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Two squares

Which positive numbers can be written as the sum of two integer squares?

1 = 12 + 02

2 = 12 + 12

3 = ?

4 = 22 + 02

5 = 22 + 12

6 = ?

7 = ?

Boils down to looking at prime numbers:

(a2 + b

2)(c2 + d

2) = (ac + bd)2 + (ad � bc)2
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Two squares

Three types of prime numbers:

p = 2 p ⌘ 1 (mod 4) p ⌘ 3 (mod 4)

2 = 12 + 12 5 = 22 + 12

13 = 32 + 22

17 = 42 + 12

29 = 52 + 22

...

3 = ?

7 = ?

11 = ?

19 = ?
...

Observation

No number n ⌘ 3 (mod 4) can be the sum of two squares.

Proof: if a 2 Z then a

2 ⌘ 0, 1 (mod 4) so a

2 + b

2 ⌘ 0, 1, 2 (mod 4) for all a, b 2 Z.
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Two squares

Theorem [Fermat-Girard-Euler]

An odd prime p is the sum of two squares if (and only if) p ⌘ 1 (mod 4).

• Stated by Fermat in 1640 (no proof).

• Observed earlier by Girard.

• First proof: Euler in 1752–1755.

• Completely elementary proof: Heath-Brown in

1984.
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Two squares

Theorem [Fermat-Girard-Euler]

An odd prime p is the sum of two squares if (and only if) p ⌘ 1 (mod 4).

Zagier’s one-sentence proof (1990):

The involution on the finite set S = {(x , y , z) 2 N3 | p = x

2 + 4yz} defined by

(x , y , z) 7!

8
><

>:

(x + 2z , z , y � x � z) if x < y � z

(2y � x , y , x � y + z) if y � z < x < 2y

(x � 2y , x � y + z , y) if 2y < x

has exactly one fixed point, so |S | is odd and the involution defined by

(x , y , z) 7! (x , z , y) also has a fixed point.



Two squares/three squares

Theorem - two squares

A positive number is the sum of two squares if and only if every prime divisor

p ⌘ 3 (mod 4) appears an even number of times.

Theorem - three squares [Legendre, 1797/1798]

A positive number is the sum of three squares if and only if it is not of the form

4n(8m + 7) for integers n,m � 0.

Smallest non-example: 7
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Four squares

Which positive numbers can be written as the sum of four integer squares?

1 = 12 + 02 + 02 + 02

2 = 12 + 12 + 02 + 02

3 = 12 + 12 + 12 + 02

4 = 22 + 02 + 02 + 02

5 = 22 + 12 + 02 + 02

6 = 22 + 12 + 12 + 02

7 = 22 + 12 + 12 + 12 (need four)

8 = 22 + 22 + 02 + 02

9 = 32 + 02 + 02 + 02

10 = 32 + 12 + 02 + 02

Boils down to looking at prime numbers:

(a2 + b

2 + c

2 + d

2)(x2 + y

2 + z

2 + w

2) =

(ax + by + cz + dw)2 +

(ay � bx + cw � dz)2 +

(az � bw � cx + dy)2 +

(aw + bz � cy � dx)2
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Four squares

Theorem [Lagrange, 1770]

Every positive number is the sum of four integer squares.

• Proved by Lagrange in 1770.

• Proof accessible to first year students.

• Problem goes back to Diophantus (3rd

century).

• Jacobi (1834): simple formula for the number

of four squares representations.
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Waring’s Problem

Waring, 1770:

Given k � 1, is there a number tk such that every positive number is the sum of tk
kth powers of non-negative integers?

• Edward Waring (1736–1798).

• English mathematician, Cambridge.

• Lucasian Professor of Mathematics 1760–1798.

• Other conjecture: every odd number � 3 is

either prime or the sum of three primes.
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Waring’s Problem

Waring, 1770:

Given k � 1, is there a number tk such that every positive number is the sum of tk
kth powers of non-negative integers?

• Trivially we may take t1 = 1.

• Lagrange’s four squares theorem: t2 = 4 works (and is minimal: 7 is not the sum

of 3 squares: 7 = 22 + 12 + 12 + 12).

• Wieferich, 1909: every positive number is the sum of 9 cubes, so t3 = 9 works

(and is minimal: 23 is not the sum of 8 cubes:

23 = 23 + 23 + 13 + 13 + 13 + 13 + 13 + 13 + 13).



Waring’s Problem

Theorem [Hilbert, 1909]

Yes: for every k � 1 there is a number tk such that every positive number is the sum

of tk kth powers of non-negative integers.

• Complicated analytic proof.

• Gives no explicit bound for tk .

• Modern proofs: Hardy-Littlewood, Vinogradov,

elementary one by Linnik.
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Waring’s Problem

Definition

g(k) = smallest number such that every number is the sum of g(k) kth powers.

• g(1) = 1.

• g(2) = 4 (Lagrange, 1770).

• g(3) = 9 (Wieferich, 1909).

• g(4) = 19 (Balasubramanian, Deshouillers, Dress, 1986).

• g(5) = 37 (Chen, 1964).

• g(6) = 73 (Pillai, 1940).
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Waring’s Problem

Formula for g(k)?

g(k) = smallest number such that every number is the sum of g(k) kth powers.

Look at the number n = 2k ·
⇥
(3/2)k

⇤
� 1:

• n < 2k · (3/2)k � 1 = 3k � 1 < 3k .

• Therefore: can only use 1k and 2k to represent n.

• Minimal representation:

n = 2k + · · ·+ 2k| {z }
[(3/2)k ]�1

+1k + · · ·+ 1k| {z }
2k�1

Lower bound

g(k) �
⇥
(3/2)k

⇤
+ 2k � 2
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Waring’s Problem

Lower bound

g(k) �
⇥
(3/2)k

⇤
+ 2k � 2

g(1) = 1 =
⇥
(3/2)1

⇤
+ 21 � 2 g(4) = 19 =

⇥
(3/2)4

⇤
+ 24 � 2

g(2) = 4 =
⇥
(3/2)2

⇤
+ 22 � 2 g(5) = 37 =

⇥
(3/2)5

⇤
+ 25 � 2

g(3) = 9 =
⇥
(3/2)3

⇤
+ 23 � 2 g(6) = 73 =

⇥
(3/2)6

⇤
+ 26 � 2

Theorem [Dickson, Pillai, Niven, 1936–1944]

If (3/2)k �
⇥
(3/2)k

⇤
 1�

⇥
(3/2)k

⇤
/2k then g(k) =

⇥
(3/2)k

⇤
+ 2k � 2.

• Condition confirmed for k  471600000.

• Mahler, 1957: there exists a k0 (undetermined) such that condition holds for

k � k0.
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Waring’s Problem - asymptotic version

Definition

G (k) = smallest number such that every su�ciently large number is the sum of

G (k) kth powers.

• G (k)  g(k).

• G (1) = 1 = g(1).

• G (2) = 4 = g(2) since four squares is needed for all n ⌘ 7 (mod 8).
• . g(3) = 9.

. Dickson, 1939: every number except 23 and 239 requires only 8 cubes, so G (3)  8.

. Linnik, 1943: G (3)  7.

. 4  G (3)  7, but precise value unknown.

Little is known about G (k) in general.
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Waring’s Problem - asymptotic version

Theorem

G (k) � k + 1 for all k > 1.

Friday afternoon proof:

• P(N) = #{n  N | there exist x1, . . . , xk 2 Z with n = x

k
1 + · · ·+ x

k
k }.

• S(N) = # solutions to 0  x1  · · ·  xk  N

1/k (xi 2 Z).
• P(N)  S(N).

• S(N) = 1/k!
�⇥
N

1/k
⇤
+ 1

� �⇥
N

1/k
⇤
+ 2

�
· · ·

�⇥
N

1/k
⇤
+ k

�
⇠ N/k! for N � 0.

• If G (k)  k , then there exists an m with P(N) � N �m for all N.

Contradiction: N �m  P(N)  S(N) ⇠ N/k!.
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Theorem

G (k) � k + 1 for all k > 1.

Friday afternoon proof:

• P(N) = #{n  N | there exist x1, . . . , xk 2 Z with n = x

k
1 + · · ·+ x

k
k }.

• S(N) = # solutions to 0  x1  · · ·  xk  N

1/k (xi 2 Z).
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Generalized Waring’s Problem - polynomials

• f (x) integer valued polynomial with

. positive degree (so not a constant) and positive leading coe�cient,

. no common divisor among f (0), f (1), f (2), . . .

• Example: f (x) = akx
k + · · ·+ a1x + 1 with ai 2 Z and ak > 0.

Theorem [Kamke, 1921]

(1) The set S = {0, f (0), f (1), f (2), . . . } is an asymptotic basis of finite order:

there exists a t such that every su�ciently large number is the sum of t elements in S

(2) If 0, 1 2 U = {f (0), f (1), f (2), . . . }, then U is a basis of finite order: there

exists a v such that every positive number is the sum of v elements in U.

Hilbert-Waring theorem: f (x) = x

k .
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Waring’s Problem - algebraic number fields

• Algebraic number field Q ✓ F ✓ C.
• Ring of integers RF = {↵ 2 F | ↵ root in some monic integer polynomial}.
• RF is a generalization of Z (if F = Q then RF = Z).

Example

If F = Q(
p
3) then RF = {a+ b

p
3 | a, b 2 Z}. For a+ b

p
3 2 RF :

⇣
a+ b

p
3
⌘2

= (a2 + 3b2) + 2ab
p
3.

So no u + v

p
3 2 RF with v odd can be the sum of squares.
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Waring’s Problem - algebraic number fields

• Algebraic number field Q ✓ F ✓ C.
• Ring of integers RF = {↵ 2 F | ↵ root in some monic integer polynomial}.
• RF is a generalization of Z (if F = Q then RF = Z).

Theorem [Siegel, 1944-1946]

For k � 1, let Ak be the set of all ↵ 2 RF which can be written as a sum of kth

powers in RF . Then there is a tk such that every ↵ 2 Ak is the sum of tk kth powers

in RF .


