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A “Weltkonstante” in time-frequency analysis

Conjecture (before August 1, 2017)

A (?)
=

1

L+

Theorem (unpublished)

A =
1

L+

Markus Faulhuber.
Extremal Bounds of Gaussian Gabor Frames and Properties of Jacobi’s Theta Functions.
Doctoral Thesis, University of Vienna, December 2016.
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Gauss’ constant and the ubiquitous constant

Gauss’ constant is approximately

G = 0.83462684167407318628143 . . .

The inverse of Gauss’ constant is given by

M =
1

G
= 1.1981402347355922074399 . . .

The constant

Cu =
M√

2
=

1√
2 G

= 0.847213 . . .

is sometimes called the ubiquitous constant.

Jerome Spanier, Keith B. Oldham
An Atlas of Functions (1st edition). Hemisphere, 1987

Steven R. Finch.
Mathematical Constants. Cambridge University Press, 2003.

http://mathworld.wolfram.com/GausssConstant.html
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The Fourier transform

For f ∈ L2(R) we define the Fourier transform by

Ff(ω) =

∫

R

f(t)e−2πiω·t dt.

A multi-component signal (real part). The Fourier transform of the signal
(absolute value squared).
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The musical score as a metaphor
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The short-time Fourier transform (STFT)

For f ∈ L2(R) the short-time Fourier transform (STFT) of f
with respect to the window g ∈ L2(R) is given by

Vgf(x, ω) =

∫

R

f(t)g(t − x)e−2πiω·t dt.

Windowed part of a multi-component
signal using a rectangular window (real

part).

The Fourier transform of the windowed
signal (absolute value squared).
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The short-time Fourier transform (STFT)

We denote the standard Gaussian by g0(t) = 21/4e−πt2
.

The standard Gaussian and dilated
standard Gaussians.

Windowed part of a multi-component
signal using a standard Gaussian window

(real part).

The Fourier transform of the windowed
signal (absolute value squared).
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The spectrogram (SPEC)

For f ∈ L2(R) the spectrogram with respect to the window
g ∈ L2(R) is given by

specgf(x, ω) = |Vgf(x, ω)|2.

A multi-component signal (real part). Spectrogram of the multi-component
signal using the standard Gaussian.
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The spectrogram (SPEC)

Spectrogram with a dilated Gaussian
(dilation factor 1/2).

Spectrogram with a dilated Gaussian
(dilation factor 2).
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An inversion formula

It is possible to recover f from its STFT. We have

f =
1

‖g‖2

∫

R2
Vgf(x, ω) g(t − x)e2πiω·t dxdω. (1)

However, L2(R) is a separable Hilbert space and, hence, the
representation of f given by (1) is highly redundant.

Is it possible to get some kind of generalized Fourier series of
the form

f(t) =
∑

x,ω

cx,ω g(t − x)e2πiω·t ?
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Gabor systems

By π(λ) we denote a time-frequency shift by λ = (x, ω);

π(λ)g(t) = MωTxg(t) = e2πiωtg(t − x).

We have
Vgf(λ) = 〈f, π(λ)g〉.

A Gabor system G(g, Λ) consists of time-frequency shifted
copies of a window g with respect to a discrete index set
Λ ⊂ R

2;
G(g, Λ) = {π(λ)g | λ ∈ Λ}.
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Lattices

We say Λ is a lattice if it is generated by an invertible matrix
(v1, v2) = M ∈ GL(2,R);

Λ = SZ2 = {kv1 + lv2 | k, l ∈ Z}

The volume and the density of the lattice is given by

vol(Λ) = | det(M)| and δ =
1

vol(Λ)

respectively.
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Lattices
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A hexagonal (or triangular) lattice and a square lattice of density 2.
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Gabor frames

A Gabor system G(g, Λ) is a frame for L2(R) if and only if

A‖f‖2
L2(R) ≤

∑

λ∈Λ

|〈f, π(λ)g〉|2 ≤ B‖f‖2
L2(R), ∀f ∈ L2(R)

with 0 < A ≤ B < ∞. In particular, any f ∈ L2(R) can be
expanded into

f =
∑

λ∈Λ

cλ π(λ)g.
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The frame operator

The frame operator is denoted by Sg,Λ and acts on an element
by the rule

Sg,Λf =
∑

λ∈Λ

〈f, π(λ)g〉 π(λ)g.

The upper frame bound ensures that Sg,Λ is bounded (hence
continuous) and the lower frame bound ensures that Sg,Λ is
(boundedly) invertible. Hence,

f =
∑

λ∈Λ

〈f, π(λ)g◦〉 π(λ)g,

where g◦ = S−1
g,Λg is the canonical dual window to g.
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The frame operator

The sharp frame bounds are connected to the frame operator in
the following way;

‖Sg,Λ‖op = B and ‖S−1
g,Λ‖op = A−1.

The number κ = B/A is the condition number of the Gabor
frame operator.
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The Strohmer and Beaver conjecture

Recall that the standard Gaussian is given by

g0(t) = 21/4e−πt2
, ‖g0‖L2(R) = 1.

Its (auto-) spectrogram is given by

|Vg0g0(x, ω)|2 = e−π(x2+ω2)

Time-frequency concentration of the standard Gaussian.
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The Strohmer and Beaver conjecture

Conjecture (Strohmer and Beaver, 2003)

For the standard Gaussian g0 and vol(Λ) < 1 fixed

κ(Λh) ≤ κ(Λ),

where Λh is the hexagonal lattice and Λ is any lattice of same

volume as Λh.
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The Strohmer and Beaver conjecture

Conjecture (Strohmer and Beaver, 2003)

For the standard Gaussian g0 and Λ(α,β) = αZ × βZ with

αβ = r < 1 fixed

κ(
√

r,
√

r) ≤ κ(α, β)

for all (α, β) with αβ = r.

“This conjecture is plausible for rectangular lattices, but is

wrong if we allow more general lattices.”
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The appearance of the siblings

For standard Gaussian window and the square lattice of density
2, the optimal frame bounds are

As = 2
∑

k,l∈Z

e−π((k+1/2)2+(l+1/2)2)

= 2
∑

k,l∈Z

e−π(k2+l2)e2πi(k/2−l/2) = 1.66925 . . . = 2G

and

Bs = 2
∑

k,l∈Z

e−π(k2+l2) = 2.36068 . . . = 2(21/2G) = 2C−1
u

The condition number of the frame operator is κs = 21/2.
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The appearance of the siblings

For standard Gaussian window and the hexagonal lattice of
density 2, the optimal frame bounds are

Ah = 2
∑

k,l∈Z

e
− 2√

3
π((k+1/3)2+(k+1/3)(l+1/3)+(l+1/3)2)

= 2
∑

k,l∈Z

e
− 2√

3
π(k2+kl+l2)

e2πi(k/3−l/3) = 1.84074 . . . = A

and

Bh = 2
∑

k,l∈Z

e
− 2√

3
π(k2+kl+l2)

= 2.31919 . . . = 21/3A

The condition number of the frame operator is κh = 21/3.
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The heat kernel on a torus

We are interested in tori of the form

T
2
Λ = R

2/Λ

where Λ ⊂ R
2 is a lattice. The area of the torus equals the

volume of the lattice. We say a torus is rectangular if the
underlying lattice is separable, i.e.,

T
2
(α,β) = R

2/(αZ × βZ).
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The heat kernel on a torus

We denote the Laplace–Beltrami operator on the torus by ∆Λ

or ∆(α,β). The heat semi group is

PΛ,t = {et∆Λ}t≥0,

which is a family of positive definite, bounded, self adjoint
operators and acts on functions by the rule

PΛ,tf(z) =

∫

T2
Λ

pΛ(z − z′; t) f(z′) dz′, z, z′ ∈ T
2
Λ, t ≥ 0.
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The heat kernel on a torus

The function pΛ is called the heat kernel of ∆Λ. Its explicit
formula is

pΛ(z; t) =
1

4πt

∑

λ∈Λ

e−π
|z−λ|2

4πt .

The minimal and the maximal temperature of the heat kernel
are

mΛ = min
z∈T2

Λ

pΛ(z; t)

MΛ = max
z∈T2

Λ

pΛ(z; t).
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The heat kernel on a torus

The heat kernel on the torus with
“hexagonal metric”. The minima are

marked, the maximum is achieved at the
corners.

The heat kernel on the torus with standard
metric. The minimum is achieved in the
middle, the maximum is achieved at the

corners.
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The heat kernel on a torus

Let t = 1
4π and vol(Λ) = 1. We denote the hexagonal lattice by

Λh.

mΛh
= 0.920371 . . . =

A
2

, MΛh
= 1.1596 . . . = 21/3 A

2
.

Also, for the square lattice Λs we have

mΛs = 0.834627 . . . = G, MΛs = 1.18034 . . . = C−1
u .
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4-coloring the triangular lattice

We consider an n × n grid with triangular structure and
wraparound.

One possible 4-coloring of a triangular lattice
with 16 vertices.

Let vn denote the number of ways of coloring a triangular
lattice with 4 colors so that neighboring points have different
colors. Then

lim
n→∞

v1/n2

n = CB4CC =
3

4π2
Γ(1

3 )2 = 1.46069984862 . . .

21/3CB4CC = A
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Landau’s “Weltkonstante”

Theorem (262)

There exists exactly one π > 0 such that

cos
π

2
= 0,

cos x > 0 for 0 ≤ x ≤ π

2
.

In other words,

cos y = 0

has a positive solution, and in fact a smallest one.

Definition (61)

The universal constant of Theorem 262 will be denoted henceforth by π.
[Die Weltkonstante aus Satz 262 werde dauernd mit π bezeichnet.]

Edmund Landau.

Differential and Integral Calculus, Chelsea Publishing Company, 1951.

translated by M. Hausner and M. Davis.

[Einführung in die Differentialrechnung und Integralrechnung, 1934].
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Landau’s “Weltkonstante”

Theorem (Landau 1929)

Let f ∈ H (D) with |f ′(0)| = 1. Then there exists a disc Df (r)
of radius r > 0 such that Df (r) ⊂ f(D).

Definition (Landau’s “Weltkonstante”)

For f ∈ H (D) we define

ℓ(f) = sup {r ∈ R+ : Df (r) ⊂ f(D)}

and
L = inf

{
ℓ(f) : f ∈ H (D) , |f ′(0)| = 1

}
.

L is called Landau’s constant.
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Landau’s “Weltkonstante”

Problem (Landau 1929)

What is the exact value of L?

We have the following estimates for Landau’s constant

1

2
< L ≤ L+ =

Γ
(

5
6

)

Γ
(

1
3

)

Γ
(

1
6

) = 0.54326 . . .
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Landau’s “Weltkonstante”

Conjecture (Rademacher 1943)

L = L+ =
Γ

(
5
6

)

Γ
(

1
3

)

Γ
(

1
6

) = 0.54326 . . .

Equivalently we have

L−1 = L−1
+ =

Γ
(

1
6

)

Γ
(

5
6

)

Γ
(

1
3

) = 1.84074 . . . = A.
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Landau’s “Weltkonstante”

Tessellation of the unit disc.

Φ−−−−−→

Tessellation of the plane.

Φ maps D to C\Λh, where Λh is a hexagonal lattice with
covering radius 1.

|Φ′(0)| = L−1
+

(!)
= A = 1.84074 . . . .
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Landau’s “Weltkonstante”

Tessellation of the unit disc.

φ−−−−→

Tessellation of the plane.

φ maps D to C\Λs, where Λs is a square lattice with covering
radius 1.

|φ′(0)| =
Γ

(
1
4

)

Γ
(

1
2

)

Γ
(

3
4

)
(!)
= 2G = 1.66925 . . .

https://www.math.purdue.edu/˜eremenko/uns1.html

Markus Faulhuber The ubiquitous constant and its siblings

https://www.math.purdue.edu/~eremenko/uns1.html


Contents

1 The Strohmer and Beaver conjecture

2 The heat kernel on a torus

3 Baxter’s 4-coloring constant

4 Landau’s “Weltkonstante”

5 Special functions

6 The arc length of the lemniscate

7 The arithmetic-geometric mean of Gauss

Markus Faulhuber The ubiquitous constant and its siblings



Special functions

Gauss’ hypergeometric function 2F1 is defined as

2F1(a, b; c; z) =
∞∑

k=0

(a)k(b)k

(c)k

zk

k!
, |z| < 1,

where

(z)k =
Γ(z + k)

Γ(z)
.
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Special functions

For |q| < 1 we define the “Nullwerte” of Jacobi’s theta functions

θ2(q) =
∑

k∈Z

q

(

k+
1
2

)2

, θ3(q) =
∑

k∈Z

qk2
, θ4(q) =

∑

k∈Z

(−q)k2

Often q is replaced by eπiτ with τ ∈ H.

The elliptic modulus and the complementary elliptic modulus
are defined as

k =
θ2

2

θ2
3

and k′ =
θ2

4

θ2
3

.

They satisfy the property

k2 + k′2 = 1.
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Special functions

Theorem (Ramanujan)

For |q| < 1, k = θ2(q)2

θ3(q)2 , we have

2F1(1
2 , 1

2 ; 1; k2) = θ3(q)2.

By setting q = e−π, it follows that k2 = k′2 = 1
2 = κ−2

s .
Therefore,

2F1(1
2 , 1

2 ; 1; 1
2) = 1.18034 . . . = C−1

u

and
1√
2 2F1(1

2 , 1
2 ; 1; 1

2) = 0.834627 . . . = G.
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Special functions

For |q| < 1, we define the cubic analogues to Jacobi’s theta
functions.

a(q) =
∑

k,l∈Z

qk2+kl+l2

b(q) =
∑

k,l∈Z

q(k+1/3)2+(k+1/3)(l+1/3)+(l+1/3)2

c(q) =
∑

k,l∈Z

qk2+kl+l2ζk−l
3

where ζ3
3 = 1, ζ3 6= 1. Setting s = b(q)

a(q) and s′ = c(q)
a(q) , we have

s3 + s′3 = 1.
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Special functions

Theorem (Ramanujan; Borwein and Borwein)

For |q| < 1, s = b(q)
a(q) , we have

2F1(1
3 , 2

3 ; 1; s3) = a(q)

By setting q = e
− 2√

3
π
, it follows that

s3 = s′3 =
1

2
= κ−3

h .

Also,

2F1(1
3 , 2

3 ; 1; s3) = 1.1596 . . . = 21/3 A
2

and
1

3√2 2F1(1
3 , 2

3 ; 1; s3) = 0.920371 . . . =
A
2

=
1

2L+
.

Jonathan Borwein and Peter Borwein.

A Cubic Counterpart of Jacobi’s Identity and the AGM
Transactions of the American Mathematical Society, 323(2):691-701, 1991.
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The lemniscate

For a parameter a > 0, the lemniscate
is defined by the implicit equation

(x2 + y2)2 = 2a2(x2 − y2)

For a = 1√
2

we have the “unit”

lemniscate.
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The lemniscate

The arc length of the lemniscate with parameter a is given by

4
√

2a F (1),

where the function F is given by

F (x) =

∫ x

0

dt√
1 − t4

.

It follows that the arc length of the unit lemniscate is

4F (1) = 4

∫ 1

0

dt√
1 − t4

= 2̟ ≈ 5.24412
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The lemniscate

Gauss used the letter ̟ to denote the close connection to π;

2π = 2

∫ 1

0

dt√
1 − t2

.

The ratio G = ̟
π is called Gauss’ constant1. Its exact value can

be expressed in terms of the Beta or Gamma function;

G =
B(1

4 , 1
2)

2π
=

Γ(1
4)2

2π
√

2π
= 0.83463 . . .

1In German literature ̟ = πG is called “lemniskatische Konstante”
[lemniscate constant]
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The AGM

For two numbers a, b ∈ R+, the arithmetic mean is given by a+b
2

and the geometric mean is given by
√

ab.
We set

a0 = a, b0 = b

and start the iterative process

an+1 =
an + bn

2
, bn+1 =

√

anbn.

We have
lim

n→∞
an = lim

n→∞
bn = M2(a, b),

which is called the arithmetic-geometric mean of a and b.
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The AGM: an example

We set

a0 = 1 and b0 =
1√
2

= 0.7071067811865475244008

Then, we have

a1 = 0.853553390593273762200 b1 = 0.840896415253714543031
a2 = 0.847224902923494152615 b2 = 0.847201266746891460403
a3 = 0.847213084835192806509 b3 = 0.847213084752765366704
a4 = 0.847213084793979086607 b4 = 0.847213084793979086605

and

M2

(

1, 1√
2

)

= Cu.
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The AGM and complete elliptic integrals

Theorem (Gauss’ diary, Entry 102, December 23, 1799)

M2(a, b)

∫ π/2

0

dϕ
√

a2 cos(ϕ)2 + b2 sin(ϕ)2
=

π

2
.

Note:

a2 cos(ϕ)2 + b2 sin(ϕ)2 = a2(1 − (1 − b2

a2 )
︸ ︷︷ ︸

k2=1−k′2

sin(ϕ)2)

Also,

K(k) :=

∫ π/2

0

dϕ
√

1 − k2 sin(ϕ)2
=

∫ 1

0

dt
√

(1 − k2t2)(1 − t2)

=
π

2
2F1

(
1
2
, 1

2
; 1; k

2
)

=
π

2

1

M2(1, k′)
.

It follows that

G =
̟

π
=

1

M2(1,
√

2)
and Cu = M2

(

1, 1√
2

)

.

Markus Faulhuber The ubiquitous constant and its siblings



The AGM: a cubic counterpart

For a0 = a and b0 = b, we define the iterative process

an+1 =
an + 2bn

3
, bn+1 =

3

√

bn
a2

n + anbn + b2
n

3

The limit of the sequences is the same

lim
n→∞ an = lim

n→∞ bn = M3(a, b).

We have, for 0 < s < 1 and s3 + s′3 = 1,

1

M3(1, s)
= 2F1(1

3 , 2
3 ; 1; s′3)

Jonathan Borwein and Peter Borwein.

A Cubic Counterpart of Jacobi’s Identity and the AGM
Transactions of the American Mathematical Society, 323(2):691-701, 1991.
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The AGM and frame bounds

Consider the following sequence (Gn)n∈N of Gaussian Gabor
systems with square lattices of density 2n and

Gn =
{

1√
2n g0, 1√

2nZ × 1√
2nZ

}

.

Then,
A1 = G and B1 = C−1

u =
√

2G.

It follows that

M2(G,
√

2G) = G M2(1,
√

2)
︸ ︷︷ ︸

G−1

= 1.

Furthermore,

An+1 =
√

AnBn and Bn+1 =
An + Bn

2
.
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The AGM: a new field of analysis

[Gauss’ diary, Entry 98, May 30, 1799]:
We have established that the arithmetic-geometric mean
between 1 and

√
2 is π

̟ to the eleventh decimal place; the
demonstration of this fact will surely open an entirely new field
of analysis.
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Foundations of Time–Frequency Analysis. Springer, 2001.

Augustus J.E.M. Janssen.

Some Weyl–Heisenberg frame bound calculations.
Indag. Mathem., 7(2):165-183, 1996.

Edmund Landau.
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