Petter Andreas Bergh 25th November 2016 Which positive numbers can be written as the sum of two integer squares?

Two squares

Which positive numbers can be written as the sum of two integer squares?

1	=	$1^2 + 0^2$
2	=	$1^2 + 1^2$
3	=	?
4	=	$2^2 + 0^2$
5	=	$2^2 + 1^2$
6	=	?
7	=	?

Two squares

Which positive numbers can be written as the sum of two integer squares?

$$1 = 1^{2} + 0^{2}$$

$$2 = 1^{2} + 1^{2}$$

$$3 = ?$$

$$4 = 2^{2} + 0^{2}$$

$$5 = 2^{2} + 1^{2}$$

$$6 = ?$$

$$7 = ?$$

Boils down to looking at prime numbers:

$$(a^{2} + b^{2})(c^{2} + d^{2}) = (ac + bd)^{2} + (ad - bc)^{2}$$

$$\mathbf{p} = \mathbf{2} \qquad \mathbf{p} \equiv \mathbf{1} \pmod{4} \qquad \mathbf{p} \equiv \mathbf{3} \pmod{4}$$

$$p = 2$$
 $p \equiv 1 \pmod{4}$
 $p \equiv 3 \pmod{4}$

 2
 =
 $1^2 + 1^2$

p = 2	$\mathbf{p}\equiv 1 \pmod{4}$	$\mathbf{p} \equiv 3 \pmod{4}$
$2 = 1^2 + 1^2$	$5 = 2^2 + 1^2$	
	$13 = 3^2 + 2^2$	
	$17 = 4^2 + 1^2$	
	$29 = 5^2 + 2^2$	

:

p = 2	$\mathbf{p}\equiv 1 \pmod{4}$	$\mathbf{p}\equiv3\ (mod4)$
$2 = 1^2 + 1^2$	$5 = 2^2 + 1^2$	3 = ?
	$13 = 3^2 + 2^2$	7 = ?
	$17 = 4^2 + 1^2$	11 = ?
	$29 = 5^2 + 2^2$	19 = ?
		:

p = 2	$\mathbf{p}\equiv 1 \pmod{4}$	$\mathbf{p} \equiv 3 \pmod{4}$
$2 = 1^2 + 1^2$	$5 = 2^2 + 1^2$	3 = ?
	$13 = 3^2 + 2^2$	7 = ?
	$17 = 4^2 + 1^2$	11 = ?
	$29 = 5^2 + 2^2$	19 = ?
	:	:

Observation

No number $n \equiv 3 \pmod{4}$ can be the sum of two squares.

p = 2	$\mathbf{p}\equiv 1 \pmod{4}$	$\mathbf{p}\equiv3~(mod~4)$
$2 = 1^2 + 1^2$	$5 = 2^2 + 1^2$	3 = ?
	$13 = 3^2 + 2^2$	7 = ?
	$17 = 4^2 + 1^2$	11 = ?
	$29 = 5^2 + 2^2$	19 = ?
	:	:

Observation

No number $n \equiv 3 \pmod{4}$ can be the sum of two squares.

Proof: if $a \in \mathbb{Z}$ then $a^2 \equiv 0, 1 \pmod{4}$ so $a^2 + b^2 \equiv 0, 1, 2 \pmod{4}$ for all $a, b \in \mathbb{Z}$.

Theorem [Fermat-Girard-Euler]

An odd prime p is the sum of two squares if (and only if) $p \equiv 1 \pmod{4}$.

Theorem [Fermat-Girard-Euler]

An odd prime p is the sum of two squares if (and only if) $p \equiv 1 \pmod{4}$.

- Stated by Fermat in 1640 (no proof).
- Observed earlier by Girard.
- First proof: Euler in 1752–1755.
- Completely elementary proof: Heath-Brown in 1984.

Theorem [Fermat-Girard-Euler]

An odd prime p is the sum of two squares if (and only if) $p \equiv 1 \pmod{4}$.

Zagier's one-sentence proof (1990):

The involution on the finite set $S = \{(x, y, z) \in \mathbb{N}^3 \mid p = x^2 + 4yz\}$ defined by

$$(x, y, z) \mapsto \begin{cases} (x + 2z, z, y - x - z) & \text{if } x < y - z \\ (2y - x, y, x - y + z) & \text{if } y - z < x < 2y \\ (x - 2y, x - y + z, y) & \text{if } 2y < x \end{cases}$$

has exactly one fixed point, so |S| is odd and the involution defined by $(x, y, z) \mapsto (x, z, y)$ also has a fixed point.

Two squares/three squares

Theorem - two squares

A positive number is the sum of two squares if and only if every prime divisor $p \equiv 3 \pmod{4}$ appears an even number of times.

Two squares/three squares

Theorem - two squares

A positive number is the sum of two squares if and only if every prime divisor $p \equiv 3 \pmod{4}$ appears an even number of times.

Theorem - three squares [Legendre, 1797/1798]

A positive number is the sum of three squares if and only if it is *not* of the form $4^n(8m+7)$ for integers $n, m \ge 0$.

Smallest non-example: 7

Which positive numbers can be written as the sum of four integer squares?

Four squares

Which positive numbers can be written as the sum of four integer squares?

Four squares

Which positive numbers can be written as the sum of four integer squares?

Boils down to looking at prime numbers:

$$(a^{2} + b^{2} + c^{2} + d^{2})(x^{2} + y^{2} + z^{2} + w^{2}) = \begin{cases} (ax + by + cz + dw)^{2} & + \\ (ay - bx + cw - dz)^{2} & + \\ (az - bw - cx + dy)^{2} & + \\ (aw + bz - cy - dx)^{2} \end{cases}$$

Theorem [Lagrange, 1770]

Every positive number is the sum of four integer squares.

Theorem [Lagrange, 1770]

Every positive number is the sum of four integer squares.

- Proved by Lagrange in 1770.
- Proof accessible to first year students.
- Problem goes back to Diophantus (3rd century).
- Jacobi (1834): simple formula for the number of four squares representations.

Waring, 1770:

Given $k \ge 1$, is there a number t_k such that every positive number is the sum of t_k kth powers of non-negative integers?

Waring, 1770:

Given $k \ge 1$, is there a number t_k such that every positive number is the sum of t_k kth powers of non-negative integers?

- Edward Waring (1736–1798).
- English mathematician, Cambridge.
- Lucasian Professor of Mathematics 1760–1798.
- Other conjecture: every odd number ≥ 3 is either prime or the sum of three primes.

Waring, 1770:

Given $k \ge 1$, is there a number t_k such that every positive number is the sum of t_k kth powers of non-negative integers?

- Trivially we may take $t_1 = 1$.
- Lagrange's four squares theorem: $t_2 = 4$ works (and is minimal: 7 is not the sum of 3 squares: $7 = 2^2 + 1^2 + 1^2 + 1^2$).
- Wieferich, 1909: every positive number is the sum of 9 cubes, so $t_3 = 9$ works (and is minimal: 23 is not the sum of 8 cubes: $23 = 2^3 + 2^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3)$.

Theorem [Hilbert, 1909]

Yes: for every $k \ge 1$ there is a number t_k such that every positive number is the sum of t_k kth powers of non-negative integers.

Theorem [Hilbert, 1909]

Yes: for every $k \ge 1$ there is a number t_k such that every positive number is the sum of t_k kth powers of non-negative integers.

- Complicated analytic proof.
- Gives no explicit bound for t_k .
- Modern proofs: Hardy-Littlewood, Vinogradov, elementary one by Linnik.

Definition

g(k) = smallest number such that every number is the sum of g(k) kth powers.

Definition

g(k) = smallest number such that every number is the sum of g(k) kth powers.

- g(1) = 1.
- g(2) = 4 (Lagrange, 1770).
- g(3) = 9 (Wieferich, 1909).
- g(4) = 19 (Balasubramanian, Deshouillers, Dress, 1986).
- g(5) = 37 (Chen, 1964).
- g(6) = 73 (Pillai, 1940).

Formula for g(k)?

g(k) = smallest number such that every number is the sum of g(k) kth powers.

Formula for g(k)?

g(k) = smallest number such that every number is the sum of g(k) kth powers.

Look at the number $n=2^k\cdot \left[(3/2)^k\right]-1$:

Formula for g(k)?

g(k) = smallest number such that every number is the sum of g(k) kth powers.

Look at the number $n=2^k\cdot\left[(3/2)^k\right]-1$:

•
$$n < 2^k \cdot (3/2)^k - 1 = 3^k - 1 < 3^k$$
.

Formula for g(k)?

g(k) = smallest number such that every number is the sum of g(k) kth powers.

Look at the number $n=2^k\cdot\left[(3/2)^k\right]-1$:

•
$$n < 2^k \cdot (3/2)^k - 1 = 3^k - 1 < 3^k$$
.

• Therefore: can only use
$$1^k$$
 and 2^k to represent n .

Formula for g(k)?

g(k) = smallest number such that every number is the sum of g(k) kth powers.

Look at the number $n=2^k\cdot\left[(3/2)^k\right]-1$:

•
$$n < 2^k \cdot (3/2)^k - 1 = 3^k - 1 < 3^k$$
.

- Therefore: can only use 1^k and 2^k to represent n.
- Minimal representation:

$$n = \underbrace{2^{k} + \dots + 2^{k}}_{[(3/2)^{k}] - 1} + \underbrace{1^{k} + \dots + 1^{k}}_{2^{k} - 1}$$

Formula for g(k)?

g(k) = smallest number such that every number is the sum of g(k) kth powers.

Look at the number $n = 2^k \cdot \left[(3/2)^k \right] - 1$:

•
$$n < 2^k \cdot (3/2)^k - 1 = 3^k - 1 < 3^k$$
.

- Therefore: can only use 1^k and 2^k to represent n.
- Minimal representation:

$$n = \underbrace{2^{k} + \dots + 2^{k}}_{[(3/2)^{k}] - 1} + \underbrace{1^{k} + \dots + 1^{k}}_{2^{k} - 1}$$

Lower bound

$$g(k) \geq \left[(3/2)^k \right] + 2^k - 2$$

Lower bound

 $g(k) \geq \left[(3/2)^k \right] + 2^k - 2$

$$g(1) = 1 = [(3/2)^{1}] + 2^{1} - 2 \qquad g(4) = 19 = [(3/2)^{4}] + 2^{4} - 2$$

$$g(2) = 4 = [(3/2)^{2}] + 2^{2} - 2 \qquad g(5) = 37 = [(3/2)^{5}] + 2^{5} - 2$$

$$g(3) = 9 = [(3/2)^{3}] + 2^{3} - 2 \qquad g(6) = 73 = [(3/2)^{6}] + 2^{6} - 2$$

Lower bound

 $g(k) \geq \left[(3/2)^k \right] + 2^k - 2$

$$\begin{array}{rcrcrcrc} g(1)=1 & = & \left[(3/2)^1\right]+2^1-2 & g(4)=19 & = & \left[(3/2)^4\right]+2^4-2 \\ g(2)=4 & = & \left[(3/2)^2\right]+2^2-2 & g(5)=37 & = & \left[(3/2)^5\right]+2^5-2 \\ g(3)=9 & = & \left[(3/2)^3\right]+2^3-2 & g(6)=73 & = & \left[(3/2)^6\right]+2^6-2 \end{array}$$

Theorem [Dickson, Pillai, Niven, 1936–1944] If $(3/2)^k - [(3/2)^k] \le 1 - [(3/2)^k] / 2^k$ then $g(k) = [(3/2)^k] + 2^k - 2$.

Lower bound

 $g(k) \geq \left[(3/2)^k \right] + 2^k - 2$

$$\begin{array}{rcrcrcrc} g(1)=1 & = & \left[(3/2)^1\right]+2^1-2 & g(4)=19 & = & \left[(3/2)^4\right]+2^4-2 \\ g(2)=4 & = & \left[(3/2)^2\right]+2^2-2 & g(5)=37 & = & \left[(3/2)^5\right]+2^5-2 \\ g(3)=9 & = & \left[(3/2)^3\right]+2^3-2 & g(6)=73 & = & \left[(3/2)^6\right]+2^6-2 \end{array}$$

Theorem [Dickson, Pillai, Niven, 1936–1944]

If $(3/2)^k - [(3/2)^k] \le 1 - [(3/2)^k]/2^k$ then $g(k) = [(3/2)^k] + 2^k - 2$.

- Condition confirmed for $k \leq 471600000$.
- Mahler, 1957: there exists a k₀ (undetermined) such that condition holds for k ≥ k₀.

Definition

G(k) = smallest number such that every sufficiently large number is the sum of G(k) kth powers.

Definition

G(k) = smallest number such that every **sufficiently large** number is the sum of G(k) kth powers.

- $G(k) \leq g(k)$.
- G(1) = 1 = g(1).
- G(2) = 4 = g(2) since four squares is needed for all $n \equiv 7 \pmod{8}$.
- $\triangleright g(3) = 9.$
 - ▷ Dickson, 1939: every number except 23 and 239 requires only 8 cubes, so $G(3) \le 8$.
 - ▷ Linnik, 1943: $G(3) \leq 7$.
 - \triangleright 4 \leq G(3) \leq 7, but precise value unknown.

Little is known about G(k) in general.

Theorem

 $G(k) \ge k+1$ for all k > 1.

Theorem

 $G(k) \ge k+1$ for all k > 1.

•
$$P(N) = \#\{n \le N \mid \text{there exist } x_1, \ldots, x_k \in \mathbb{Z} \text{ with } n = x_1^k + \cdots + x_k^k\}.$$

Theorem

 $G(k) \ge k+1$ for all k > 1.

- $P(N) = \#\{n \le N \mid \text{there exist } x_1, \ldots, x_k \in \mathbb{Z} \text{ with } n = x_1^k + \cdots + x_k^k\}.$
- S(N) = # solutions to $0 \le x_1 \le \cdots \le x_k \le N^{1/k}$ $(x_i \in \mathbb{Z}).$

Theorem

 $G(k) \ge k+1$ for all k > 1.

- $P(N) = \#\{n \le N \mid \text{there exist } x_1, \ldots, x_k \in \mathbb{Z} \text{ with } n = x_1^k + \cdots + x_k^k\}.$
- S(N) = # solutions to $0 \le x_1 \le \cdots \le x_k \le N^{1/k}$ $(x_i \in \mathbb{Z}).$
- $P(N) \leq S(N)$.

Theorem

 $G(k) \ge k+1$ for all k > 1.

- $P(N) = \#\{n \le N \mid \text{there exist } x_1, \ldots, x_k \in \mathbb{Z} \text{ with } n = x_1^k + \cdots + x_k^k\}.$
- S(N) = # solutions to $0 \le x_1 \le \cdots \le x_k \le N^{1/k}$ $(x_i \in \mathbb{Z}).$
- $P(N) \leq S(N)$.
- $S(N) = 1/k! ([N^{1/k}] + 1) ([N^{1/k}] + 2) \cdots ([N^{1/k}] + k) \sim N/k!$ for $N \gg 0$.

Theorem

 $G(k) \ge k+1$ for all k > 1.

- $P(N) = \#\{n \le N \mid \text{there exist } x_1, \ldots, x_k \in \mathbb{Z} \text{ with } n = x_1^k + \cdots + x_k^k\}.$
- S(N) = # solutions to $0 \le x_1 \le \cdots \le x_k \le N^{1/k}$ $(x_i \in \mathbb{Z}).$
- $P(N) \leq S(N)$.
- $S(N) = 1/k! ([N^{1/k}] + 1) ([N^{1/k}] + 2) \cdots ([N^{1/k}] + k) \sim N/k!$ for $N \gg 0$.
- If G(k) ≤ k, then there exists an m with P(N) ≥ N − m for all N.
 Contradiction: N − m ≤ P(N) ≤ S(N) ~ N/k!.

- f(x) integer valued polynomial with
 - $\,\triangleright\,$ positive degree (so not a constant) and positive leading coefficient,
 - \triangleright no common divisor among $f(0), f(1), f(2), \ldots$

- f(x) integer valued polynomial with
 - $\,\triangleright\,$ positive degree (so not a constant) and positive leading coefficient,
 - \triangleright no common divisor among $f(0), f(1), f(2), \ldots$
- Example: $f(x) = a_k x^k + \cdots + a_1 x + 1$ with $a_i \in \mathbb{Z}$ and $a_k > 0$.

- f(x) integer valued polynomial with
 - $\,\triangleright\,$ positive degree (so not a constant) and positive leading coefficient,
 - \triangleright no common divisor among $f(0), f(1), f(2), \ldots$
- Example: $f(x) = a_k x^k + \cdots + a_1 x + 1$ with $a_i \in \mathbb{Z}$ and $a_k > 0$.

Theorem [Kamke, 1921]

(1) The set $S = \{0, f(0), f(1), f(2), ...\}$ is an **asymptotic basis of finite order**: there exists a *t* such that every sufficiently large number is the sum of *t* elements in *S*

- f(x) integer valued polynomial with
 - ▷ positive degree (so not a constant) and positive leading coefficient,
 - \triangleright no common divisor among $f(0), f(1), f(2), \ldots$
- Example: $f(x) = a_k x^k + \cdots + a_1 x + 1$ with $a_i \in \mathbb{Z}$ and $a_k > 0$.

Theorem [Kamke, 1921]

(1) The set $S = \{0, f(0), f(1), f(2), ...\}$ is an **asymptotic basis of finite order**: there exists a *t* such that every sufficiently large number is the sum of *t* elements in *S*

(2) If $0, 1 \in U = \{f(0), f(1), f(2), ... \}$, then U is a **basis of finite order**: there exists a v such that every positive number is the sum of v elements in U.

- f(x) integer valued polynomial with
 - $\,\triangleright\,$ positive degree (so not a constant) and positive leading coefficient,
 - \triangleright no common divisor among $f(0), f(1), f(2), \ldots$
- Example: $f(x) = a_k x^k + \cdots + a_1 x + 1$ with $a_i \in \mathbb{Z}$ and $a_k > 0$.

Theorem [Kamke, 1921]

(1) The set $S = \{0, f(0), f(1), f(2), ...\}$ is an **asymptotic basis of finite order**: there exists a *t* such that every sufficiently large number is the sum of *t* elements in *S*

(2) If $0, 1 \in U = \{f(0), f(1), f(2), ...\}$, then U is a **basis of finite order**: there exists a v such that every positive number is the sum of v elements in U.

Hilbert-Waring theorem: $f(x) = x^k$.

- Algebraic number field $\mathbb{Q} \subseteq F \subseteq \mathbb{C}$.
- Ring of integers $R_F = \{ \alpha \in F \mid \alpha \text{ root in some monic integer polynomial} \}.$
- R_F is a generalization of \mathbb{Z} (if $F = \mathbb{Q}$ then $R_F = \mathbb{Z}$).

- Algebraic number field $\mathbb{Q} \subseteq F \subseteq \mathbb{C}$.
- Ring of integers $R_F = \{ \alpha \in F \mid \alpha \text{ root in some monic integer polynomial} \}.$
- R_F is a generalization of \mathbb{Z} (if $F = \mathbb{Q}$ then $R_F = \mathbb{Z}$).

Example

If
$$F = \mathbb{Q}(\sqrt{3})$$
 then $R_F = \{a + b\sqrt{3} \mid a, b \in \mathbb{Z}\}.$

- Algebraic number field $\mathbb{Q} \subseteq F \subseteq \mathbb{C}$.
- Ring of integers $R_F = \{ \alpha \in F \mid \alpha \text{ root in some monic integer polynomial} \}.$
- R_F is a generalization of \mathbb{Z} (if $F = \mathbb{Q}$ then $R_F = \mathbb{Z}$).

Example

If
$$F = \mathbb{Q}(\sqrt{3})$$
 then $R_F = \{a + b\sqrt{3} \mid a, b \in \mathbb{Z}\}$. For $a + b\sqrt{3} \in R_F$

$$(a+b\sqrt{3})^2 = (a^2+3b^2) + 2ab\sqrt{3}$$

- Algebraic number field $\mathbb{Q} \subseteq F \subseteq \mathbb{C}$.
- Ring of integers $R_F = \{ \alpha \in F \mid \alpha \text{ root in some monic integer polynomial} \}.$
- R_F is a generalization of \mathbb{Z} (if $F = \mathbb{Q}$ then $R_F = \mathbb{Z}$).

Example

If
$$F = \mathbb{Q}(\sqrt{3})$$
 then $R_F = \{a + b\sqrt{3} \mid a, b \in \mathbb{Z}\}$. For $a + b\sqrt{3} \in R_F$

$$(a+b\sqrt{3})^2 = (a^2+3b^2)+2ab\sqrt{3}.$$

So no $u + v\sqrt{3} \in R_F$ with v odd can be the sum of squares.

- Algebraic number field $\mathbb{Q} \subseteq F \subseteq \mathbb{C}$.
- Ring of integers $R_F = \{ \alpha \in F \mid \alpha \text{ root in some monic integer polynomial} \}.$
- R_F is a generalization of \mathbb{Z} (if $F = \mathbb{Q}$ then $R_F = \mathbb{Z}$).

Theorem [Siegel, 1944-1946]

For $k \ge 1$, let A_k be the set of all $\alpha \in R_F$ which **can** be written as a sum of kth powers in R_F . Then there is a t_k such that every $\alpha \in A_k$ is the sum of t_k kth powers in R_F .