En(ω) = log log n + O(1).
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Hardy and Ramanujan

Godfrey H. Hardy,
1877-1947

Srinivasa Ramanujan,
1887-1920
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Theorem of 1917: The Law of Large Numbers for ω(n).

Theorem
Let g(n)→∞ as n→∞ and let

Ag = {k : |ω(k)− log log k | ≤ g(k)
√

log log k}.

Then
lim

n→∞

|Ag ∩ {1, ..., n}|
n

= 1.

So a typical number with 100 digits would have
5.5 prime divisors.
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Turan’s proof from 1934

Idea: estimate the "variance"∑
k≤n

(ω(k)− log log n)2 =

∑
k≤n

ω(k)2−2 log log n
∑
k≤n

ω(k)+

+n(log log n)2

Pál Turán, 1910-1976
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Details

∑
k≤n

ω(k)2 =
∑
k≤n

(∑
p

δp(k)

)2

=
∑
k≤n

∑
p,q

δp(k)δq(k)

≤ O(n log log n) +
∑
p 6=q

[
n
pq

]
≤ O(n log log n) + n

∑
p,q≤n

1
pq

≤ O(n log log n) + n

(∑
p≤n

1
p

)2

= n(log log n)2 +O(n log log n)
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More details

Finally,
∑

k≤n(ω(k)− log log n)2 = O(n log log n).

Then

|{[n1/2], ..., n} \ Ag | ≤
Cn

min{g(m) :
√
n ≤ m ≤ n}

.

And the theorem follows.
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Some probability theory: LLN

Weak Law of Large Numbers
Let X1, ...,Xj , ... be a sequence of independent random
variables.
For any ε > 0

P

(
1
N
|

N∑
j=1

(Xj − E (Xj))| > ε

)
→ 0.
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1
N
|

N∑
j=1

(Xj − E (Xj))| > ε

)
→ 0.

If Xj have finite variances and
∑N

j=1 Var(Xj) = o(N2).

Idea of the proof: P{|Y | > ε} < ε−2E |Y |2 plus
independence, Y = (X1 + ... + Xn)/n. It gives
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Some probability theory: LLN
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P

(
1
N
|

N∑
j=1

(Xj − E (Xj))| > ε
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If Xj have finite variances and
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j=1 Var(Xj) = o(N2).
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1
N
|
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(Xj − E (Xj))| > εN

)
≤ ε−2

N

∑N
j=1 Var(Xj)
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Some probability theory: LLN

Weak Law of Large Numbers (Revised)
Let X1, ...,Xj , ... be a sequence of independent random
variables.

P

(
|

N∑
j=1

(Xj − E (Xj))| > aN

)
≤ a−2

N

N∑
j=1

Var(Xj)
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Probabilistic flavor of the number of prime factors

Prime factors: ω(k) =
∑

p δp(k) looks like a sum of
independent random variables Xj = δp, 1 ≤ k ≤ n,

Eδp =
1
n

[
n
p

]
≈ 1

p
, Varδp = E (δp)2 − (Eδp)2 ≈ 1

p
− 1

p2

∑
p≤n

Eδp =
∑
p≤n

1
p

+ O(1) = log log n + O(1)

∑
p≤n

Varδp = log log n + O(1)
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Probabilistic reading of the Hardy-Ramanujan theorem

Thinking of δp as of independent random variables suggests:

P

(
|
∑
p≤n

δp −
∑
p≤n

E (δp)| > a(n)

)
≤ a(n)−2 log log n

and the Hardy-Ramanujan theorem follows readily.

Before 1930s the result did not get much attention, but after
Turán’s work a number of articles followed, including works of
Paul Erdös. In the late 1930s Mark Kac noticed the strong
resemblance with probability theory and conjectured that ω(n)
enjoys the central limit theorem.
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More Probability Theory: CLT

Central Limit Theorem

Let {Xj} be a sequence of independent identically distributed
random variables. Let E(Xj) = µ and Var(Xj) = σ2. Then

lim
n→∞

P

(
a <

1
σ
√
n

n∑
1

(Xn − µ) ≤ b

)
=

1√
2π

∫ b

a
e−t2/2dt.

On the level of probability distributions CLT says "for
any (positive integrable) function f the sequence of
convolutions f ∗ f ∗ ... ∗ f (properly normalized) converges to
the bell-shape".
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Random peace-wise linear continuous function f1

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1
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First convolution f2 = f1 ∗ f1

2 4 6 8 10 12 14 16 18

0

0.5

1

1.5

2

2.5

3
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Next convolution f4 = f2 ∗ f2 = f1 ∗ f1 ∗ f1 ∗ f1

5 10 15 20 25 30 35

0

5

10

15

20

25

30

35

40
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And yet next convolution f8 = f4 ∗ f4

10 20 30 40 50 60 70 80

0

2000

4000

6000

8000

10000

12000

14000
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Proof of CLT

Take the Fourier transform!

F(f ∗ ... ∗ f ) = (F f )n, f is the distribution function of
X − E (X ), then f̂ (0) = 1, f̂ ′(0) = 0 and f̂ ′′(0) = −4π2σ2.
Proper normalization:

gn(τ) =

(
f̂ (

τ√
n

)

)n

gn(τ) = (f̂ (0) + f̂ ′(0)τ/
√
n + f̂ ′′(0)τ 2/(2n) + ...)n =

(1− 2πσ2τ 2/n + ...)n ≈ e−2πσ2τ2

Theorems of Hardy and Ramanujan and of Erdös and Kac



Proof of CLT

Take the Fourier transform!

F(f ∗ ... ∗ f ) = (F f )n, f is the distribution function of
X − E (X ), then f̂ (0) = 1, f̂ ′(0) = 0 and f̂ ′′(0) = −4π2σ2.

Proper normalization:

gn(τ) =

(
f̂ (

τ√
n

)

)n

gn(τ) = (f̂ (0) + f̂ ′(0)τ/
√
n + f̂ ′′(0)τ 2/(2n) + ...)n =

(1− 2πσ2τ 2/n + ...)n ≈ e−2πσ2τ2

Theorems of Hardy and Ramanujan and of Erdös and Kac



Proof of CLT

Take the Fourier transform!

F(f ∗ ... ∗ f ) = (F f )n, f is the distribution function of
X − E (X ), then f̂ (0) = 1, f̂ ′(0) = 0 and f̂ ′′(0) = −4π2σ2.
Proper normalization:

gn(τ) =

(
f̂ (

τ√
n

)

)n

gn(τ) = (f̂ (0) + f̂ ′(0)τ/
√
n + f̂ ′′(0)τ 2/(2n) + ...)n =

(1− 2πσ2τ 2/n + ...)n ≈ e−2πσ2τ2

Theorems of Hardy and Ramanujan and of Erdös and Kac



Proof of CLT

Take the Fourier transform!

F(f ∗ ... ∗ f ) = (F f )n, f is the distribution function of
X − E (X ), then f̂ (0) = 1, f̂ ′(0) = 0 and f̂ ′′(0) = −4π2σ2.
Proper normalization:

gn(τ) =

(
f̂ (

τ√
n

)

)n

gn(τ) = (f̂ (0) + f̂ ′(0)τ/
√
n + f̂ ′′(0)τ 2/(2n) + ...)n =

(1− 2πσ2τ 2/n + ...)n ≈ e−2πσ2τ2

Theorems of Hardy and Ramanujan and of Erdös and Kac



CLT for non-identically distributed random variables

Let {Xj} be a sequence of independent random variables. Let
E(Xj) = µj and Var(Xj) = σ2

j . Then

lim
n→∞

P

(
a <

1
(
∑n

1 σ
2
j )2

n∑
1

(Xn − µj) ≤ b

)
=

1√
2π

∫ b

a
e−t2/2dt.

Under some conditions on Xj . (Lindeberg’s condition of 1922)

Khinchin, Kolmogorov, 1933; Feller, Lévy, 1935, 1937
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CLT for number of prime factors

Theorem (Erdös, Kac, 1940)
If x ≤ y are real numbers and

Ax ,y = {m : x ≤ ω(m)− log logm
(log logm)1/2 ≤ y}

then

D(Ax ,y ) = lim
n→∞

|Ax ,y ∩ {1, ..., n}|
n

=
1√
2π

∫ y

x
e−u2/2du.
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Two brains better than one

Paul Erdös, 1913-1996 Mark Kac, 1914-1984
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Erdös on the birth of probabilistic number theory

"In 1934 Turán proved that is f is an irreducible polynomial,
then for almost all n, f (n) has about log log n prime factors.

...
A couple of years later I proved that the density of the integers
n for which ω(n) > log log n is 1/2.
...
At this time I could not have formulated even the special case
of the Erdös-Kac theorem due to my ignorance in Probability.
All these questions were cleared up when Kac and I met in
1939 in Baltimore and Princeton.

Theorems of Hardy and Ramanujan and of Erdös and Kac



Erdös on the birth of probabilistic number theory

"In 1934 Turán proved that is f is an irreducible polynomial,
then for almost all n, f (n) has about log log n prime factors.
...
A couple of years later I proved that the density of the integers
n for which ω(n) > log log n is 1/2.

...
At this time I could not have formulated even the special case
of the Erdös-Kac theorem due to my ignorance in Probability.
All these questions were cleared up when Kac and I met in
1939 in Baltimore and Princeton.

Theorems of Hardy and Ramanujan and of Erdös and Kac



Erdös on the birth of probabilistic number theory

"In 1934 Turán proved that is f is an irreducible polynomial,
then for almost all n, f (n) has about log log n prime factors.
...
A couple of years later I proved that the density of the integers
n for which ω(n) > log log n is 1/2.
...
At this time I could not have formulated even the special case
of the Erdös-Kac theorem due to my ignorance in Probability.

All these questions were cleared up when Kac and I met in
1939 in Baltimore and Princeton.

Theorems of Hardy and Ramanujan and of Erdös and Kac



Erdös on the birth of probabilistic number theory

"In 1934 Turán proved that is f is an irreducible polynomial,
then for almost all n, f (n) has about log log n prime factors.
...
A couple of years later I proved that the density of the integers
n for which ω(n) > log log n is 1/2.
...
At this time I could not have formulated even the special case
of the Erdös-Kac theorem due to my ignorance in Probability.
All these questions were cleared up when Kac and I met in
1939 in Baltimore and Princeton.

Theorems of Hardy and Ramanujan and of Erdös and Kac



Erdös on the birth of probabilistic number theory

I first met Kac in the Winter of 1938-39 in Baltimore. Later in
March 1939, he lectured on additive number theoretic
functions. ...

After his lecture we immediately got together. Neither of us
completely understood what the other was doing, but we
realized that our joint work will give the theorem and to be a
little impudent and conceited, Probabilistic Number Theory
was born.
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Sketch of a proof, I
Statement:

lim
n→∞

Pn

(
|ω(m)− log logm| ≤ x

√
log logm

)
= Φ(x)

• 1st reduction is trivial, it is enough to show that

lim
n→∞

Pn

(
|ω(m)− log log n| ≤ x

√
log log n

)
= Φ(x)

• 2nd reduction from the original proof of Erdös and Kac.
Let ωn(m) =

∑
p≤a(n) δp(m), where

a(n) = exp(log n/ log log n). Then it suffices to show

lim
n→∞

Pn

(
|ωn(m)− log log n| ≤ x

√
log log n

)
= Φ(x)

log log a(n) = log log n + o((log log n)1/2) but
a(n) = o(nq) for any q > 0.
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Sketch of a proof, II

Statement:

lim
n→∞

Pn

(
|ωn(m)− log log n| ≤ x

√
log log n

)
= Φ(x)

• Moment method, suggested to be used in the proof by
Kac in 1949, it is enough to show that for each s = 1, 2, ...

lim
n→∞

EY s
n =

1√
2π

∫
use−u2/2du

where Yn = (log log n)−1/2(ω − log log n).

Theorems of Hardy and Ramanujan and of Erdös and Kac



Sketch of a proof, II

Statement:

lim
n→∞

Pn

(
|ωn(m)− log log n| ≤ x

√
log log n

)
= Φ(x)

• Moment method, suggested to be used in the proof by
Kac in 1949, it is enough to show that for each s = 1, 2, ...

lim
n→∞

EY s
n =

1√
2π

∫
use−u2/2du

where Yn = (log log n)−1/2(ω − log log n).

Theorems of Hardy and Ramanujan and of Erdös and Kac



Sketch of a proof, III

• One more reduction, Billingsley, 1969. Introduce
independent random variables Xp such that Xp = 1 with
probability 1/p and Xp = 0 with probability 1− 1/p. Let
Ỹn = (log log n)−1/2(

∑
p≤a(n) Xp − log log n), moments of

Yn converge to those of Φ by CLT, one needs to estimate
E (Y s

n − Ỹ s
n ).
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Just compare!

 ∑
p≤a(n)

δp

s

=
∑

I

CI

∏
p∈I

δp,
∑

CI = π(a(n))s ≤ a(n)s .

En(
∏
p∈I

δp) =
1
n

[
n∏
p

]
, En(

∏
p∈I

Xp) =
1∏
p

Then

En((
∑

δp)s − (
∑

Xp)s) ≤ 1
n

∑
I

CI ≤
a(n)s

n

And by one more binomial formula

En(Y s
n − Ỹ s

n ) ≤ (a(n) + log log n)s

n(log log n)s/2
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Further results

• Everything above holds for Ω(n)

• Let πk(n) = |{m ≤ n : ω(m) = k}|. Asymptotic formula
for πk(n) as n→∞, Landau. Estimate for all k and n,
Hardy, Ramanujan; asymptotic formula when
k << log log n Sathe 1954, Selberg, 1954; Hildebrand,
Tenenbaum, 1988.

• From limit theorems to approximation theorems, rates of
convergence, I. P. Kubilyus 1962-64,..., Harper, 2009

• Erdös-Kac theorem for various sets of numbers, ...
Montgomery, Soundararajan, Granville, 2004/06
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Book tips

• P. Billigsley, Probability and Measure
• P. D. T. A. Elliott, Probabilistic Number theory, I, II
• G. Tenenbaum, Introduction to Analytic and Probabilistic
Number Theory

• N. Alon, J. H. Spencer, The Probabilistic Method
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