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Two squares

Which positive numbers can be written as the sum of two integer squares?

1 = 12+0°
2 = 17+17
8 = 7

4 = 2240
5 = 22+1?
6 = ?

7

= ¥

Boils down to looking at prime numbers:

(a® + b?)(c? + d?) = (ac + bd)? + (ad — bc)?
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Two squares

Three types of prime numbers:

p=2 p=1 (mod4) p=3 (mod4)
2 = 12412 5 = 22 3 ?
18 = 32422 7 ?
17 = 42412 11 = 7
29 52 4 22 19 ?

Observation

No number n =3 (mod4) can be the sum of two squares.

Proof: if a € Z then a> = 0,1 (mod4) so a®> + b?> =0,1,2 (mod4) for all a,b € Z.
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Two squares

Theorem [Fermat-Girard-Euler]

An odd prime p is the sum of two squares if (and only if) p =1 (mod4).

Stated by Fermat in 1640 (no proof).

Observed earlier by Girard.
First proof: Euler in 1752-1755.

Completely elementary proof: Heath-Brown in
1984.




Two squares

Theorem [Fermat-Girard-Euler]

An odd prime p is the sum of two squares if (and only if) p =1 (mod4).

Zagier's one-sentence proof (1990):
The involution on the finite set S = {(x,y,z) € N3 | p = x> + 4yz} defined by
(x+2z,z,y —x—2z) ifx<y-—z

(x,y,z2) =< Qy—x,y,x—y+2z) ify—z<x<2
(x =2y, x—y+2zy) if2y <x

has exactly one fixed point, so |S| is odd and the involution defined by
(x,y,z) — (x,z,y) also has a fixed point.



Two squares/three squares

Theorem - two squares
A positive number is the sum of two squares if and only if every prime divisor
p =3 (mod4) appears an even number of times.



Two squares/three squares

Theorem - two squares
A positive number is the sum of two squares if and only if every prime divisor
p =3 (mod4) appears an even number of times.

Theorem - three squares [Legendre, 1797 /1798]
A positive number is the sum of three squares if and only if it is not of the form
4"(8m + 7) for integers n,m > 0.

Smallest non-example: 7
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Four squares

Which positive numbers can be written as the sum of four integer squares?

1

W N

12 + 07 + 07 + 0?
12 + 12 4 02 + 02
12 + 1% + 17 40
22 + 02 + 02 + 0
22 +12 + 02 + 02

6
7
8
9
10

22+12+ 12+ 02
22 412 + 12 + 12 (need four)
22 +224+0%+ 0
32+ 02 + 0% 4 02
32 +12 4+ 0% 4 02



Four squares

Which positive numbers can be written as the sum of four integer squares?

1

W N

Boils down

(32+b2+C2+d2)(X2+y2+22+W2):

— 12402402402
— PP aP
= 12412412407
= 2240°+0°+0°

22 +124+0%+ 07

6
7
8
9
10

to looking at prime numbers:

22+12+12+02
22 412 + 12 + 12 (need four)
22 4+ 22 + 02 + 02
32 4+0% 402+ 0
32 +1%2+02+02

ax + by + cz+dw)?® +
2

_|_

( )
(ay — bx + cw — dz)
(az — bw — cx + dy)? +
( )

aw + bz — cy — dx)?



Four squares

Theorem [Lagrange, 1770]
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Four squares

Theorem [Lagrange, 1770]

Every positive number is the sum of four integer squares.

Proved by Lagrange in 1770.

Proof accessible to first year students.

Problem goes back to Diophantus (3rd

century).

Jacobi (1834): simple formula for the number

of four squares representations.
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Waring’'s Problem

Waring, 1770:
Given k > 1, is there a number t, such that every positive number is the sum of t

kth powers of non-negative integers?

Edward Waring (1736-1798).
English mathematician, Cambridge.
Lucasian Professor of Mathematics 1760-1798.

Other conjecture: every odd number > 3 is

either prime or the sum of three primes.




Waring’'s Problem

Waring, 1770:
Given k > 1, is there a number t, such that every positive number is the sum of t
kth powers of non-negative integers?

e Trivially we may take t; = 1.

e Lagrange's four squares theorem: t, = 4 works (and is minimal: 7 is not the sum
of 3 squares: 7 =22+ 12 +12 4 12).

o Wieferich, 1909: every positive number is the sum of 9 cubes, so t3 = 9 works

(and is minimal: 23 is not the sum of 8 cubes:
23=234+28 + 13413+ 134+ 13413 +134+19).
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of tx kth powers of non-negative integers.



Waring’'s Problem

Theorem [Hilbert, 1909]

Yes: for every k > 1 there is a number t; such that every positive number is the sum
of tx kth powers of non-negative integers.

e Complicated analytic proof.
e Gives no explicit bound for t.

e Modern proofs: Hardy-Littlewood, Vinogradov,
elementary one by Linnik.
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Waring’'s Problem

Definition

g(k) = smallest number such that every number is the sum of g(k) kth powers.

e g(1)=1

e g(2) =4 (Lagrange, 1770).

e g(3) =9 (Wieferich, 1909).

e g(4) =19 (Balasubramanian, Deshouillers, Dress, 1986).
e g(5) =37 (Chen, 1964).

e g(6) = 73 (Pillai, 1940).
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Look at the number n = 2% [(3/2)k] — 1
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e Minimal representation:
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[(3/2)F]-1 26-1




Waring’'s Problem

Formula for g(k)?

g(k) = smallest number such that every number is the sum of g(k) kth powers.

Look at the number n = 2% [(3/2)k] — 1

e n<2k.(3/2)k —1=3k-1<3k
e Therefore: can only use 1¥ and 2% to represent n.
e Minimal representation:
pn=2K4 . 4ok 1k . 4k
[(3/2)F]-1 26-1

Lower bound
g(k) > [(3/2)k] + 2k -2



Waring’'s Problem

Lower bound
g(k) = [(3/2)k] + 2k -2

gl)=1 = [(3/2)}]+2t-2 g(4)=19 = [(3/2)*] +2*-2
g2)=4 = [(3/2?]+22-2 g(5)=37 = [(3/2)°] +2°-2
g3)=9 = [(3/2)}]+23-2 g(6) =73 = [(3/2)°] +2°-2



Waring’'s Problem

Lower bound
g(k) > [(3/2)4] +2 —2

gl)=1 = [(3/2)}]+2t-2 g(4)=19 = [(3/2)*] +2*-2
g2)=4 = [(3/2?]+22-2 g(5)=37 = [(3/2)°] +2°-2
g3)=9 = [(3/2)}]+23-2 g(6) =73 = [(3/2)°] +2°-2

Theorem [Dickson, Pillai, Niven, 1936-1944]
If (3/2)% — [(3/2)k] < 1— [(3/2)¥] /2* then g(k) = [(3/2)¥] + 2k —2.



Waring’'s Problem

Lower bound
g(k) > [(3/2)4] +2 —2

1 = [(3/2)'] +2'-2 g(4)=19 = [(3/2)*] +2*-2
g2)=4 = [(3/2?]+22-2 g(5)=37 = [(3/2)°] +2°-2
9 [(3/2)%] +23 -2 g(6) =73 = [(3/2)°] +2°-2

Theorem [Dickson, Pillai, Niven, 1936-1944]
If (3/2)% — [(3/2)k] < 1— [(3/2)¥] /2* then g(k) = [(3/2)¥] + 2k —2.

e Condition confirmed for k < 471600000.
e Mabhler, 1957: there exists a ko (undetermined) such that condition holds for
k> ko.



Waring’'s Problem - asymptotic version

Definition
G(k) = smallest number such that every sufficiently large number is the sum of
G(k) kth powers.



Waring’'s Problem - asymptotic version

Definition
G(k) = smallest number such that every sufficiently large number is the sum of

G(k) kth powers.

o G(k) < g(k).

o G(1)=1=g(1).

e G(2) =4 = g(2) since four squares is needed for all n =7 (mod8).
> g(3)=9.

> Dickson, 1939: every number except 23 and 239 requires only 8 cubes, so G(3) < 8.

> Linnik, 1943: G(3) < 7.
> 4 < G(3) <7, but precise value unknown.

Little is known about G(k) in general.
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G(k) > k+1 forall k> 1.
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e P(N) < S(N).
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Theorem
G(k) > k+1 forall k> 1.

Friday afternoon proof:

e P(N)=#{n < N | there exist xi,...,xx € Z with n = x{ +--- + xf}.

e S(N) = # solutions to 0 < x3 < -+ < x, < N/k (xi € Z).

e P(N) < S(N).

o S(N)=1/k! ([NYK] +1) ([NY5] +2) - ([NY] + k) ~ N/k! for N > 0.



Waring’'s Problem - asymptotic version

Theorem
G(k) > k+1 forall k> 1.

Friday afternoon proof:

e P(N)=#{n < N | there exist xi,...,xx € Z with n = x{ +--- + xf}.

o S(N) =4 solutions to 0 < x; < --- < x, < NVk  (x; € Z).

o P(N) < S(N).

o S(N)=1/k! ([NYK] +1) ([NY5] +2) - ([NY] + k) ~ N/k! for N > 0.

If G(k) < k, then there exists an m with P(N) > N — m for all N.
Contradiction: N —m < P(N) < S(N) ~ N/k!.
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e f(x) integer valued polynomial with
> positive degree (so not a constant) and positive leading coefficient,

> no common divisor among f(0), (1), f(2),...
e Example: f(x) = agx* + - 4 a;x + 1 with a; € Z and a > 0.
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exists a v such that every positive number is the sum of v elements in U.



Generalized Waring’'s Problem - polynomials

e f(x) integer valued polynomial with

> positive degree (so not a constant) and positive leading coefficient,
> no common divisor among f(0), (1), f(2),...

e Example: f(x) = agx* + - 4 a;x + 1 with a; € Z and a > 0.

Theorem [Kamke, 1921]
(1) The set S = {0, f(0),f(1),f(2),...} is an asymptotic basis of finite order:

there exists a t such that every sufficiently large number is the sum of t elements in S

(2) If 0,1 € U ={f(0),f(1),f(2),...}, then U is a basis of finite order: there
exists a v such that every positive number is the sum of v elements in U.

Hilbert-Waring theorem: f(x) = x.
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e Ring of integers Re = {a € F | @ root in some monic integer polynomial}.
e Rf is a generalization of Z (if F = Q then Re = 7).



Waring’'s Problem - algebraic number fields

e Algebraic number field Q C F C C.
e Ring of integers Re = {a € F | @ root in some monic integer polynomial}.
e Rf is a generalization of Z (if F = Q then Re = 7).

Example
If F=Q(v3) then Rp = {a+ bV3|a,beZ}.
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e Algebraic number field Q C F C C.
e Ring of integers Re = {a € F | @ root in some monic integer polynomial}.
e Rf is a generalization of Z (if F = Q then Re = 7).

Example
If F=Q(v/3) then Rp = {a+ b\/3 | a,be Z}. Fora+ bV3 € Rg:

(a + b\/§>2 = (2% 4 3b%) + 2abV/3.



Waring’'s Problem - algebraic number fields

e Algebraic number field Q C F C C.
e Ring of integers Re = {a € F | @ root in some monic integer polynomial}.
e Rf is a generalization of Z (if F = Q then Re = 7).

Example
If F=Q(+v/3) then Re = {a+ bv/3 | a,bc Z}. For a+ by/3 € RE:

(a + b\/§>2 = (2% 4 3b%) + 2abV/3.

So no u+ vv/3 € Rr with v odd can be the sum of squares.



Waring’'s Problem - algebraic number fields

e Algebraic number field Q C F C C.
e Ring of integers Re = {a € F | @ root in some monic integer polynomial}.

e Rf is a generalization of Z (if F = Q then Re = 7).

Theorem [Siegel, 1944-1946]
For k > 1, let Ax be the set of all & € Rg which can be written as a sum of kth

powers in Re. Then there is a t; such that every o € Ax is the sum of t, kth powers
in RF.



