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Or

CALCULUS:

Have We Been Teaching it Wrong?



In the typical introductory calculus course the tangent
problem is motivated by some familiar geometric
examples, e.g., tangents to circles,

but then quickly moves on to introduce the idea that
the tangent to a curve at a point P arises as

the “limit” of lines through P and a

second distinct point Q ≠ P  on the curve

as Q → P .



Even as simple a case as   y = x2 requires the 
student to cope with the puzzling statement

limh->0(2a + h) = 2a

While this seems “obvious” to students, 
instructors typically warn that one cannot just 
“evaluate”  h = 0, but that something more 
complicated is going on. 



The tangent problem is thus tied from the very
beginning to the novel concept of “limit”, something
much more complicated than the student has
encountered before.

Moreover, the definition of derivative through the
limit of difference quotients that formally end up with
the meaningless expression

_0_
0

makes matters even more complicated and mysterious 
for the student. 



Typically, the further discussion of tangents and
derivatives is then placed on hold and students
are guided through a lengthy—and often quite
technical—discussion of limits, continuity, and
so on.

More often then not, this turns out to be quite
boring for the student, or worse, the student
finds it difficult to understand, gets lost, and
looses interest.



But is this really necessary?



Please:
Try to forget everything you know about calculus!

Just remember your high school days,

and a bit about the quadratic equation, especially the
special case of a double zero (discriminant = 0),

and a bit about polynomials, such as the fact that
if a polynomial  f  has a zero at  a , then

f(x) = q(x)(x – a),
where  q  is just another polynomial.

Thank you!



Let us now discuss a different approach.

It has its roots in the basic ancient question:

WHAT  IS  A  TANGENT?  



Over 2,300 years ago the Greek geometers Euclid and 
Apollonius formulated the essential idea as follows:

A tangent to a curve is a line 
which touches the curve 

but does not cut it!

This definition does not give any precise
mathematical tools to construct tangents, but it does
capture the critical idea:

A tangent “touches” the curve in a very special way.



“Touching” means that any small change of the “touching
line” will either

§ no longer “touch” the curve, that is, it misses the curve, or else 

§ it results in a line which “cuts” the curve (i.e., intersects it) in 
two points (or more).



The point of tangency – while it looks like a single point –
really covers two points (or perhaps more) that become 
visible as soon as the line is perturbed just a bit.

We call such a point a 

DOUBLE POINT!



Simple high school algebra allows to characterize such
double points: they arise as solutions of multiplicity
two (or higher) of the relevant equation.

Certainly the case of a quadratic equation, which in
certain cases has a double zero, is well known to every
high school student!

So let us define the tangent to a curve at P as a line
which intersects the curve at P in a double (or higher)
point, and let us apply familiar simple algebraic
techniques to identify such lines.



For example, consider a parabola, that is, the graph
of f(x) = x², at the point (a,a²). The equation of a
line through that point is given by

y = a² + m(x - a),

where m is its slope.

Its points of intersection with the graph of f are
found by solving the equation

x² - a² - m(x - a)  = 0,

which factors into

[(x + a) - m](x - a) = 0.



So consider the equation    [(x + a) - m](x - a) = 0.

The solutions m - a and a coincide, i.e., we have a
double point of intersection, precisely when

m = 2a.

So m = 2a is the desired slope of the tangent line at
the point (a,a²).

This method easily generalizes, first to arbitrary
polynomials, and then to general algebraic functions,
as follows.



Take any polynomial P(x) of degree r ≥ 2.
The equation of a generic line through the point (a, P(a)) 
is

y = P(a) + m(x − a)

where m is the slope. The points of intersection of this
line with the graph of P(x) are found by solving the
equation P(x) = P(a) + m(x − a), or

P(x) − P(a) − m(x − a) = 0.

We need to find  m so that this equation
has a double (or higher) zero at  x = a.



Since  x = a  is a zero of  P(x) − P(a), by standard

algebra one can factor

P(x) − P(a) = q(x)(x − a),

where q is a polynomial of degree r − 1. 



Then

P(x) − P(a) − m(x − a) = [q(x) − m](x − a)

This shows that  P(x) − P(a) − m(x − a) = 0 has a

double zero at  x = a

if and only if  the polynomial q(x) − m
has a zero at the point  a as well.

Obviously this happens precisely when

m = q(a).

The number q(a) is the desired slope of the 
tangent line!



The tangent line to the graph of a polynomial
P(x) at the point (a, P(a)) is the (unique) line
through (a, P(a)) which intersects the graph at
that point with multiplicity at least 2.

The slope of the tangent is called the
derivative of P, and it is denoted by

P'(a) or  D(P)(a).

DEFINITION



THEOREM
The slope of the tangent line is given by

D(P)(a) = q(a),

where q is the polynomial factor in the representation

P(x) − P(a) = q(x)(x − a).

REMARK:

All this works just as well for any rational function R(x), 
with the factor  q(x) now rational as well.



Example 

Find the derivative of   f(x) = xn at the point (a, an).

We factor  
f(x) – f(a) =  xn - an =

= (xn-1 + xn-2a + xn-3a2 + …. + x an-2 + an-1 )(x – a)  =

= q(x) (x – a).

Then

f'(a) = q(a) = nan-1. 



The idea to use double points is nothing new.....
the technique was considered by

René Descartes (1596 – 1650)

to find normals to the ellipse (and thereby find the 
tangents as well), and by his expositor

Frans van Schooten (1615 – 1660) 

to find tangents directly. 





The double point method seemed unsuitable for general
curves, and it was eventually abandoned.

“Here we have a general process which tells us exactly
what to do to solve our problem, but it must be confessed
that in more complicated cases the required algebra may
be quite forbidding.”

(H. Eves: An Introduction to the History of Mathematics.
3rd ed., Holt, Rinehart & Winston, New York, NY 1969.)



Why did Descartes and van Schooten miss the 
elementary implementation of the

double point method 

that we just discussed?   



Perhaps they, as well as their contemporaries,
were fixated in the Euclidean point of view
that a line is defined by two distinct points.



In contrast, the point-slope form of lines was
apparently unknown - or at least it was not used -
in the 17th and 18th centuries.

Even Leonard Euler’s influential classic calculus
texts do not mention it.



It first appeared explicitly in 1784, in a paper by
Gaspard Monge – well over a century after the
beginnings of calculus.

Of course, by that time calculus via “differentials”
and “infinitesimals” was well established and had
been enormously successful, regardless of
questions about the precise meaning of differentials
and the foundations of calculus.



The usual rules of differentiation, including power
rule, chain rule, differentiation of inverse
functions at points where the derivative is
nonzero, and product/quotient rules, can be
proved in a straightforward manner based on the
double point method and the critical factorization.

To illustrate this, let us look at the chain rule –
notoriously viewed as somewhat difficult – and
the details of whose proof are typically quite
complicated.



As we see, the proof is very natural and completely 
elementary.

The chain rule, perhaps 

the most important rule for derivatives, 

is much simpler than the product rule, not to mention 
the quotient rule.



So why does every calculus book discuss the 
product and quotient rules

BEFORE 

the chain rule??



By applying these techniques systematically, the double point
method extends to all functions that are of algebraic type, that
is, to those functions that are obtained from linear functions
by applying the standard algebraic operations, compositions,
and taking inverses (on suitably restricted domains) a finite
number of times. Let us denote that class of functions by A.

The essential result then is the following

Factorization Lemma

If f is a function in A, and a is a point in its domain, then
one has

f(x) – f(a) = q(x)(x – a),

where q is another function in A defined on the domain of f.



The concept of multiplicities of zeroes generalizes in the
obvious way: a function g of algebraic type has a zero of
multiplicity k at the point x = a if there is a factorization

g(x) = qk(x) (x – a)k ,  with qk(x) in  A and qk(a) ≠ 0. 

Just as in the case of polynomials, it then follows from the
factorization lemma that the equation

f(x) – [f(a) + m(x – a)] = 0

has a zero at x = a of multiplicity ≥ 2 if and only if
m = q(a), where q(x) is given by the factorization

f(x) – f(a) = q(x)(x – a).  
Thus q(a) is the slope of the tangent line, i.e., q(a) is the
derivative of f at x = a.



Conclusion

By studying the algebraic approach first
(based on double points and multiplicities),
students can understand derivatives, and learn
and practice all differentiation formulas

before having to learn about limits. 



The obvious question that arises at this point is:

How does this purely algebraic definition of 
derivatives relate to the idea that the derivative is the 

“limit” of difference quotients?



The answer involves another simple application of the 
basic factorization

f(x) – f(a) = q(x)(x – a),

combined with an elementary estimate, as follows.

Note that it is trivial that a polynomial is bounded
over any bounded interval I. Therefore, if f, and
hence also q, is a polynomial, given a bounded interval
I centered at a, there exists a constant K, so that



│f(x) – f(a)│≤  K │x – a│ for  x in  I.

This estimate makes precise what is obvious to
the eye as one looks at the graph of a polynomial:

f(x) → f(a) as  x → a .

We see that the algebraic factorization naturally
leads us to identify a special property that is
universally known as “continuity”.

Just one simple estimate proves that every
polynomial is continuous!



More generally, a little bit of additional work 
shows that every algebraic function in the 
class A  is locally bounded.  Consequently, 
just as in case of polynomials, the 
factorization implies:

Any function of algebraic type is continuous
at every point in its domain. 



We now apply this conclusion to the factor q in the
factorization

f(x) – f(a) = q(x)(x – a)

to obtain that

q(x) → q(a) as  x → a.

Thus the (algebraic) derivative  D(f)(a ) = q(a) is 
approximated by

q(x) = [f(x) – f(a)] ⁄ (x – a)  (x ≠ a here),

that is, by the familiar difference quotient (or average rate
of change) of f !



We thus see that the algebraic approach to derivatives
based on double points and factorization directly leads to

a) A rigorous precise formulation of the intuitive idea of
continuity.
b) A simple and direct proof of the continuity of all
algebraic functions.

c) And finally, it shows that the algebraic derivative can
also be captured by a non-algebraic approximation
process (that coincides with the traditional definition of
derivative).



Most significantly, once the case of functions of
algebraic type is well understood, the preceding
discussion, and in particular item c) above, suggests
how to proceed with more general functions, such
as exponentials, trigonometric, and other
transcendental functions, where definitely new
concepts need to be introduced.



Let us discuss just one example to illustrate the idea.
Suppose we want to find the tangent at (0,1) for the
function E(x) = 2x. Guided by the algebraic case, we
consider the factorization

2x – 20 = q(x)(x – 0).

While this equation of course defines

q(x) = (2x – 1)/x for any  x ≠ 0,

in contrast to the algebraic case there is now no obvious 
way to define   q(0) = ???, and so the double point 
method breaks down.



Motivated by item c) in the algebraic case, one recognizes 
that one should

define q(0) by  the “limit”  of q(x) as x → 0,

so that the factor  q is extended to  x = 0 as a continuous
function. 

The new difficult problem thus is how to verify the 
“existence” of such a “limit”, and how to determine its 
value.



Geometric visualization of the line through the points (0,1)
and (x, 2x) for x ≠ 0, whose slope is given by q(x),
suggests that there is indeed such a limit, and numerical
data generated with a computer leads to the conclusion that

q(0) = lim x→0 q(x) = 0.6931471… .

The appearance of this strange decimal expansion reveals
that deeper properties of numbers, such as completeness,
need to be introduced - at least at an intuitive level - so that
one is guaranteed that the limit indeed “exists” within the
real numbers.



More precisely, the geometric visualization suggests that 
one should define

q(0) = greatest lower bound of  {q(x): x > 0}.

Of course, the “existence” of such a number is guaranteed
by the completeness property of the real numbers.

This is indeed the first place in the whole discussion
where it is not enough to just consider the familiar
rational numbers.



In other words, only when one considers the
exponential function (or other non-algebraic
functions) does the real need for new deep
analysis concepts and tools become visible.



Guided by the algebraic case and the related discussion 
of continuity, one is now naturally led to consider the 
following generalization of the definition of algebraic 
differentiability. 

DEFINITION: The function  f defined near  x = a is 
differentiable at that point if there exists a factorization

f(x) – f(a) = q(x)(x – a),

where the factor  q is continuous at  x = a.  The value  

q(a) = limx→a q(x)

is called the derivative of  f at  a, and it is denoted by

D(f)(a)  or f′(a).



Of course, as we saw, every algebraic function is
differentiable according to this definition at every
point of its domain.

NOTE: The proofs of all the standard rules of
differentiation given in the algebraic case apply
directly in the more general case. One just needs to
replace relevant properties of algebraic functions by
the appropriate properties of continuous functions.

For example, the proof of the chain rule is reduced
to the fact that composition and products of
continuous functions are continuous.



This formulation of differentiability has been 
known for some time.  As far as I know, it was 
introduced by 

Constantin Carathéodory (1873 – 1950). 



It  appears explicitly in Carathéodory’s 1950 

“Funktionentheorie”.         

(Birkhäuser, Basel, 1950)

A translation into English was published in 1956.  
(Chelsea Publ. Co., New York, 1956)

It has been used since the mid 1960s in several German
texts, both in one and in several variables (real and
complex).



It seems to have remained largely unknown in the
English literature until fairly recently. The first
occurrence known to me is in A. Browder’s text,
Mathematical Analysis, Springer, New York, 1996.

A few years later it was added in the 3rd edition of
Bartle and Sherbert’s Introduction to Real Analysis,
published in the year 2000.



I believe that Carathédory’s formulation offers
several advantages that should make it the preferred
definition in the 21st century:

• We all know that we cannot divide by zero.

So we should avoid quotients with zeroes in
the denominator as much as possible.



• It is the natural generalization 

of the elementary algebraic formulation.



• It simplifies proofs of standard rules,

reducing technical details to basic natural
properties of continuous functions.



• It is just a trivial modification of 

the fundamental idea that differentiability is 
equivalent to good linear approximation.



• It naturally generalizes to functions and maps 

of several variables, providing, in particular, 
much simpler proofs of the chain rule and 
of the inverse mapping theorem.



SUMMARY

• The algebraic definition of tangents and
derivatives via double points provides an elementary
approach WITHOUT LIMITS for an easy
introduction to differential calculus.

• Students can learn all mechanical differentiation
rules and many standard applications in a familiar
setting without being burdened with deep new
concepts involving limits.



• The algebraic approach leads naturally to the
notion of continuity and limits in a concrete setting,
and it paves the way for studying the calculus of
non-algebraic functions, where limits become
indispensable.

• The Chain Rule, i.e., the most important
differentiation formula, is completely natural and
elementary, and it should be discussed before the
complicated product and quotient rules.



• Carathéodory’s version of differentiability
should be used more widely in calculus and
analysis texts:
It is the natural generalization of the algebraic
double point method, it provides simple proofs
of standard theorems, and it allows a seamless
transition from one to several variables.
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