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In this presentation, numbers are 
represented in base 10. 

Thus, computing a number means 
 to calculate its digits in base 10.



Definitions

A multiplication algorithm           takes in two integers  
and computes their product. (Here in base 10.)

𝒜

We let                    denote the maximum number of  elementary 
steps (addition/multiplication of  single digits, etc) needed 
for         to compute the product of  two n-digit integers.

M𝒜(n)

𝒜

The complexity of          is the asymptotic behaviour of   
as n goes to infinity.

𝒜 M𝒜(n)

The complexity of  multiplication  is the optimal complexity of  all 
 possible multiplication algorithms.

We formally write               for the number of  steps required by an 
 “optimal multiplication algorithm” (i.e. of  optimal complexity).

M(n)

The complexity of  multiplication  is the asymptotic behaviour of              .M(n)



Note that the complexity of  squaring cannot be much lower than half  that of  
multiplication, as 

Why do we care about the complexity of  multiplication?

Multiplication is a fundamental building block in computation: 

Operation Algorithm Complexity

Squaring Optimal multiplication 
algorithm

Division Newton-Raphson division

Square root (first n digits) Newton’s method

Greatest common divisor Schönhage controlled 
Euclidean descent algorithm

   ( n decimal places) Gauss-Legendre algorithmπ

O(M(n))

O(M(n))

O(M(n))

O(M(n)log(n))

O(M(n)log(n))

xy =
(x + y)2 − (x − y)2

4                                                                                              and so one multiplication 
can be exchange for the cost of  two squares (+ negligible extra steps). 



Example with  !  and numbers  ! ,    ! ,n = 6 a = 249416 b = 133758

Grade-school multiplication   (GS)

On ! ’th row:  Multiply 1 digit with ! -digit number, 
and add  !  extra zeros to the result (shifts) 
requires !  steps. 
Lastly, we sum over !  numbers of  length ! , 
requires !  steps. 
Number of  elementary steps is approximately

k n
k − 1
≂ n + k − 1

n ∈ [n,2n]
≂ n2

MGS(n) ≂ (
n

∑
k=1

n + (k − 1)) + n2 =
5n2

2
−

n
2

Consequently, the complexity of  multiplication satisfies (at least)

-The algorithm taught in school. 
-Similar method used in ancient Egypt at least 4000 years ago.  
-Has quadratic complexity i.e. !  behaves no better than !  asymptotically.MGS(n) O(n2)

M(n) = O(n2) .

1995328 
         12470800               

 174591200    
         748248000 

   7482480000 
  24941600000

249416 
133758×

8   249416×
5   249416×
7   249416×
3   249416×
3   249416×
1   249416×

33361385328=

⇒ MGS(n) ≂ n2 .



Kolmogorov’s       ! -conjecturen2

In 1956 Andrey Kolmogorov conjectured that the complexity 
of  multiplication is quadratic,   ! . M(n) ≂ n2

Andrey Kolmogorov

Anatoly Karatsuba

Later in 1960 he organised a seminar on problems in cybernetics 
at Moscow University; here he stated his conjecture. 

Attending was the 23-year old student Anatoly Karatsuba. 
A week’s search later, he discovered the Karatsuba algorithm: 

MKA(n) = O(nlog2(3)), log2(3) = 1.58496...
disproving Kolmogorov’s conjecture! 

After learning of  this new method, Kolmogorov presented it at 
the next meeting… and then terminated the seminar.

In 1962, Kolmogorov wrote and published the article: 
 A. Karatsuba and Yu. Ofman,  

“Multiplication of  Multiplace Numbers on Automata”

Karatsuba first learned of  the article when given its reprint.
The article spawned a new area of  computation theory: 

Fast multiplication algorithms.



We consider the integers from earlier
a1 a2

Karatsuba realized that one can obtain the sum ! , without calculating 
the products !  and !  individually.

a1b2 + a2b1
a1b2 a2b1

Karatsuba algorithm (KA), 1960

a = 249416, b = 133758.
b1 b2

Thus:
a = 249 × 1000 + 416 = a1103 + a2,
b = 133 × 1000 + 758 = b1103 + b2,

ab = a1b1106 + (a1b2 + a2b1)103 + a2b2,

Knowing ! , ! , !  and ! , 
we could build !  using only 
addition and shifts,

a1b1 a1b2 a2b1 a2b2
ab

M(n) < 4M(n /2) + O(n),
⇒ M(n) = O(n2) .

a1b2 + a2b1 = (a1 + a2)(b1 + b2) − a1b1 − a2b2,

M(n) < 3M(n/2) + O(n), ⇒ M(n) = O(nlog2(3)) .

𝒜KA(a, b) : if            , return       .

else set   

n = 1 ab
x = 𝒜KA(a1, b1),

and return  x102n + (z − x − y)10n + y .

y = 𝒜KA(a2, b2),
z = 𝒜KA(a1 + a2, b1 + b2),

MKA(n) = O(nlog2(3)) .

More efficient than grade-
school multiplication 
around                .n > 60

                                                                      Indeed, knowing !  and !  we need 
only one extra multiplication to attain this sum:

a1b1 a2b2



                                                         Being a polynomial of  degree 4, we need 
5 evaluations. Choose small values: !   x = 2,1,0, − 1, − 2.

Toom-Cook algorithm (Tk), 1963

Stephen CookAndrei Toom

Introduced by Andrei Toom, and further 
simplified by Stephen Cook .
A family of  algorithms:  Toom- !     (KA=Toom-2).k
Example of  Toom-3, with  !  : n = 6

a = 249416
b = 133758

A(x) = 24x2 + 94x + 16,
B(x) = 13x2 + 37x + 58.

→
→

Want to calculate ! . C(x) = A(x)B(x)

Notice:
C(100) = A(100)B(100) = ab .

C(2)
C(1)
C(0)

C(−1)
C(−2)

Coefficients of  !C(x)

Each is a product of  
integers of       
digits. Toom-3 is 
reapplied to evaluate 
these 5 products. 

≈ n /3

MT3(n) < 5MT3(n /3) + O(n),

⇒ MT3(n) = O(nlog3(5)) .

Toom-   : k MTk(n) < (2k − 1)MTk(n /k) + O(n),

⇒ MTk(n) = O(nlogk(2k−1)) .

=

24 23 22 2 1
1 1 1 1 1
0 0 0 0 1
1 −1 1 −1 1

(−2)4 (−2)3 (−2)2 −2 1

c4
c3
c2
c1
c0

logk(2k − 1) ↘ 1, k → ∞ .Toom-Cook can get “linear +   ” complexity, asε

⃗C = Π ⃗c

Compact 
notation:

Calculating ! (in advance),  !  is retrieved by a weighted sum of  the elements of  ! .Π−1 ⃗c ⃗C



Some more definitions

Sequences are by default of  length     .  
Notation:                                                         .(xk) = (xk)N−1

k=0 = (x0, x1, . . . , xN−1)
N

Pointwise product:

(xk) ⋅ (yk) = (xkyk),
Cost = O(NM(n))

Cyclic convolution:

(xk) (yk) = (Σ xjyk−j),* j



Some more definitions

Sequences are by default of  length     .  
Notation:                                                         .(xk) = (xk)N−1

k=0 = (x0, x1, . . . , xN−1)
N

Pointwise product:

(xk) ⋅ (yk) = (xkyk),
Cost = O(NM(n))

Cyclic convolution:

(xk) (yk) =* (Σ xjyk−j),j

The index k − j is considered modulo N .



Cyclic convolution:

Cost = O(N2M(n))

P(x) Q(x) P(x)Q(x)
(pk) (qk) (pk) (qk)*

Polynomials: 
Coefficients:

Some more definitions

Sequences are by default of  length     .  
Notation:                                                         .(xk) = (xk)N−1

k=0 = (x0, x1, . . . , xN−1)
N

Convolution theorem:

= ℱ−1{( ̂xk) ⋅ ( ̂yk)} .(xk) (yk)*

Discrete Fourier transform:

( ̂xk) = ℱ{(xk)} (xk) = ℱ−1{( ̂xk)}
⇒ ̂xk = xj e− 2πi

N kj,Σ
j

⇒ xk = 1
N

̂xj e
2πi
N kj,Σ

j

The expression                          denotes the ring of  polynomials with integer 
coefficients modulo              in other words, we have            .

ℤ[x]/⟨xN − 1⟩
xN − 1, xN = 1

Elements of                        are represented 
 by polynomials of  degree less than    .

ℤ[x]/⟨xN − 1⟩
N

For polynomials                  of  degree less than        , the classical product coincides with 
the ring-product. The coefficients        of                             can be calculated from:(ck)

N/2A(x), B(x)
C(x) = A(x)B(x)

(ck) = (ak) (bk) = ℱ−1{( ̂ak) ⋅ (b̂k)},*

Pointwise product:

(xk) ⋅ (yk) = (xkyk),
Cost = O(NM(n))

Cost = O(N2M(n)) Cost = O(N2M(n))

though seemingly 
 not more efficient…

(xk) (yk) =* (Σ xjyk−j),j



Fast Fourier transform (FFT)

A Fast Fourier transform is any discrete 
Fourier transform algorithm of  complexity 
!  and not ! . O(N log(N )M(n)) O(N2M(n))

(ck)

(ak), (bk)

* O(N2M(n))

O(N log(N )M(n))

O(N log(N )M(n))

O(NM(n))

( ̂ak) ⋅ (b̂k)

⋅

( ̂ak), (b̂k)
ℱ

ℱ−1

Blue path calculates !  in !  steps!(ck) O(N log(N )M(n))

Popularised in 1965,  when the Cooley-Tukey FFT 
was introduced.

James. W. Cooley John Tukey

Carl. F. Gauß

                                                                        who used 
it to interpolate the trajectories of  the asteroids 
Pallas and Juno. 

The same algorithm was known to Gauss,

                              Unfortunately, his work was first 
published after his death and only in Latin.



                                                                        To attain ! ,  we compute the 
coefficients with a FFT:

C(x) = A(x)B(x)
                                                                                      Thus !   ends with !  zeroes to 
represent the absence higher order terms.

(ak), (bk) N Consider !  elements of ! . A(x), B(x) ℤ[x]/⟨x2N − 1⟩

Schönhage-Strassen algorithm (SSA1, SSA2), 1971

Volker StrassenArnold Schönhage

Two algorithms developed by Arnold Schönhage 
and Volker Strassen in 1971. 

a
b

→
→

A(x) = aN−1xN−1 + . . . + a0,
B(x) = bN−1xN−1 + . . . + b0,

a = A(10n/N),
b = B(10n/N),

(Set ! )N = n /log(n)

(bk) = (b0, …, bN−1,0,…,0) .

(ak) = (a0, …, aN−1,0,…,0) .

ℱ−1{( ̂ak) ⋅ (b̂k)} = (ck)

Description of  SSA1 with 
 numbers !  of  !  digits:a, b n

The final product is constructed from 
 shifts and 
 addition: ab = C(10n/N) =

2N−1

∑
k=0

ck10kn/N .LHS contains !  multiplications 
 of  ! ! -digit numbers. SSA1 is reapplied.

O(N log(N ))
≈n /N

M1(n) = O(N log(N)M1(n /N)) = O(nM1(log(n))), ⇒ M1(n) = O(n log(n)1+ε)
SSA2 is more famous, elegant and popular. Similar to SSA1, but uses the more ‘natural’ 
number theoretic transform instead of  FFT. This algorithm attains better complexity:

M2(n) < 2 n M2( n) + O(n log(n)), ⇒ M2(n) = O(n log(n)log log(n))



249416 × 133758

(24x2 + 94x + 16) × (13x2 + 37x + 58)

P(x) × Q(x) = R(x)

̂P ⋅ ̂Q = ̂R

= R(100)

ℱ ℱ−1

The first Schönhage-Strassen 
 multiplication algorithm in action:

Recursion happens here



                             In their article, Schönhage and Strassen write:

Schönhage-Strassen ! -conjecture, 1971n log(n)

“We do not believe that the size of  !  is 
optimal, but suspect this for the order of  magnitude ! . ”

n log(n)log log(n)
n log(n)

In 2007, a Swiss mathematician, Martin Fürer, discovered an algorithm whose 
complexity replaced !  with ! . log log(n) 2 ∧ log*(n)

The complexity of  SSA contains a large constant factor (efficient for ! ), 
but has the asymptotic behaviour:

n > 10 000

M(n) = O(n log(n)log log(n)) .

Is this optimal?

Despite rapid progression from 1962-1971, not much improvement on fast 
multiplication happened for the next 36 years.

                                                                                  the algorithm is estimated 
to be faster than SSA for ‘astronomically’ large data ! , 
making it a so called ‘galactic’ algorithm.

(n > 10 ∧ 10 ∧ 4796)

                                                                                       Unfortunately the 
complexity hides an enormous constant factor;

Still, the !  seemed within reach…n log(n)



(ck) ↔ (ck1,k2,…,kd
), 0 ≤ k1 ≤ p1 − 1,

0 ≤ kd ≤ pd − 1.
⋅⋅⋅

Key feature: arranging data in multiple dimensions.

Of  complexity ! .n log(n)

Harvey-van der Hoeven algorithm, 2019

By David Harvey and Joris van der Hoeven.  
Preprint added to Hyper Articles en Ligne (HAL) 
March 2019. 

Joris van der HoevenDavid Harvey

When !  (distinct primes), the Chinese remainder theorem 
implies the ring isomorphism:

N = p1p2⋯pd

ℤ[x]/⟨xN − 1⟩ ≈ ℤ[x1, …, xd]/⟨xp1
1 − 1⟩⋯⟨xpd

d − 1⟩ f.ex. x ↔ x1x2⋯xd

Naturally re-arranges the coefficients from a sequence to a ! -dimensional array:d

(ak) (bk) ↔ (ak1,k2,…,kd
) (bk1,k2,…,kd

),* *

Seemingly no improvement: the convolutions are equally expensive, even when 
exploiting classical FFTs…

Harvey and van der Hoeven introduces two new devices.



Joris van der HoevenDavid Harvey

Device 1:         Efficient FFT for power-of-two sized arrays.

⊗d
j=1 ℂtj denotes the set of  complexed valued ! -

dimensional arrays of  sizes !  .  
d

t1 × t2 × ⋯ × td

For powers of  two ! , they construct a FFT t1, t2, …, td

consisting of  few medium-sized multiplications, instead of  many small.

On the previous slide we established an isomorphism

ℂN ⟷ ⊗d
j=1 ℂpj

but !  are distinct primes !  not powers of  two.p1, p2, …, pd ⟹ So how is this useful?

⊗d
j=1 ℂtj ⟶ ⊗d

j=1 ℂtjℱ

Key feature: arranging data in multiple dimensions.

Of  complexity ! .n log(n)

Harvey-van der Hoeven algorithm, 2019

By David Harvey and Joris van der Hoeven.  
Preprint added to Hyper Articles en Ligne (HAL) 
March 2019. 



                                                   We place a ! -dimensional 
Gaussian at each grid-point, scaled with the associated 
number.

d
                                                        A complex number is 
associated to each grid-point.

Consider !  as a !  grid, scaled to fit inside the  
! -dimensional unit torus ! .

u p1 × ⋯ × pd
d (ℝ/ℤ)d

                We then superimpose a !  grid !  over 
! , and associate to each point of  !  the “sum of  the 
Gaussians” of  !  evaluated at said point.

t1 × t2⋯ × td v
u v

u

Joris van der HoevenDavid Harvey

Device 2:                                          Gaussian resampling.
They construct two cost-efficient 
maps, ! ,𝒜, ℬ ⊗d

j=1 ℂpj ⊗d
j=1 ℂtj⟶⟵ℬ

𝒜

Satisfying: ℱ = ℬ ∘ ℱ ∘ 𝒜

Roughly how to construct ! , from !                 :𝒜(u) u ∈ ⊗d
j=1 ℂpj

!  grid  (white) 
!  grid  (black)
u = 11 × 13
v = 16 × 16

v = 𝒜(u)
(Gaussians are convenient for two reasons: rapid decay and 
invariance under under ! .)ℱ

Key feature: arranging data in multiple dimensions.

Of  complexity ! .n log(n)

Harvey-van der Hoeven algorithm, 2019

By David Harvey and Joris van der Hoeven.  
Preprint added to Hyper Articles en Ligne (HAL) 
March 2019. 



Joris van der HoevenDavid Harvey

Td = ⊗d
j=1 ℂtj .Pd = ⊗d

j=1 ℂpj,

(ck)

(ak), (bk)

*

MHH(n) < Kn( d − 1
d )MHH(n

1
d ) + O(n log(n)) (Where !  is 

independent of  ! .)
K

d

Choosing a !  , 
we obtain:

d > K MHH(n) = O(n log(n))

Td × Td

Td

⋅

ℱ

ℱ−1

ℂN × ℂN

ℂN

*

Td

Td × Td

ℬ

𝒜

*

Pd

Pd × Pd

*

∼

∼

Device 2 Device 1

Key feature: arranging data in multiple dimensions.

Of  complexity ! .n log(n)

Harvey-van der Hoeven algorithm, 2019

By David Harvey and Joris van der Hoeven.  
Preprint added to Hyper Articles en Ligne (HAL) 
March 2019. 

The algorithm takes the red path 
in the commutative diagram:

∈

∈



True complexity of  multiplication

M(n) = O(n log(n)),

We now know

but is this optimal?

Notoriously difficult to prove lower bounds in computation theory. 
(Ex. ! )P = NP
The conventional belief  is that !  is optimal, but experts have been 
wrong before.

n log(n)
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