

You can add alis ⁸	Analysis is almost algebra	You can order alis ⁹	Analysis is almost algebra
We can add linear functions. Can we add alis? • If f, g alis, then $f + g$ is ali: $\operatorname{cr}^{f+g}(a, b) = (f(a + b) + g(a + b)) - (f(a) + g(a)) - (f(b) + g(b))$ $= \operatorname{cr}^{f}(a, b) + \operatorname{cr}^{g}(a, b)$ • $f \approx f'$ and $g \approx g'$ implies $f + g \approx f' + g'$ • Ali(\mathbf{Z}, \mathbf{Z}) is an abelian group.	Agenta Bjern Ian Dundas Almost algebra Ali defined Alis add up You can order alis Alis multiply Half she Ali A retraction Bounds for Ali Ali is neal References Fun facts Pf of bounds	Ali(Z, Z) is an ordered abelian group If f is ali, exactly one of the following is true: • f is bounded ($f \approx 0$) • f is positive: { $f(x) x > 0$ } has no upper bound • f is negative: { $f(x) x > 0$ } has no lower bound We write $f \succ g$ if $f - g$ is positive.	aigeara Bjern Ian Dundas Almost aigebra Ali aifened Alis aidel up You can order alis Alis mittighy Haff the Ali A retraction Bounds for Ali Alis mali References Fun facts Pf of bounds
${}^{\circ}Z \cong Hom(Z, Z) \subseteq Ali(Z, Z) = {ali f : Z \rightarrow Z} / \approx.$		$\operatorname{Ali}(\mathbf{Z},\mathbf{Z}) = {\operatorname{ali} f: \mathbf{Z} \to \mathbf{Z}} / \approx.$	

Can you multiply alis? ¹⁰	Analysis is almost algebra	Is the <i>composite</i> of two alis an ali? ¹¹	
	Bjørn Ian Dundas		Bjørn Ian Dundas
	Almost algebra		
	Ali defined		
a The analysis of two (classes) linear functions is would not (classes) linear	Alis add up		
• The product of two (almost) linear functions is usually not (almost) linear: $f(u) = u + f(u) + f(u) = u^2$	You can order alis		
$T(X) = X, \ T(X) \cdot T(X) = X \ ,$	Alis multiply	 Expanding, we see that 	Alis multiply
$cr^{f \cdot f}(a, b) = (a + b)^2 - a^2 - b^2 = 2ab$	Half the Ali	$f_{0}\sigma(x) = f_{1}(x) (x) = f_{1}(x) (x) \sigma(x) (x) (x)$	
(a, b) $(a + b)$ $a + b + 2ab$	A retraction	$\operatorname{cr}^{r}(a,b) = \operatorname{cr}^{r}(g(a),g(b)) - \operatorname{cr}^{r}(g(a) + g(b),\operatorname{cr}^{s}(a,b)) - f(\operatorname{cr}^{s}(a,b)),$	
is without bounds.	Bounds for Ali	consequently if f and g are all so is the composite $fg = f \circ g$	
• The multiplication in $Z \leftrightarrow composition$ in Hom (Z, Z) .	References	consequently, if if and g are an, so is the composite ig = i o g.	
a is the composite of two alis an ali?	Fun facts		
	Pf of bounds		
10 Z \cong Hom(Z , Z) \subset Ali(Z , Z) = {ali $f: \mathbf{Z} \to \mathbf{Z}$ }/ \approx .		$\overline{{}^{11}\mathbf{Z}\cong Hom(\mathbf{Z},\mathbf{Z})\subseteq Ali(\mathbf{Z},\mathbf{Z})=\{ali\ f:\mathbf{Z}\to\mathbf{Z}\}/\approx}.$	

Two more elementary estimates		$fg \approx gf$	
	Bjørn Ian Dundas		Bjørn Ian Dundas
a If $f ali^{12}$ and a a positive integer. We proved by induction that			
I I and I a positive integer. We proved by induction that		If f and g ali, then $fg \approx gf$.	
$ f(nx) - nf(x) < nM^{-13}$	You can order alis		You can order alis
	Alis multiply	<i>Proof:</i> Let $x \neq 0$. Setting $y = g(x)$ in $ xf(y) - yf(x) < (x + y)C + D$ gives	Alis multiply
Similarly, there are constants A, B, C, D such that			
· · · · · · · · · · · · · · · · · · ·		xfg(x) - g(x)f(x) < (x + g(x))C + D.	
f(x) < A x + B			
		Swapping t and g and adding the resulting equations give	
xf(y) - yf(x) < (x + y)C + D.		$ y f_{\sigma}(y) = \sigma f(y) < (2 y + f(y) + \sigma(y))C + 2D$	
		x g(x) - g(x) < (2 x + f(x) + g(x))C + 2D.	
		Using that alis are bounded by linear functions and dividing by $ x $ we are done.	
10 (
cr'(a,b) < M where $cr'(a,b) = f(a+b) - f(a) - f(b)$			
we used this to deduce that $f(nx) \approx nf(x)$			

sis is almost algebra
Ian Dundas
t algebra
ined
d up
n order alis
ultiply
ie Ali
action
s for Ali
eal
nces
cts
ounds
ilge lar ine d t ulti s fe eal nee ets

$Ali(\mathbf{Z}, \mathbf{Z})$	is a f	field, I
-------------------------------	--------	----------

Ali(Z , Z) is a field, I		Ali(Z , Z) is a field, II	
	Bjørn Ian Dundas		Bjørn Ian Dundas
		Lemma	
Lemma		Assume the ali f is positive. Then the odd function given by	
Assume the ali f is positive. Then the odd function given by		$g(n) = \min\{q > 0 f(q) \ge n\}$ for $n > 0$	
$g(n) = \min\{q > 0 \mid f(q) \ge n\} \text{ for } n > 0$	Alis multiply Half the Ali	is ali and is the almost inverse of <i>f</i> .	Alis multiply Half the Ali
is ali and is the almost inverse of f.	A retraction	• " $g \approx f^{-1}$ ": ok	A retraction
• " $g pprox f^{-1}$ ": By definition $f(g(m)) \geq m \geq f(g(m)-1)$, giving		• g ali: By definition $f(g(n)) \ge n \ge f(g(n) - 1)$, giving	
0 < fg(m) - m < fg(m) - f(g(m) - 1),		fg(m+n)-f(g(m)-1)-f(g(n)-1) > 0 > f(g(m+n)-1)-fg(m)-fg(n).	
		Since f ali, both sides have bounded difference to	
and since f is all, the upper limit is bounded. Hence $fg(x) \approx 1 \cdot x$.		f(g(m+n)-g(m)-g(n)),	
		which itself consequently is bounded. Since f is positive, this means that the input $\operatorname{cr}^{g}(m,n) = g(m+n) - g(m) - g(n)$ is bounded.	

A retraction		Ali(Z , Z) has LUB	Analysis is almost algebra
	Bjørn lan Dundas		Bjørn Ian Dundas
• Identifying $n \in \mathbf{Z}$ with the ali nx , we see that if f is ali.			
· · · · · · · · · · · · · · · · · · ·		Theorem	
$ f = \max\{n \in \mathbb{Z} \mid f \succeq n\}$		If $S \subseteq Ali(\mathbf{Z}, \mathbf{Z})$ is nonempty and bounded above, then S has a least upper	
	Half the Ali	bound given by the odd function	
is well defined (the set is is nonempty and bounded above).	A retraction		A retraction
This gives a retraction		$f_{S}(n) = \max\{\lfloor ng \rfloor \mid g \in S\}, \qquad n \ge 0.^{a}$	Bounds for Ali
$f \mapsto f $			
$\operatorname{Ali}(\mathbf{Z},\mathbf{Z}) \xrightarrow{\operatorname{Ali}(\mathbf{Z},\mathbf{Z})} \mathbf{Z}.$		$[n] = \max\{n \in \mathbb{Z} \mid n \succeq n\}$	
		 Follows by inequality manipulations similar to what we've done 	
• $t \mapsto \lfloor t \rfloor$ is "ali": $\lfloor t + g \rfloor - \lfloor t \rfloor - \lfloor g \rfloor \in \{0, 1\}.$		ronows by inequality manipulations similar to what we ve done	

Ali(Z , Z) is real	Analysis is almost algebra	History and references	Analysis is almost algebra
Theorem If $S \subseteq Ali(\mathbf{Z}, \mathbf{Z})$ is nonempty and bounded above, then S has a least upper bound given by the odd function $f_S(n) = \max\{\lfloor ng \rfloor \mid g \in S\}, n \ge 0.^a$ ${}^a\lfloor h \rfloor = \max\{n \in \mathbf{Z} \mid h \ge n\}$ Corollary Ali(\mathbf{Z}, \mathbf{Z}) is a complete ordered field, and hence by Hölder: Ali(\mathbf{Z}, \mathbf{Z}) is isomorphic to \mathbf{R} .	Bjørn lan Dundas Almost algebro Ali defined Alis add up You can order alls Alis multiply Half the Ali A estraction Bounds for Ali Alis reaction Romes Fun facts Pf of bounds	 Steven Schanuel (unpublished, early 80's). Independently Richard Lewis? Ross Street, An efficient construction of the real numbers. Gazette Australian Math. Soc., 12:5758, 1985 (later improved). John Harrison. Theorem Proving with the Real Numbers. Technical report, University of Cambridge Computer Laboratory, 1996. Norbert ACampo. A natural construction for the real numbers. arXiv:math.GN/0301015 v1, 3 January 2003. R.D. Arthan, The Eudoxus Real Numbers, arXiv:math/0405454 v1, 24 May 2004. 	Bjørn lan Dundas Almost algebra Alls defined Alls add up Vola can order alls Alls multiply Half the All Al etraction Bounds for All All is real References Fun facts Pf of bounds

