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Lars Onsager in his office at Yale. 

On the blackboard you can see a 
Fourier series expansion.

I did the best of my research at 
Yale, with Raphy Coifman.
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Lars Onsager

I His lecturing [at Yale] showed no visible signs of
improvement

I -his courses on statistical mechanics were
popularly known as “Advanced Norwegian I"
and “Advanced Norwegian II."

I (Michael S. Longuet-Higgins)
I Now you will endure “Advanced French I".
I And tomorrow it will be worse with Advanced

French II.
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Organization of the talk

(a) The Nyquist-Shannon theorem

(b) Sparsity & Compressed sensing

(c) Irregular sampling

(d) Sampling on quasi-crystals
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The Nyquist-Shannon
theorem
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The digital world

I Sampling a signal f on a grid
Λ = {. . . , s−1, s0, s1, . . .} yields a sequence
X (f ) = (f (sj))j∈Z of numbers.

I The continuous world of signals or images is
mapped into the discrete world of sequences.

I This is the digital revolution.

I Is it possible to retrieve f from X (f )?
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Band limited signals

I Let f (t) be function of the real variable t . The
Fourier transform f̂ (ω) of f is defined by

f̂ (ω) =

∫ ∞
−∞

exp(−2πitω) f (t) dt

I A function f of the time variable t is a band
limited signal if its Fourier transform f̂ (ω) is
supported by a finite interval [−ω0, ω0].

I Then ω0 is the cutoff frequency of f .
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The Nyquist-Shannon theorem

I Let f be a band limited signal and let Λ be a
regular grid: Λ = {0,±h,±2h, . . .} where h > 0
is the step size.

I Let us assume that f is sampled on Λ.

I How f can be retrieved from its samples?
I The Nyquist-Shannon sampling rate is defined

by h0 = 1
2ω0

where ω0 is the largest frequency
contained in the signal.

I First part of Shannon’s theorem:
I If h > h0 there are not enough measurements

and an artifact occurs in the reconstruction: it is
named aliasing.
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The Nyquist-Shannon theorem

I Second part of Shannon’s theorem.

I Theorem (1)
Let us assume that the Fourier transform of
f ∈ L2(R) vanishes outside [−ω0, ω0] and set
h0 = 1

2ω0
.

Then for 0 < h ≤ h0, f can be retrieved from its
samples f (kh), k = 0,±1,±2, . . . .
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All children know it

I In many western movies a stagecoach is
attacked by some fierce Indians. But in the
movie the wheels of the stagecoach are rotating
slowly the wrong way. This is ALIASING.

I Explanation: the sampling rate in a movie is 24
images per second. It is not sufficient to catch
the rapid rotation of the wheels. This is
SHANNON’s theorem.

I Stagecoach is a 1939 American Western film
directed by John Ford, starring Claire Trevor and
John Wayne in his breakthrough role.
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Compact disc

I Digital audio signal processing is based on the
Nyquist-Shannon theorem.

I The sampling rate used in CDs follows from
from physiology and Shannon’s theorem. Our
hear cannot perceive sounds whose frequency
is larger than 20 kHz.

I The selection of the sample rate was based
primarily on the need to reproduce the audible
frequency range of 20–20,000 Hz (20 kHz).
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Compact disc

I The Nyquist-Shannon sampling theorem states
that a sampling rate of more than twice the
maximum frequency of the signal to be
recorded is needed, resulting in a required rate
of at least 40 kHz.

I 44.1 kHz is the sampling rate used for compact
discs.
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Paley-Wiener space
I Let f (x) be a square integrable function defined

on Rn. The Fourier transform of f is

f̂ (ω) =

∫
Rn

exp(−2πix · ω)f (x) dx

I Definition
Let K ⊂ Rn be a compact set and We write f ∈ PW 2

K

if f is square integrable and if f̂ vanishes outside K .
I If n = 1 and K = [−ω, ω], f ∈ PW 2

K is a band
limited signal and the cutoff frequency is ω.

I PW stands for Paley-Wiener. If p ∈ [1,∞] we
write f ∈ PW p

K if f ∈ Lp(Rn) and if f̂ vanishes
outside K .
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Economical constraints

I In satellite imaging K depends on the optics of
the instrument.

I The image is sampled on a lattice.
I The choice of this lattice is seminal in the

economical success of the satellite.
I Coarse lattices are prohibited by the generalized

Nyquist-Shannon theorem (see below).
I Fine lattices are too expensive.
I The optimal lattice depends on the geometry of

K .
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Lattices

I A lattice Γ is a discrete subgroup such that the
quotient Rn/Γ is compact.

I Equivalently
Γ = A(Zn)

where A ∈ GL(n,R).
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Generalized Shannon’s theorem

I The dual lattice of a lattice Γ ⊂ Rn is defined as
Γ∗ = {y ; exp(2πiy · x) = 1, ∀x ∈ Γ}.

I The following theorem is seminal in designing
an optimal lattice to sample signals or images
f ∈ PW 2

K .

I Let Γ be a lattice, Γ∗ be the dual lattice, and
K ⊂ Rn be a compact set.
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Generalized Shannon’s theorem

I Theorem (2)
The two following properties are equivalent

(a) Every function f ∈ PW 2
K can be recovered from

its samples on Γ
(b) For every γ∗ ∈ Γ∗ we have

(∗) γ∗ 6= 0⇒ |(K + γ∗) ∩ K | = 0

I If K is Riemann integrable Theorem 2 is still
valid for f ∈ PW p

K .

I Y. Katznelson constructed a compact set K
such that Shannon’s theorem is no longer true
when PW 2

K is replaced by PW p
K with 1 ≤ p < 2.
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In satellite imaging one is given K and the issue is to
find the sparsest Γ for which (∗) holds. This
corresponds to find Γ∗ as dense as possible. This
has been achieved by Bernard Escudié who
elaborated the SPOT 5 satellite.
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SPOT 5

I Satellite SPOT 5 was launched on April 2002 by
an Ariane rocket. It was built by the CNES
Agency. During fifteen years SPOT 5 provided
Earth images with a resolution of 2.5 meters.

I SPOT 5 relied on a new sampling concept
named “Supermode".

I The sampling grid Γ used in SPOT 5 was the
sparsest one to be consistent with the optics K
of the satellite.
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Sparsity

I A “regular grid" is a lattice. For a long time
sampling on a regular grid was considered as a
good fortune while an “irregular grid" was
viewed as a wrong choice.

I To our greatest surprise the opposite is true.
Sampling on a simple quasi-crystal circumvents
the limitations imposed by Shannon’s theorem.

I This line of research is an illustration of the new
paradigm of compressed sensing of sparse
signals.
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Compressed sensing

I The compressed sensing paradigm is the
following statement:

I Let C be a collection of signals which have a
sparse representation in a given orthonormal
basis B. It means that the expansion of f ∈ C in
B only activates “a few vectors" depending on f .
This shall be given a precise definition.

I Compressed sensing amounts to finding a
universal sparse collection G of vectors such
that every f ∈ C can be retrieved from the few
samples < f ,g >, g ∈ G.
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Sparsity

I Let f be a signal or an image f and let K be the
closure of the support of f̂ .

I f is sparse in the Fourier domain if the
Lebesgue measure |K | of K is small.

I This definition is consistent with Landau’s
theorem (see below).

I The main message of this talk is the following:
I SPARSE SIGNAL SHOULD BE SAMPLED ON

COARSE GRIDS.
I Lattices do not work.
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Delone sets

I A set of points Λ ⊂ Rn is a Delone set if:
I (a) Λ is uniformly discrete: There exists a

positive β such that

λ, λ′ ∈ Λ, λ 6= λ′ ⇒ |λ− λ′| ≥ β

I (b) Λ is relatively dense: There exists a positive
constant R such that every ball B(x ,R)
whatever be its center contains at least a point
λ ∈ Λ.
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Definition
Let K ⊂ Rn be compact. A Delone set Λ ⊂ Rn is a
set of stable sampling for PW 2

K if there exists a
constant C such that for every f ∈ PW 2

K the following
holds

‖f‖2 ≤ C(
∑
λ∈Λ

|f (λ)|2)1/2

Then the map S : PW 2
K 7→ l2(Λ) has a left inverse. In

particular if f ∈ PW 2
K vanishes on Λ then f = 0

identically. There is no aliasing.
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Stable sampling sets
I On can ask a similar property where 2 is replaced by

p ∈ [1,∞].

I PW p
K is the collection of all f ∈ Lp whose Fourier

transform is supported by K .

I Definition
A Delone set Λ ⊂ Rn is a set of stable sampling for
PW p

K if the following holds

‖f‖p ≤ C(
∑
λ∈Λ

|f (λ)|p)1/p

for every f ∈ PW p
K .

I For 1 ≤ p <∞, ‖f‖p = (
∫
Rn |f |p dx)1/p.
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Landau’s theorem

I The following necessary conditions were discovered
in 1967 by H. J. Landau. If E ⊂ Rn is a Borel set |E |
denotes its Lebesgue measure.

I Theorem (3)
Let Λ be a set of stable sampling for PW 2

K . Then we
have

dens Λ ≥ |K |.
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Landau’s theorem
I The converse implication:

(∗∗) dens Λ ≥ |K | ⇒ stable sampling

does not hold in general.

I It is even wrong when Λ is a lattice.

I (∗∗) is true if

1. Λ is a simple quasi-crystal,

2. ≥ is replaced by > in (∗∗).

I Fifty years were needed to fully understand
Landau’s theorem.
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Landau’s theorem

I The lower density is computed as follows. Let
B(x ,R) be the ball centered at x with radius R. We
compute the lower bound N(R) as x ∈ Rn of the
cardinality of B(x ,R) ∩ Λ.

I Then N(R) is divided by the volume of B(x ,R) and
one computes the lower bound of N(R)/|B(x ,R)| as
R tends to infinity. This yields dens Λ.
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Y. Katznelson

Y. Katznelson constructed a compact set K such that
Landau’s theorem fails if PW 2

K is replaced by PW p
K

with 1 ≤ p < 2.

However Landau’s theorem remains valid if K is
Riemann integrable.

Y. Meyer Irregular sampling of signals and images 35 / 48



Irregular sampling
of signals and

images

Y. Meyer

Universal sampling sets

I In “A universal sampling of band-limited signals",
C.R. Math. Acad. Sci. Paris, 342 (2006) 927-931,
A. Olevskii and A. Ulanovskii proved the following
existence theorem:

I Theorem (4)
For every positive β there exists a Delone set Λ ⊂ R
with density β such that, for every compact set K
with |K | < β, Λ is a set of stable sampling for PW 2

K .

I Such a set Λ is a universal sampling set.
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Sampling on quasi-crystals

I This is a Penrose paving (1974). It is a diamond
tiling of the plane with isometric copies of two
proto-tiles which here are two diamonds.

I The whole paving is rotational invariant by a 2π/5
rotation around 0. The sampling set is the set of all
vertices of these diamonds.

I It is a “model set" (de Bruijn, 1981).
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Sampling on quasi-crystals

I Here is the simplest example of a universal sampling
set.

I Let {x} ∈ [0,1) be the fractional part of the real
number x . We have x = k + {x}, k ∈ Z. The first
example is

Λ = {k + {k
√

2}, k ∈ Z}.
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Sampling on quasi-crystals

Let θ(x) be the distance from x to the nearest
integer k ∈ Z. Consider

M = {k + θ(k
√

2), k ∈ Z}.

Is M a universal sampling set ? M is the union
between two disjoint model sets.
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Sampling on quasi-crystals

I Our second example of a universal sampling set
depends on a parameter α > 0 and is defined by

Λα = {λ = m + n
√

2, |m − n
√

2| ≤ α, m,n ∈ Z}.

I The density of Λα is α/
√

2.
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Sampling on quasi-crystals
I Before defining quasi-crystals we begin with model

sets.

I Let Γ ⊂ Rn × Rm be a lattice. For (x , t) ∈ Rn × Rm,
we write p1(x , t) = x , p2(x , t) = t .

I Let us assume that p1 once restricted to Γ is a 1-1
map with a dense range. The same is required on
p2.

I Definition
Let Q ⊂ Rm be a compact set (a window). Let us
assume that Q is Riemann integrable with a positive
Lebesgue measure. Then the model set ΛQ ⊂ Rn is
defined by

ΛQ = {p1(γ); γ ∈ Γ, p2(γ) ∈ Q}.
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Sampling on quasi-crystals

I A simple quasi-crystal is a model set ΛQ for which
m = 1 and Q is an interval.

I In “Quasicrystals are sets of stable sampling"
Comptes Rendus Académie Sciences Paris (2008)
vol. 346, pp 1235-1238, the following theorem is
proved:
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Sampling on quasi-crystals: the L2

theory.

I Theorem (5)
Let Λ ⊂ Rn be a simple quasi-crystal. Then Λ is a
universal sampling set.

I In other words Λ is a stable sampling set for PW 2
K

whenever K ⊂ Rn is a compact set such that
|K | < dens Λ.

I If K ⊂ Rn is a compact set such that |K | > dens Λ
Landau’s theorem implies that Λ is NOT a stable
sampling set for PW 2

K .
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I If K ⊂ Rn is a compact set such that |K | > dens Λ
Landau’s theorem implies that Λ is NOT a stable
sampling set for PW 2

K .
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Sampling on quasi-crystals

I I hoped that the preceding theorem could be
extended to general model sets (more general
windows). Here is a simple counter example.

I Let Λ ⊂ R2 be the set of all x = (x1, x2) where
x1 = k + {k

√
2}, x2 = m + {m

√
2}, k ,m ∈ Z.

I Then Λ is a model set which is not a universal
sampling set.

I I conjecture that a “generic model set" is a universal
sampling set.
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Vertices of the Penrose paving

I We do not know if the set of vertices of the Penrose
paving is a universal sampling set.

I A new proof of the main theorem will be given
tomorrow.

I Thank you for your gentle and patient attention.
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