$$
\begin{aligned}
& \text { Eúk } \lambda \varepsilon \iota \delta_{\eta s} \\
& p_{1} p_{2} \cdots p_{n}+1 \\
& \text { Euler } 1737 \\
& \sum_{n=1}^{\infty} \frac{1}{n}=\prod_{n=1}^{\infty} \frac{1}{1-\frac{1}{p_{n}}} \\
& \sum \frac{1}{p}=\log (\log (\infty)) \\
& \zeta(\Delta)=\sum_{n=1}^{\infty} \frac{1}{n^{n}}=\pi \frac{1}{1-\frac{1}{p^{n}}} \\
& 1+1+1+\cdots=-\frac{1}{2} \quad \zeta(0) \\
& 1+2+3+\cdots=-1 / 12 \quad \zeta(-1) \\
& 1^{2}+2^{2}+3^{2}+\cdots=0 \quad \zeta(-2) \\
& 1^{3}+2^{3}+3^{3}+\cdots=\frac{1}{120} \quad \zeta(-3)
\end{aligned}
$$

$$
\begin{aligned}
& \pi(x) \sim \frac{x}{\log (x)} \text { EULER } 1762 / 63 \\
& \pi(x) \sim \int_{2}^{x} \frac{d y}{\log (y)} \text { GAUSS } 1791 \\
& \pi(x) \sim \frac{x}{\log (x)-1} \text { LEGENDRE } 1798
\end{aligned}
$$

TSCHEBYSCHEF 1851

$$
0,92129 \frac{x}{\log (x)}<\pi(x)<1,10555 \frac{x}{\log (x)}
$$

J. HADAMARD 1896
de la Valleé - Poussin 1896

$$
\begin{array}{r}
\operatorname{li}(x)=\int_{0}^{x} \frac{d y}{\log (y)} \\
\sqrt{x} \log (x)
\end{array}
$$

$$
\begin{aligned}
& \zeta(s)= \frac{1}{2}+\frac{1}{s-1} \\
&-\Lambda \int_{1}^{\infty} \frac{y-[y]-\frac{1}{2}}{y^{\prime+s}} d y \\
& s=\sigma+i t
\end{aligned}
$$

- When $\sigma>1$ this yields

$$
\sum_{n=1}^{\infty} n^{-s}
$$

- Valid also when $\sigma>0$ (except at $s=1$).

11
... so lange der reelle Theil von s gro"ßer als 1 ist; es länst sich indess leicht EIN IMMER GÜLTIG BLEIBENDER AUSDRUCK der Function fimden." 1859

$$
\begin{aligned}
& \frac{T\left(\frac{\lambda}{2}\right) \zeta(\lambda)}{\pi^{\lambda / 2}}=\frac{1}{\Lambda(\lambda-1)} \\
& +\int_{1}^{\infty}\left(x^{\frac{1-n}{2}}+x^{\frac{\lambda}{2}}\right) \sum_{n=1}^{\infty} e^{-n^{2} \pi x} \frac{d x}{x} \int_{-\frac{1}{2} \rightarrow \prod_{1-\frac{1}{n}}^{1-\infty}}^{\beta_{n}} \\
& \text { the functional equation }
\end{aligned}
$$

$$
\begin{gathered}
\frac{\Gamma\left(\frac{\lambda}{2}\right) \zeta(\lambda)}{\pi^{\Delta / 2}}=\frac{\Gamma\left(\frac{1-\lambda}{2}\right) \zeta(1-\lambda)}{\pi_{\text {TAKES }}(1-\lambda) / 2} \\
\xi(\lambda)=\frac{1}{2} \lambda(\lambda-1) \pi^{-\frac{S}{2}} \Gamma\left(\frac{\Delta}{2}\right) \zeta(\lambda) \\
\xi(\lambda)=\xi(1-\lambda)
\end{gathered}
$$

$\max \| \xi(s) \mid \sim R^{R / 2} \quad(R \rightarrow \infty)$

$$
|n|=R
$$

$$
\text { POISSON } \sum_{n=-\infty}^{\infty} e^{-n^{2} \pi x}=\frac{1}{\sqrt{x}} \sum_{n=-\infty}^{\infty} e^{-\frac{n^{2} \pi}{x}}
$$

$$
\log \zeta(A)=-\sum \log \left(1-\frac{1}{p^{s}}\right)
$$

$$
=-\sum_{n=2}^{\infty}(\pi(n)-\pi(n-1)) \log \left(1-\frac{1}{n^{n}}\right)
$$

$$
=-\sum_{n=2}^{\infty} \pi(n)\left\{\log \left(1-\frac{1}{n^{-s}}\right)-\log \left(1-\frac{1}{(n+1)^{s}}\right)\right\}
$$

$=+\sum_{n=2}^{\infty} \pi(n) \int_{n+1}^{n+1} \frac{d}{d x}\left(\log \left(1-\frac{1}{x^{n}}\right)\right) d x$
$=\sum_{n=2}^{\infty} \int_{n}^{n+1} \pi(x) \frac{d}{d x}\left(\log \left(1-\frac{1}{x^{n}}\right)\right) d x$
$=\sum_{n=2}^{\infty} \int_{n}^{n+1} \frac{\Delta \pi(x)}{x\left(x^{n}-1\right)} d x$
$=s \int_{2}^{\infty} \frac{\pi(x) d x}{x\left(x^{n}-1\right)}$

$$
\begin{array}{r}
\frac{\log \zeta(s)}{s}=\int_{0}^{\infty} \frac{\pi(x) d x}{x\left(x^{s}-1\right)} \\
\Delta=\sigma+i t, \sigma>1
\end{array}
$$

Inversion:

$$
\left\{\begin{array}{l}
F(s)=\int_{0}^{\infty} \frac{f(x) d x}{x^{s+1}} \\
f(x)=\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} x^{s} F(s) d s \\
\quad c \gg 1
\end{array}\right.
$$

By Inversion

$$
\begin{aligned}
& \tilde{H}(x) \stackrel{\text { DEF. }}{=} \sum_{n=1}^{\infty} \frac{1}{n} \pi(\sqrt[n]{x}) \\
& =\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} x^{s} \frac{\log \}(A)}{A} d A
\end{aligned}
$$

$$
I(x)=\Pi_{1}(x)+\underbrace{O\left(\frac{\sqrt{x} \log \log \log (x)}{\log (x)}\right)}_{\substack{\text { Smaller than } \\ \text { the "error term }}}
$$ the "error term

$$
\sqrt{x} \log (x)
$$

$$
\begin{aligned}
& \frac{\log _{\Delta} \zeta(A)}{x_{0}}=\int_{\frac{x^{-s}}{1-x^{-s}}}^{\infty} \frac{\pi(x) d x}{x\left(x^{\lambda}-1\right)} \\
& \text { Geometric Series. } \\
& =\int_{0}^{\infty} \frac{\sum_{n=1}^{\infty} \frac{1}{n} \pi\left(y^{\frac{1}{n}}\right)}{y^{s+1}} d y
\end{aligned}
$$

$$
\begin{aligned}
& \pi(x)+\frac{1}{2} \pi(\sqrt{x})+\frac{1}{3} \pi(\sqrt[3]{x})+\cdots \\
& =\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} x^{s} \frac{\log \zeta(s)}{\Delta} d s \\
& \sigma=\operatorname{Re}(s)>1
\end{aligned}
$$

$$
\begin{aligned}
& X^{s}=X^{c} X^{i t} \quad(s=c+i t) \\
& \left|X^{s}\right|=X^{c}, c>1
\end{aligned}
$$

ToO BIG:

1. HADAMARD ZEROS EXHIBITED!

$$
\begin{aligned}
& (s-1) \zeta(s) \\
& =\frac{1}{2}\left(\frac{2 \pi}{e}\right)^{s} \prod_{n=1}^{\infty}\left(1+\frac{s}{2 n}\right) e^{-\frac{s}{2 n}} \\
& \times \prod_{k=1}^{\infty}\left(1-\frac{s}{\rho_{k}}\right) e^{+\frac{s}{\rho_{k}}}
\end{aligned}
$$

$$
\begin{aligned}
& \lim _{T \rightarrow \infty} \sum_{\left|\gamma_{k}\right|<T} \frac{1}{\rho_{k}}=1+\frac{8}{2}-\frac{\log (4 \pi)}{2} \\
& \quad=0,02309 \cdots
\end{aligned}
$$

Riemann gave 20 decimal places
Remark::

$$
\sum_{k} \frac{1}{\left|\rho_{k}\right|}=+\infty
$$

$$
\begin{aligned}
& I I(x)=\int_{0}^{x} \frac{d u}{\log (u)} \\
& -\sum_{k} \operatorname{li}\left(x^{\rho k E R O S}\right)-\log (2) \\
& +\int_{x}^{\infty} \frac{d \mu}{\mu\left(u^{2}-1\right) \log (u)}
\end{aligned}
$$

$$
\begin{aligned}
\left|\operatorname{li}\left(x^{\rho}\right)\right| & \frac{x^{\operatorname{Re}(\rho)}}{|\rho| \log (x)} \stackrel{?}{=} \frac{\sqrt{x}}{|\rho| \log (x)} \\
\operatorname{li}\left(x^{\rho}\right) & =\int_{0}^{x^{\rho}} \frac{\operatorname{dmpothesis}}{\log (u)}
\end{aligned}
$$

$$
\begin{aligned}
& (s-1) \zeta(\Delta) \\
& =\frac{1}{2}\left(\frac{2 \pi}{e}\right)^{s} \prod_{n=1}^{\infty}\left(1+\frac{\delta}{2 n}\right) e^{-\frac{s}{2 n}} \\
& x \prod_{k}\left(1-\frac{\delta}{\rho_{k}}\right) e^{+\frac{\delta}{\rho_{k}}}
\end{aligned}
$$

[uon Mangoldt]

$$
\begin{aligned}
& \psi(x)= \sum_{p^{m} \leq x} \log (p) \quad\left|x^{\hat{s}}\right|=x^{c} \\
&= \frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty}\left(-\frac{\zeta^{\prime}(\Delta)}{\zeta(\Delta)}\right) \frac{x^{s}}{s} d s \\
& x>1 \\
&= x-\sum_{k} \frac{x^{\rho} \rho_{k}}{\rho_{k}}-\log (2 \pi) \\
&-\frac{1}{2} \log \left(1-\frac{1}{x^{2}}\right)
\end{aligned}
$$

If $f(s) \neq 0$ and analytic in the $\left.\frac{1}{\operatorname{disk} \mid s}-\frac{3}{4} \right\rvert\, \leq n<\frac{1}{4}$. then, given $\varepsilon>0$,

$$
\left.\max _{\left|s-\frac{3}{4}\right| \leq \pi} \right\rvert\, f(s)-\sum_{\text {UNIFORM APPROXIMATION }}
$$

for some $t_{\varepsilon} \gg 1$.

$$
\begin{aligned}
& \int_{0}^{\infty} \frac{1-12 t^{2}}{\left(1+4 t^{2}\right)^{3}} \int_{1 / 2}^{\infty} \log |\zeta(\sigma+i t)| d \sigma d t \\
& \quad ? \frac{\pi(3-\gamma)}{32}
\end{aligned}
$$

$\frac{1}{\zeta(s)}=\sum_{n=1}^{\infty} \frac{\mu(n)}{n^{s}}$ cons. when
$\operatorname{Re}\left(s_{0}\right)>\frac{1}{2} \Leftrightarrow$ The Riemann Hypo
$\frac{1}{2}+i \infty$

$$
\int_{\frac{1}{2}-i \infty}^{\frac{1}{2}+i \infty} \frac{\log |\zeta(s)|}{|s|^{n}} d s=0 \Leftrightarrow \underset{\text { RIEMANn }}{\text { RIM. }}
$$

3 Gram 1895 (Riemann 1859?)
15 Gram 1903
79 Backlund 1914
1041 Jitchmarsh 1936
$\frac{1104}{\infty}$
A. Turing 1953

Hardy 1914
cT Handy-Hittlewodel 1921
$c T \log T \quad S e l b e r g 1942 \quad \frac{T}{2 \pi} \log \left(\frac{T}{2 \pi}\right)-\frac{T}{2 \pi}$
$33 \% \quad$ Levies on 1974 $0 \leq t \leq T$
40% Convey 1989

$$
\int_{0}^{x} \frac{d \mu}{\log (\mu)}=\operatorname{li}(x)>\pi_{1}(x)
$$

at least fir $x \leqslant 10^{23}$.
Sign change before 10^{361}

Bohr-Landau 1914:
ONLY AN "INFINITESIMAL
PORTION OF THE ZEROS"LIE

$$
\begin{array}{r}
7005,101 \\
7005,063 \\
\hline 0,038
\end{array}
$$

OUTSIDE THE STRIP

$$
\left|\frac{1}{2}-\operatorname{Re}(\Omega)\right|<\varepsilon
$$

