# Using elementary ideas from dynamics to get striking results in complex analysis

Berit Stensønes

November 16, 2012

$$f: C^n \to C^n$$
  
holomorphic (analytic)  
 $f(\mathbf{0}) = \mathbf{0}$   
fixed point

$$f^k = f \circ f \circ \cdots \circ f$$
 k-times  
What is the behavior of sequences  $\{f^k(z)\}$  for different points z

### Example

$$f(z)=z^2$$
 
$$|z|<1 \qquad f^k(z) \to 0$$
 
$$|z|>1 \qquad f^k(z) \to \infty$$
 
$$|z|=1 \qquad \text{rotation}$$

# Example — f(z) = z(1+z)



# Example — $f(z) = z(1+z^3)$



#### Picard's theorem

If f is an analytic function in C (entire), then  $f(C) = \{f(z); z \in C\}$  can avoid at most one point in C.

## Automorphisms

$$Aut(C^n) = \{F : C^n \to C^n; \text{ entire, } 1\text{-}1 \text{ and onto}\}$$

One variable

$$f(z)=az+b,\; a\neq 0.$$
 If  $f(0)=0$ , then  $f(z)=az$ 

The dynamics in this case

$$|a| < 1$$
 —  $f^k(z)$  converges to origin at all points  $|a| > 1$  —  $f^k(z)$  converges to infinity at all points but the origin  $|a| = 1$  — rotation

## Automorphisms in higher dimensions

#### Two variables

Shears 
$$F(z, w) = (z + f(w), w)$$
,  
Over-shears  $F(z, w) = (z, e^{g(z)}w)$ 

f and g entire functions

Allows us to create much more interesting automorphisms.

#### Example

Apply the map 
$$\begin{bmatrix} 0 & 1/2 \\ 1/2 & 0 \end{bmatrix} \begin{bmatrix} z \\ w \end{bmatrix} = (w/2, z/2)$$
 together with the shear  $(u, v) \rightarrow (u + (2v)^2, v)$  we obtain  $F(z, w) = \left(\frac{w}{2} + z^2, \frac{z}{2}\right)$   $F(0,0) = (0,0)$ 

#### Notice

If 
$$(z, w) \in B((0, 0), 1/4)$$
, then

$$||F(z,w)|| \leq \frac{3}{4}||(z,w)||$$

SO

$$||F^{k}(z,w)|| \leq \left(\frac{3}{4}\right)^{k} ||(z,w)||$$

and

$$F^k(z,w) \to (0,0)$$

$$F(z, w) = \left(\frac{w}{2} + z^2, \frac{z}{2}\right)$$
 continued

#### convergence to infinity

If 
$$(z, w) \in W = \{(z, w); |z| > |w|, |z| > 100\}$$
  
then  $|w/2 + z^2| > 99.5|z| > 100$ 



So  $F(W) \subset W$  and also  $||F^k(z, w)|| \to \infty$  as  $k \to \infty$  when  $(z, w) \in W$ .

## Region of attraction

$$\Omega = \{(z, w); F^k(z, w) \to (0, 0) \text{ as } k \to \infty\}$$
 Observe 
$$\Omega = \bigcup_{k=0}^{\infty} F^{-k}(B((0, 0), 1/4))$$

#### **NOTE**



#### Fatou-Bieberbach domains

A domain  $\Omega \subset C^n, \ \Omega \neq C^n$  is called a *Fatou-Bieberbach domain* if there exists a map

$$\Psi^{-1}:C^n\to\Omega$$

 $\Psi^{-1}$  is holomorphic and 1-1

or

 $\Psi:\Omega 
ightarrow extit{C}^n$  is holomorphic, 1-1 and onto

## Ψ-factory — Fatou-Bieberbach maps

Start with

$$F:C^n o C^n$$
 an automorphism  $F(\mathbf{0})=(\mathbf{0})$   $A=F'(\mathbf{0})$  eigenvalues  $|\lambda_1|<\cdots<|\lambda_n|<1$ 

Then there exists a small ball B around origin s.t.

$$F(B) \subset B$$
  
 $F^k(z) \to 0 \text{ for } z \in B$ 

Let 
$$\Omega = \bigcup_{k=0}^{\infty} F^{-k}(B)$$

Then there exists a map  $\Psi:\Omega\to \mathcal{C}^n$ , holomorphic, 1-1, *onto* 

## No Picard theorem in higher dimension

## Example in $C^2$ $F(z, w) = (w/2 + z^2, z/2)$



$$\Omega \cap W = \emptyset$$
 so  $\Omega$  is not dense in  $C^2$ , but is biholomorphic to  $C^2$ 

## Idea of proof

$$\begin{split} A &= F'(\mathbf{0}) \\ \Psi &= \lim_{k \to \infty} A^{-k} F^k \\ & \{ A^{-k} F^k \} \text{ converges uniformly om compacts in } \Omega \\ &\text{so } \Psi \text{ is } 1\text{-}1 \text{ and holomorphic in } \Omega \end{split}$$

## Observe first

$$\cup_{k=0}^{\infty} A^{-k}(B) = C^n$$

#### Also

$$F(\Omega) = \Omega$$

#### So

$$F^k(\Omega) = \Omega$$

#### Hence

 $B \subset F^k(\Omega)$  for every k



## therefore

$$\Psi(\Omega) \supset A^{-k}(B)$$
 for all  $k$ 

#### Hence

$$C^n = \bigcup_{k=0}^{\infty} A^{-k}(B) \subset \Psi(\Omega)$$

## More general about region of attraction

F an automorphism  $\Omega$  a connected component of  $\{F^k(p) \to \mathbf{0}\}$  Is  $\Omega$  biholomorphic to  $C^n$  when  $\Omega \neq \emptyset$  and open?

Han Peters, Liz Vivas, Erlend Wold: If  $F(\mathbf{0}) = (\mathbf{0})$  is an interior fixed point, then all eigenvalues of  $F'(\mathbf{0})$  have norm less than one.

The previous discussion shows that it is a Fatou-Bieberbach domain.

## Fixed point at the boundary of the region of attraction.

$$F(z, w) = (ze^{ze^{z+w}}, (w+z-ze^{z+w})e^{2ze^{ze^{z+w}}})$$

With the help of good old Taylor, we see that

$$F(z, w) = (z, w)(1 + z) + \mathcal{O}(\text{higher order terms})$$

#### Observe

$$F(0, w) = (0, w)$$
  
 $F'(\mathbf{0}) = Id$ 



$$\Omega_2 = \cup F^{-k}(\mathcal{B})$$

In this example, we can not use  $\{A^{-k}F^k\}$  where A=F'(0) to produce the map  $\Psi$ .

If we replace A by the second order approximation G of F near  $\mathbf{0}$ ,

then we get  $\Psi$  as

$$\Psi = \lim G^{-k} F^k$$

## A counterexample in $C^3$

$$(z, \zeta, w)$$

$$(z, \zeta, w + z\zeta)$$

$$(z, (x, w + z\zeta))$$

$$(ze^{(w+z\zeta)/2}, (ze^{(w+z\zeta)/2}, w + z\zeta)$$

$$(x, (x, y)) \rightarrow (x, (x, y) \rightarrow (x, (x, x) \rightarrow (x, (x, x) \rightarrow (x,$$

$$H(z,\zeta,w) = (ze^{\frac{1}{2}z\zeta e^{w+z\zeta}}, \zeta e^{\frac{1}{2}z\zeta e^{w+z\zeta}}, (w+z\zeta - e^{w+z\zeta})e^{2z\zeta e^{z\zeta e^{w+z\zeta}}})$$

$$H|_{\{z\zeta=0\}}=Id$$
 so  $\{z\zeta=0\}$  is not in the region of attraction.  $H'(\mathbf{0})=Id$ 

Region of attraction for H:

$$\Omega_3 = \{(z,\zeta,w); (z\zeta,w) \in \Omega_2\}$$

$$(z,\zeta,w)\to(z,z\zeta,w)$$

is a change of coordinates in  $\Omega_3$  and

$$(z,\zeta,w)\to (z,\Psi_2(z\zeta,w))$$

sends  $\Omega_3$  to  $C^* \times C^2$