
D
ra

ftAbel and abelian integrals

Christian F. Skau

Department of Mathematical Sciences, Norwegian University of Science and Technology

March 31, 2017



D
ra

ftAtiyah in his acceptance speech in Oslo 2004 on the occasion of
receiving the Abel Prize:

Abel was really the first modern mathematician. His whole approach,
with its generality, its insight and its elegance set the tone for the next
two centuries. (. . . ) Had Abel lived longer, he would have been the
natural successor to the great Gauss.
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ftYuri Manin being interviewed in 2009:

Take for example the first volume of Crelle’s Journal (Journal of Pure
and Applied Mathematics), which came out in 1826. Abel’s article
appeared there, on the unsolvability in radicals of the general equation
of degree higher than four. A wonderful article! As a member of the
editorial board of Crelle, I would accept it even today with great
pleasure.
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1815

1816

1817

1818

1819

1820

1821

Born Aug. 5

Pupil at the Cathedral
School in Christiania
(later Oslo) New math teacher

(Bernt Michael Holmboe)

Death of Abel’s father

“Proof” of solvability (sic!) of the
quintic

Examen Artium
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1822

1823

1824

1825

1826

1827

1828

1829

Entrance exam to
the university

Preparation for the
travel to Göttingen and
Paris – in isolation in
Christiania

Abel’s foreign trip to
Berlin and Paris

Hectic work period in
Christiania

Abelian integrals

Visits professor Degen in Copenhagen

“Anni mirabiles” (The miraculous years)
Discoveries: 1) Abel’s integral equation

2) Unsolvability of the quintic
3) Elliptic functions
4) The addition theorem

Berlin and Crelle: “Journal für die reine
und Angewandte Mathematik”.

Paris and the disappearance of the Paris Memoir.

Avoids travelling to Göttingen and Gauss.

Development of the theory of elliptic functions.
(Abel-Jacobi “competition”.)
Theory of equations.

January 6: Last manuscript – proof of
the addition theorem in its
most general form.

�April 6

Last 31/2 months at
Froland Verk
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Question 1 If f (x) is an elementary function, how can we determine
whether or not its integral

∫
f (x) dx is also an elementary function?

Question 2 If the integral is an elementary function, how can we find it?

Rephrased: If f (x) is an elementary function, when is the solution
y = y(x) to the differential equation dy

dx = f (x) an elementary function?

Comment It is easy to see that the derivative of an elementary function
is elementary. We ask if the converse is true?



D
ra

ft

(1) Théorie des transcendantes elliptiques (1823-1825), 102 pages,
(published posthumously).

(2) Sur l’intégration de la formule différentielle ρ dx√
R

, R et ρ étant des

fonctions entières (1826) Crelle, 41 pages.

(3) Mémoire sur les fonctions transcendantes se la forme
∫
y dx , où y

est une fonction algébrique de x (1828), 11 pages (published
posthumously).

(4) Précis d’une théorie des fonctions elliptiques (Chapter II) (1829)
Crelle, 99 pages.

(5) Lettre à Legendre (November 1828), published in Crelle 1830, 9
pages.

Sur la comparison des transcendantes (1825), 12 pages (published
posthumously). [Contains proof of Abel’s Addition Theorem.]
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Rational functions

R(x) =
amx

m + am−1x
m−1 + · · ·+ a1x + a0

bkxk + bk−1xk−1 + · · ·+ b1x + b0
=

P(x)

Q(x)

Algebraic functions

y n + Rn−1(x)y n−1 + · · ·+ R1(x)y + R0(x) = 0

Examples

(i) y = R(x); y − R(x) = 0, R(x) rational function

(ii) y = n
√

R(x); y n − R(x) = 0, R(x) rational function

(iii) y 5 − y − x = 0, y = y(x) has no explicit presentation

Rational functions R(x , y) of x and y are of the form P(x ,y)
Q(x ,y) , where P

and Q are polynomials in x and y .



D
ra

ft

An elementary function is a member of the class of functions which
comprises

(i) rational function

(ii) algebraic function, explicit or implicit

(iii) the logarithmic function log x

(iv) the exponential function ex

(v) all functions “built” up by a finite number of steps from the classes
(i)-(iv).

Example

f (x) = log

(
y√

1 + x4

)
,

where y = y(x) is defined (implicitly) by y 5 − y − ex
2

log x = 0.
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Jeg har paa et andet Sted beviist at

∫ (log x)a dx
c+x paa ingen Maade lader sig

integrere ved de hidentil antagne Functioner, og at det altsaa er en egen
Classe af transcendente Functioner.

[I have proved another place that
∫ (log x)a dx

c+x in no way whatsoever can be
integrated in terms of the up to now familiar functions, and hence this
belongs to a separate class of transcendent functions.]
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ftM. J. Prelle and M. F. Singer, Elementary first integrals of differential
equations, TAMS 279 (1983), 215-229:

Abstract We show that if a system of differential equations has an
elementary first integral (i.e. a first integral expressible in terms of
exponentials, logarithms and algebraic functions) then it must have a
first integral of a very simple form.

M. F. Singer in a letter to Jesper Lützen:
I did not know that Abel had thought about this.
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Integration methods 1. Partial fraction expansion

3x4 − 12x3 + 19x2 − 16x − 6

(x2 + 1)(x − 2)2

=
1/2i

x − i
− 1/2i

x + i
− 2

(x − 2)3
+

4

(x − 2)2
− 1

x − 2∫
3x4 − 12x3 + 19x2 − 16x − 6

(x2 + 1)(x − 2)2
dx

=
1

2i
log(x − i)− 1

2i
log(x + i) +

1

(x − 2)2
− 4

x − 2
− log(x − 2)

In general, the integral of a rational function has a rational part and a
logarithmic part.
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1. Partial fraction expansion (cont.)

sin x =
e ix − e−ix

2i
, arcsin x =

1

i
log(ix +

√
1− x2)

Trigonometric functions and the inverse arc-functions can be expressed
by (complex) exponential and logarithmic functions.
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2. Integration by parts∫
f (x)g ′(x) dx = f (x)g(x)−

∫
f ′(x)g(x) dx

Example ∫
log x dx = x log x −

∫
1

x
· x dx = x log x − x

f (x) = log x , g(x) = x
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3. Integration by substitution∫
f (x) dx =

∫
f (φ(t))φ′(t) dt

Example ∫
x2

3
√
x3 + 1

dx =

∫
1/3

t1/3
dt =

1

2
t2/3 =

1

2

(
x3 + 1

)2/3
x3 + 1 = t

3x2 dx = dt
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Abelian integral∫
y dx is called an abelian integral, whenever y = y(x) is an algebraic

function.

Comment
∫
R(x , y) dx , where y = y(x) is an algebraic function and

R(x , y) is a rational function in x and y , is an abelian integral.

Example ∫
x + 3
√

1 + x7

(x − 2) 3
√

1 + x7
dx =

∫
R(x , y) dx ,

where y = 3
√

1 + x7, R(x , y) = x+y
(x−2)y .
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x4 + 10x2 − 96x − 71
=

− 1

8
log

[
(x6+15x4−80x3+27x2−528x+781)·

√
x4+10x2−96x−71

−(x8+20x6−128x5+54x4−1408x3+3124x2+10001)

]
But ∫

x dx√
x4 + 10x2 − 96x − 72

is not an elementary function.
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whether the indefinite integral of an elementary function is elementary or
not.

The crucial theorem that Risch’s result is based upon is an analogue of
Theorem 1 (due to Abel and Liouville), cf. below.
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Let R(x , y) be a rational function of x and y , where y =
√
ax2 + bx + c .

Substitute x = g(t), y = h(t) (rational functions) in
∫
R(x , y) dx :∫

R(g(t), h(t))g ′(t) dt = r0(t) +
∑k

i=1 ci log(ri(t)) = R0(x , y) +
∑k

i=1 ci logRi(x , y)

x

y

(x , y)

(x0, y0)

y − y0 = t(x − x0)

t = y−y0
x−x0

y 2 − ax2 − bx − c = 0

x = g(t)
y = h(t)
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Theorem 1 (Abel and Liouville) If the abelian integral
∫
y dx is an

elementary function then it must have the form∫
y dx = t + A log u + B log u + · · ·+ F logw

where t, u, v , . . . ,w are algebraic functions of x and A,B , . . . ,F are
constants.

Theorem 2 (Abel’s Theorem) The t, u, v , . . . ,w functions in Theorem 1
are each rational functions of x and y .

Remark Abel proved much more: If
∫
y dx in addition to the terms in

Theorem 1 contains additive terms of elliptic integrals of any type, the
analogue conclusion of Theorem 2 is still true.
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The hierarchy of elementary functions

Order 0: algebraic functions
Order 1: algebraic functions of exp or log of functions of order 0
Order 2: algebraic functions of exp or log of functions of order 1.

Examples

ex
2

+ ex
√

log x (order 1)
y defined by y 5 − y − ex log x = 0 (order 1)
ee

x

, log log x (order 2)

Analogy with classification of radicals (over Q):

2, 3
√

7,
5
√

3 +
√

5 (orders 0, 1, 2, respectively)
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If ∫
dx√

(1− x2)(1− k2x2)

is elementary, then according to Abel’s Theorem it has to look like (set
∆(x) =

√
(1− x2)(1− k2x2)):∫

dx

∆(x)
= (p0 + q0∆(x)) +

n∑
k=1

Ak log (pk + qk∆(x))

where the pk ’s and the qk ’s are rational functions of x and the Ak ’s are
constants.
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Maupertuis and team on expedition in Lapland in 1736/37 to determine
that the earth is flattened near the pole. On their return to Paris,
Voltaire came with this cutting remark:

Vous avez confirmé dans ces lieux pleins d’ennui ce qui Newton connut
sans sortir de chez lui.
[You have confirmed in these desolate places what Newton knew without
leaving home.]

About Norton’s proof (in Hardy’s book) of Abel’s Theorem:

You have shown by a long an complicated proof what Abel gave a
“one-line” proof of.
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Let C(x) denote the field of rational functions over C. Let y = y(x) be
an algebraic function given by

(i) y n + Rn−1(x)y n−1 + · · ·+ R1(x)y + R0(x) = 0.
Take the derivative of (i):

(ii) ny n−1y ′+(R ′n−1y
n−1+(n−1)Rn−1y

n−2y ′)+· · ·+(R ′1y+R1y
′)+R ′0 =

0.

Conclusion y ′ is a rational function of x and y .

Let a = a(x , y) be a rational function of x and y , where y is as above.
Then

(a′ =)
da

dx
=
∂a

∂x
+
∂a

∂y

dy

dx
is a rational function of x and y .
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Theorem (very special case of Abel’s Theorem) Let y = y(x) be an
algebraic function. Assume the abelian integral u =

∫
y dx is an

algebraic function. Then u is a rational function of x and y .

Proof: Let C(x) be the field of rational functions of x . Then C(x , y) (≡
rational functions of x and y) is a finite-dimensional field extension of
C(x). Since u is algebraic over C(x), it is obviously algebraic over
C(x , y).
(Abel: “. . . car cette supposition permise simplifiere beaucoup le
raisonnement.”)
Now u is a root of an irreducible polynomial

f (z) = zk + ak−1(x , y)zk−1 + · · ·+ a1(x , y) + a0(x , y)

over C(x , y) (the minimal polynomial of u over K ).
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uk + ak−1u
k−1 + · · ·+ a1u + a0 = 0(∗)

Take the derivative and use that u′ = y :

kuk−1y +
(
a′k−1u

k−1 + (k − 1)ak−1u
k−2y

)
+ · · ·+ (a′1u + a1y) + a′0 = 0

(∗∗)

Now each a′i is a rational function of x and y , and so a′i ∈ C(x , y). From
(∗∗) we get

(ky + a′k−1) uk−1 + · · ·+ (2a2y + a′1)u + (a1y + a′0) = 0.(∗ ∗ ∗)

Hence ky + a′k−1 = 0, and so

u =

∫
y dx = −1

k

∫
a′k−1 dx = −ak−1

k
, q.e.d.
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5

√
75(5 + 4

√
10) +

5

√
225(35 + 11

√
10)

+
5

√
225(35− 11

√
10) +

5

√
75(5− 4

√
10)

is a root of f (x) = x5 − 2625x − 61500 = 0.
Let β be a root of

g(x) =
x7

7!
+

x6

6!
+

x5

5!
+

x4

4!
+

x3

3!
+

x2

2!
+

x

1!
+ 1 = 0.

Why is α + β (or for that matter α3β−4α2β2+7β3

2α2β5−18αβ ) again a root of a

polynomial h(x) over Q; i.e. h(x) ∈ Q[x ]?
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Abel’s argument:

Let

h(x) =
∏
i ,j

(x − αi − βj) ,

where α = α1, α2, . . . , α5 are the roots of f (x) and β = β1, β2, . . . , β7
are the roots of g(x).

Then h(x) ∈ Q[x ] since
∏

i ,j(x − αi − βj) is symmetric in the αi ’s, as
well as in the βj ’s. Clearly h(α + β) = 0



D
ra

ftQ(
√

2) = {a + b
√

2 | a, b ∈ Q} is a field. It is also a vector space with
scalar field Q. In fact Q(

√
2) is a vector space of dimension two. A

basis is {1,
√

2}.

Recall the only non-trivial result about vector spaces: All bases have the
same cardinality.
(First proved by Grassmann in his “Ausdehnungslehre” from 1862, but
ignored. Rediscovered by Steinitz in 1913. Vector spaces were first
formally defined in the 1920’s.)
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van der Waerden’s (i.e. Artin’s and E. Noether’s) proof (1930):

C

Q(α, β)

Q

Q(α, β) is a vector space over Q, i.e. Q is the scalar field.
By the Euclidean algorithm (“dividing out by irreducible
polynomials”) one shows that Q(α, β) is of finite
dimension n, say. Consider
{1, α + β, (α + β)2, . . . , (α + β)n}. This is a linearly
dependent set, and so there exists c0, c1, . . . , cn in Q such
that

c0 + c1(α + β) + c2(α + β)2 + · · ·+ cn(α + β)n = 0

Conclusion: α + β is a root of the polynomial

c0 + c1x + c2x
2 + · · ·+ cnx

n ∈ Q[x ]
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proves that if y1 = y1(x), . . . , ym = ym(x) are algebraic functions of x ,
then R(y1, y2, . . . , ym) is an algebraic function of x . Here
R(y1, y2, . . . , ym) is a rational function of y1, y2, . . . , ym.

Abel’s introduction of the fundamentally important Galois resolvent:
There exists a linear combination

θ = c1y1 + c2y2 + · · ·+ cmym,

where c1, c2, . . . , cm are constants, such that each yi = yi(x) is a rational
function of x and θ.
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Abel’s addition theorem in its most general form

(i) P(x , y) = y n + pn−1(x)y n−1 + · · ·+ p1(x)y + p0(x) = 0.
(ii) Q(x , y) = qn−1(x)y n−1 + · · ·+ q1(x)y + q0(x) = 0, where each

qj(x) is a polynomial in x and the coefficients of qj(x) are
polynomials in the parameters a, a′, a′′, . . . . Elimination between (i)
and (ii) yields

(iii) ρ(x) = ρ(x , a, a′, a′′, . . . ) = 0, where ρ(x) is a polynomial in x with
coefficients that are polynomials in a, a′, a′′, . . . . Let µ be the
degree of ρ(x), and let x1, x2, . . . , xµ be the roots of (iii). Let
ψ(x) =

∫ x

0 f (x , y) dx , where f (x , y) is a rational function in x and
y . Then:

(iv) ψ(x1) + ψ(x2) + · · ·+ ψ(xµ) = u + k1 log v1 + · · ·+ km log vm,
where u, v1, v2, . . . , vm are rational functions of a, a′, a′′, . . . and
k1, k2, . . . , km are constants.
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By choosing Q(x , y) appropriately one can show that for any points
(x1, y1), (x2, y2), . . . , (xm, ym) on the curve
P(x , y) = y n + pn−1(x)y n−1 + · · ·+ p1(x)y + p0 = 0 :

m∑
i=1

∫ (xi ,yi )

0

f (x , y) dx =

g∑
i=1

∫ (x ′i ,y
′
i )

0

f (x , y) dx+

rational/logarithmic terms.

where each (x ′i , y
′
i ) is an algebraic function of (x1, y1), . . . , (xm, ym), and

g (the genus) only depends upon the curve P(x , y) = 0. (f (x , y) is a
rational function of x and y .)
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Det har alltid st̊att for meg som den rene magi. Hverken Gauss eller
Riemann, eller noen annen, har noe som riktig kan m̊ale seg med dette.

[For me this has always appeared as pure magic. Neither Gauss nor
Riemann nor anyone else have anything that really measures up to this.]


