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Axel Thue (1863–1922)



Axel Thue reading without glasses:

“Om Pendelets Betydning for Geometrien”.

Axel Thue reading with glasses:

“Om Poncelets Betydning for Geometrien”.



Thue’s Theorem (1909)
The Diophantine equation

f (x, y) = m

has only finitely many integral solutions (x, y). Here f (x, y) ∈ Z[x, y] is an irreducible
(homogeneous) polynomial of degree at least 3, and m is a non-zero integer.

Example
f (x, y) = x4 − 12x2y2 − 8xy3 + 4y4 = 1 has only the solutions
(x, y) = (±1, 0), (±1,∓1), (±1,±3) and (±3,±1).

Liouville (1844) – Thue (1909) – Roth (1955) Theorem
Let α ∈ R \Q be an algebraic number, and let ε > 0. Then the inequality∣∣∣∣α− p

q

∣∣∣∣ < 1
q2+ε

has only finitely many solutions.



Die von Thue im 1912 bewiesenen Sätze wurden 1938 von Pisot auf anderen Wege
wiedergefunden und verschärft. In der neueren Litteratur hat man solche Zahlen
als “Pisot–Vijayaraghavan numbers” bezeichnet, sehr zum Unrecht gegen der
eigentlichen Entdecker.

— Carl Ludwig Siegel



Basic Concepts
Finite alphabet A (e.g. A = {a,b, c}). Infinite sequence ω over A, i.e. ω ∈ AN.

Example

ω = abbcacbc︸ ︷︷ ︸
W

cc abc︸︷︷︸
W1

abc︸︷︷︸
W2

b bc︸︷︷︸
u1

bc︸︷︷︸
u2

bc︸︷︷︸
u3

a . . .

W = bcacbc is a subword of ω.

ω contains a square, namely W1W2, where W1 = W2 = abc.

ω contains a cubic, namely u1u2u3, where u1 = u2 = u3 = bc.

Thue’s questions:

(i) Does there exist a cube-free binary sequence ω? [ω ∈ AN, where A = {0, 1}]
(ii) Does there exist a square free sequence on three symbols?



The Thue substitution σ and the Prouhet–Thue–Morse (PTM) sequence ω

σ :

{
0→ 01
1→ 10

t = lim
n

−−−→
σn(0)

0→ 01︸︷︷︸
=σ(0)

→ 0110︸︷︷︸
=σ2(0)

→ 01101001︸ ︷︷ ︸
=σ3(0)

→ 0110100110010110︸ ︷︷ ︸
=σ4(0)

→ · · · t

Other ways to generate t = t0t1t2t3 · · ·

(i) t0 = 0, t2n = tn, t2n+1 = 1− tn
(ii) n = akak−1 · · ·a1a0 (binary representation). If the number of 1’s is odd then tn = 1, if

even tn = 0. [Example: 23 = 10111, so t23 = 0.]



Theorem (Thue (1906, 1912))
The PTM-sequence t = t0t1t2t3 · · · is cube-free. Also, t has no overlapping-squares, i.e. t
has no subwords of the form 0w0w0 or 1w1w1, where w is a subword of t. The sequence
t̃ = v0v1v2v3 · · · ∈ {0, 1, 2}N is square-free, where vn is the number of 1’s between the n’th
and the (n+ 1)’th occurrence of 0 in t.

t = 0110100110010110 · · ·
t̃ = 2102012 · · ·



Remark

The cube-freeness of ω is used to prove the Burnside problem for groups: Is every group
G with a finite number of generators and satisfying the identity xn = 1 finite?

(Answer: No for large odd n; for example, for all odd n with n ≥ 665.)



Dutch chess grandmaster Max Euwe (1901–1981)—world champion 1935–1937—applied the
PTM-sequence to an interesting problem in chess:

The so-called German rule states that a draw occurs if the same sequence of moves
occurs three times in succession. Euwe showed, using the cube-free property of t, that
under such a rule infinite games of chess are possible.

Example
t = 01101001 · · · . Map each 0 to the sequence of four moves (Ng1–f3, Ng8–f6, Nf3–g1,
Nf6–g8) and each 1 to the four moves (Nb1–c3, Nb8–c6, Nc3–b1, Nc6–b8).
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Some noteworthy properties of t = t0t1t2t3 · · ·

(i)
∞∑
n=0

tn2−n is a transcendental number. (Proved by K. Mahler in 1929.)

(ii) Let a and b be two distinct positive integers. Substitute a for 0 and b for 1 in
t = 0110100110010110 · · · and get the sequence: abbabaabbaababba · · · . Then

a+
1

b+
1

b+
1

a+
1

b+ · · ·

is a transcendental number (Queffélec (1998)).

(iii)
∞∏
n=0

(
1− x2

n
)
=

∞∑
n=0

(−1)tnxn



The Prouhet problem

Is it possible to find a partition of the set {0, 1, 2, . . . , 2N − 1} into two disjoint sets I and J,
such that ∑

i∈I

ik =
∑
j∈J

jk

for k = 0, 1, 2, . . . ,N− 1?

Theorem (Prouhet (1851))
The PTM-sequence t = t0t1t2t3 · · · has the following property. Define

I = {i ∈ {0, 1, 2, . . . , 2N − 1} | ti = 0}
J = {j ∈ {0, 1, 2, . . . , 2N − 1} | tj = 1}.

Then for every 0 ≤ k ≤ N− 1 we have∑
i∈I

ik =
∑
j∈J

jk.



Example

N = 4, {0, 1, 2, 3, . . . , 24 − 1 = 15}

t = 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0

Positions: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I = {0, 3, 5, 6, 9, 10, 12, 15}
J = {1, 2, 4, 7, 8, 11, 13, 14}

0k + 3k + 5k + 6k + 9k + 10k + 12k + 15k = 1k + 2k + 4k + 7k + 8k + 11k + 13k + 14k

for k = 0, 1, 2, 3.



Theorem (Prouhet)
Let µ1 = 1, µ2 = 2, µ3 = 22, . . . , µN = 2N−1. For r = 0, 1, let

Sr = {a1µ1 + a2µ2 + · · ·aNµN | ai = 0, 1;a1 + a2 + · · ·+ aN ≡ r (mod 2)}.

Then ∑
i∈S0

ik =
∑
j∈S1

jk

for k = 0, 1, . . . ,N− 1.

Sketch of proof:

F(x) =
N∏
k=1

(1− eµkx) =
∑

(−1)a1+···+aNe(a1µ1+···+aNµN)x

where the a’s range independently over 0 and 1. Now F(x) has a zero of n’th order at
x = 0. So F(x) and its first N− 1 derivatives vanish at x = 0. Now

F(k)(0) =
∑

(−1)a1+···aN(a1µ1 + · · ·aNµN)k = 0

for k = 0, 1, . . . ,N− 1 . . .



Magic squares

By a magic square of order T , we mean a T by T matrix whose entries are taken from the
numbers 1, 2, 3, . . . , T2, and such that the sum of the entries in any row, column, or
diagonal is the same number.

One also requires that each of the numbers 1, 2, 3, . . . , T2 be used exactly once as an entry.

Example
Order 4 magic square that Albrecht Dürer immortalized in his 1514 engraving “Die
Melancholie”.

16 3 2 13

5 10 11 8

9 6 7 12

4 15 14 1



Melencolia I (Albrecht Dürer, 1514)



Observation
The sum of the entries in any row, column or diagonal of a magic square of order T is

1
2
T(T2 + 1).

Facts

(i) It is known that one can construct magic squares of any order except 2.
(ii) Any magic square can be rotated and reflected to produce 8 trivially distinct squares,

and the eight such squares are said to make up a single equivalence class.
(iii) There is exactly one 3× 3 magic square, exactly 880 4× 4 magic squares and exactly

275 305 224 5× 5 magic squares.



Construction of magic squares of order T = 2M with special properties using the
PTM-sequence t

We illustrate this by constructing a 4× 4 magic square, i.e. putting M = 2:

t = 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

(positions of 1’s, positions of 0’s)

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

16 2 3 13

5 11 10 8

9 7 6 12

4 14 15 1

 

Property: The sum of the
squares of a row
(respectively column)
equals the sum of the
squares of the
complementary row
(respectively column).



More generally, by Prouhet’s theorem it follows that by this type of construction of magic
squares of order T = 2M, a row and its complementary row (respectively, a column and its
complementary column) have equal sums of the k’th power of their entries for all
k ≤ max{2,M− 1}.



Bob and Joe duelling

Bob and Joe are in a duel.

They are both terrible shots, and equally so. On the other hand, they are deeply
committed to fairness, and therefore they make the following deal:

Bob shoots first. Then Joe shoots as many times as he needs to obtain a probability of
winning that exceeds the probability that Bob has won so far.

Then Bob shoots again until his probability of having won exceeds Joe’s so far.

Joe shoots next following the same rule, and so they continue until someone finally
succeeds in hitting the other.



To illustrate, suppose the duelers’ hitting probability is 1/3.

• Bob shoots first, so his probability of winning by the end of round 0 is 1/3. Joe’s
probability of winning is so far zero, so he shoots next.

• For Joe to win in round 1, Bob has to have missed in round 0 and Joe has to hit.
Therefore, Joe’s probability of having won by the end of round 1 is (2/3) · (1/3) = 2/9.
This is still less than 1/3, so Joe shoots again in round 2.

• For Joe to win round 2, he must survive Bob’s initial shot, miss in round 1, and hit in
round 2. Hence the probability of winning by the end of round 2 is
(1/3) · (2/3) + (1/3) · (2/3)2 = 10/27. This is more than Bob’s probability of 1/3, so Bob
gets to shoot in round 3.

• Continuing this assignment one gets that the order of who gets to shoot will be
BJJBJB︸ ︷︷ ︸ JJB · · · .
We see that the 6 first positions agree with the (PTM)-sequence, where B↔ 0, J↔ 1.

Theorem
Let p be the dueler’s hitting probability. As p→ 0, the shooting order will “converge” to
the (PTM)-sequence.



Thue—a precursor of Alan Turing (1912–1954) and Noam Chomsky (1928–)

In 1916 Thue introduced a so-called string reuniting system, later named a semi-Thue
system.

His goal was two-fold.

• Firstly, he hoped to solve the word problem for finitely presented monoids (or
semigroups).

• Secondly, he had a much more general goal: to add additional constructs to logic, so
as to create systems that would allow general mathematical theorems to be
expressed in a formal language, and then proven and verified in an axiomatic
mechanical fashion, i.e. reduced to a set of defined manipulations on a set of strings
over a finite alphabet.



Turing machine

. . . b b a a a a . . . Input/Output Tape

q0q1

q2

q3 . . .

qn

Finite Control

q1

Reading and Writing Head
(moves in both directions)



• In 1947 E. Post and A.A. Markov independently showed that Thue’s word problem is
undecidable, i.e. there is no general algorithm for solving this problem. (According to
Martin Davis this was the first unsolvability proof of a problem from classical
mathematics.)

• In 1956 Chomsky introduced his hierarchy of formal languages and their associated
grammars, and it was realized that his Type-0 grammars, the so-called unrestricted
grammars, were isomorphic to the semi-Thue systems. This again was shown to be
isomorphic to Turing machines.

• Thue (invented in 2001 by John Colagioia) is a programming language, based on the
semi-Thue grammar, which recognizes Type-0 languages, and so is Turing-complete.



• A monoid (or semigroup) is a set S with an algebraic structure consisting of a single
associative binary operation and having an identity element.

• A monoid S may be given a presentation by specifying a set of generators Σ ⊆ S and
a set of relations R on Σ∗ (finite strings over Σ).

• If Σ and R are finite sets we say that S can be finitely presented, and we call
T = (Σ,R) a Thue system for the monoid S.

• The word problem for S can be stated in this way: given two strings u and v over Σ;
can u be transformed into v by applying the “rules” imposed by the relation R?



Symbolic dynamics and the (PTM)-sequence t

• Form ω =
←−t .−→t = · · · 10010110.01101001 · · · ∈

∞∏
−∞
{0, 1} where −→t = t and←−t denotes t

“reflected”.

• Let S :
∞∏
−∞
{0, 1} →

∞∏
−∞
{0, 1} be the shift map, i.e. S((xn)) = (xn+1) for (xn) ∈

∞∏
−∞
{0, 1}.

• Let X = {Snω | n ∈ Z} ⊆
∞∏
−∞
{0, 1}. Then X is a Cantor set and (X, S) is a minimal

symbolic system.

• The Bratteli–Vershik model for (X, S) is exhibited in the figure.



The Bratteli–Vershik model

•

• • • •

• • • •

1 2

3

1

2 1

2
3

4

1

2 3

1
1 1 1

2
2

3 33
2 4 2

4 3 5
4

...
etc.

Incidence matrix: A =


1 1 1 1
1 1 0 1
1 1 2 1
1 1 1 1





• The (ordered) K0-group of (X, S), denoted K0(X, S), is the inductive limit of

Z4 A−→ Z4 A−→ Z4 A−→ · · ·

and the order unit is [3, 2, 4, 3].

• K0(X, S) is a complete invariant for the orbit structure of (X, S).

• K0(X, S) is equal to K0(C(X)oS Z), where C(X)oS Z is the C?-crossed product
associated to (X, S), and K0(C(X)oS Z) is a complete isomorphism invariant for
C?-algebras associated to minimal Cantor systems.
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