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In this presentation, numbers are
represented in base 10.

Thus, computing a number means
to calculate its digits in base 10.



Definitions

A multiplication algorithm &f takes in two integers
and computes their product. (Here in base 10.)

We let M ﬂ(n) denote the maximum number of elementary
steps (addition/multiplication of single digits, etc) needed
for Qf to compute the product of two n-digit integers.

The complexity of f is the asymptotic behaviour of M thy(lfl)
as n goes to infinity.

The complexity of multiplication is the optimal complexity of all
possible multiplication algorithms.

We formally write M (n) for the number of steps required by an
“optimal multiplication algorithm” (i.e. of optimal complexity).

The complexity of multiplication is the asymptotic behaviour of M (n) :



Why do we care about the complexity of multiplication?

Multiplication is a fundamental building block in computation:

Operation Algorithm Complexity
: Optimal multiplication
Squaring algotithm O (M (n))
Division Newton-Raphson division 0( M ( n))
Square root (first n digits) Newton’s method O(M (n))
. Schonhage controlled
Greatest common divisor Euclidean descent algorithm O(M(I’l)l()g (I’l))
JU (n decimal places) Gauss-Legendre algorithm 0( M (n)l() g (n))

Note that the complexity of squaring cannot be much lower than half that of
multiplication, as
(x+y)? = (=)’

4 and so one multiplication
can be exchange for the cost of two squares (+ negligible extra steps).

XYy =



Grade-school multiplication (GS)

-The algorithm taught in school.
-Similar method used in ancient Egypt at least 4000 years ago.

-Has quadratic complexity i.e. M;¢(n) behaves no better than O(n?) asymptotically.

Example with n = 6 and numbers a = 249416, ,
249416 On k’th row: Multiply 1 digit with n-digit number,
X and add k — 1 extra zeros to the result (shifts)

1995328 <+ 5X249416 requires ~n+ k — 1 steps.

12470800 < 5X249416  Lastly, we sum over n numbers of length € [n,2n],
174591200 < 7X249416  requires =~ n? steps.
748248 <+« 5X249416 Number of elementary steps is approximately
748248 <+« 3X249416 . 52
249416 < IX249416 pr(n) = <2n+(k_ 1)) I N
= 33361385328 o 2 2

= M(n) = n*.

Consequently, the complexity of multiplication satisfies (at least)

M(n) = O(n?) .




Kolmogorov’s nz-conjecture

In 1956 Andrey Kolmogorov conjectured that the complexity

of multiplication is quadratic, M(n) =~ n®.
Later in 1960 he organised a seminar on problems in cybernetics
at Moscow University; here he stated his conjecture.

Attending was the 23-year old student Anatoly Karatsuba.
A week’s search later, he discovered the Karatsuba algorithm:

Mya(n) = O(n'°29),  log,(3) = 1.58496...

disproving Kolmogorov’s conjecture!

After learning of this new method, Kolmogorov presented it at
the next meeting... and then terminated the seminatr.

In 1962, Kolmogorov wrote and published the article:

A. Karatsuba and Yu. Ofman,
“Multiplication of Multiplace Numbers on Automata”

------

Karatsuba first learned of the article when given its reprint.
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The article spawned a new area of computation theory: 6.
Fast multiplication algorithms. ’7 e W
Anatoly Karatsuba




Karatsuba algorithm (KA), 1960

2
We consider the integers from earlier a = 249416, b = 133758.
Thus:

a =249 x 1000 + 416 = a,10> + a,, Knowinga,b;, a\by, a,b, and a,b,,

_ . 3 we could build ab using only
b=133x1000+758 = 510"+ by, ,qdition and shifts,

ab = a,b;10° + (a,b, + a,b)10° + a,b,, M) < 4M(n/l2) + O(n),
= M(n) = O(n?).

Karatsuba realized that one can obtain the sum a,b, + a,b;, without calculating

the products a,b, and a,b, individually. Indeed, knowing a,b; and a,b, we need
only one extra multiplication to attain this sum:

a,b, + a,b, = (a; + a,)(b; + by) — a;b; — a,b,,
M(n) < 3M(n/2) + O(n), = M(n) = O(n'°&D)) .

*Q[KA(a’ [9) . if n =1, return ab. MKA(n) — O<n10g2(3)) .

else set x = A p4(ay, b)),
y = A gala,, bz), More efficient than grade-

2= gsla; + ar,by + b,), school multiplication
around 71 > 60.

and return x10%" 4+ (z —x — y)10" + y.




Toom-Cook algorithm (Tk), 1963

Introduced by Andrei Toom, and further
simplified by Stephen Cook .
A family of algorithms: Toom-k (KA=Toom-2).

__|Stephen Cook

Andrei Toom

Example of Toom-3, with n = 6:

a =249416 — A(x) = 24x* + 94x + 16, Notice:
b =133758 — B(x) = 13x>+ 37x + 58. C(100) = A(100)B(100) = ab .
Want to calculate C(x) = A(x)B(x). Being a polynomial of degree 4, we need
5 evaluations. Choose small values: x = 2,1,0, — 1, — 2. ¢ Coefficients of C(x)
Each is a product of _~» | [ 2* 2 22 2 q]ea Compact
integers of ~ n/3 — | () 1 1 1 1 1]|6S3 notation:
digits. Toom-3 is — | CO)|=| O 0 O 0 1|jeaf
reapplied to evaluate _~ |C(=1) 1 -1 I =1 1ffer) 6 . e
these 5 products. ~ * [C=2)| |(=2* (=2)® (=2* -2 1[c] °

Calculating H_l(in advance), ¢ is retrieved by a weighted sum of the elements of C.

M4(n) < 5M4(n/3) + O(n), Toom-k: My (n) < (2k — DMy (n/k) + O(n),

= Mps(n) = O(n'°80)) . = Mp(n) = O(n'°&8=D)

Toom-Cook can get “linear + £” complexity, as logk(Zk —-DD\N1l, k- .




Some more definitions Pointwise product:

() = (V) = ()
Sequences are by default of length V. Cost = O(NM(n))

PR — -1 _
Notation: (x;) = (xk)i\’: 0 = (Xps X5+ o Xy_p) -
Cyclic convolution:

() * () = (§ -xjyk—j)a




(2 X;Yk—p):

The index k — j is considered modulo N .



Some more definitions Pointwise product:

() - ) = (50

Sequences are by default of length V. Cost = O(NM(n))
Notation: () = (5)7—y = (Kgs Xps + - -5 Xy_1) -
Cyclic convolution:
Discrete Fourier transform: (xk) " ()’k) = X; yk—j)a
) = F{(xp} () = F HEp} Cost = O(N2M(n))
= X, = Z X;e -5 k] = X, = %Z x 621]\? Convolution theorem:
J . 1 (/A A
Cost = 0(N2M(n)) Cost = O(N2M(n)) () * () = F G - G} -

The expression Z[x]/{(x" — 1) denotes the ring of polynomials with integer
coefficients modulo x" — 1, in other words, we have x" = 1.

Elements of Z[x]/{x" — 1) are represented Polynomials: P(x) Q(x) Px)Q(x)
by polynomials of degree less than N. Coefficients: (p) (q) (p) * (qp)

For polynomials A(x), B(x) of degree less than N/2, the classical product coincides with
the ring-product. The coefficients (¢;) of C(x) = A(x)B(x) can be calculated from:

(c) = (a) * (b)) = -1 {( a,) - (];k)}v though seemin.gly

not more efficient...




Carl. F. Gaul}

Fast Fourier transform (FFT)

A Fast Fourier transform is any discrete
Fourier transform algorithm of complexity

O(N log(N)M(n)) and not O(N*M(n)).

Popularised in 1965, when the Cooley-Tukey FFT

was introduced.
The same algorithm was known to Gauss, who used

it to interpolate the trajectories of the asteroids
Pallas and Juno. Unfortunately, his work was first

published after his death and only in Latin. James. W. Cooley John Tukey
F oA
(a), (by) > (ap), (by)
T O(N log(N)M(n)) -
% | O(N*M(n)) O(NM(n)) | -
v ON log(N)M(n)) R
(cr) < (a;) - (D)

g—l

Blue path calculates (¢;) in O(N log(N)M(n)) steps!



Schonhage-Strassen algorithm (SSA1, SSA2), 1971

Two algorithms developed by Arnold Schénhage
and Volker Strassen in 1971.

Description of SSA1 with

numbers a, b of n digitS: (Set N = n/IOg(n)) Arnold Schonhage Volker Strassen

a— A@) =ay_ "1+ ... +a,, a = A(IO”/N), (a;) = (ag, --.,an_1,0,...,0) .

b— Bx)=by_xM ' +...+by, b=B(10"), )= (by,....by_1,0,....0).
—— —

Consider A(x), B(x) elements of Z[x]/ (x2N — 1). Thus (qy), (b,) ends with N zeroes to

represent the absence higher order terms. To attain C(x) = A(x)B(x), we compute the

coefficients with a FFT: R DEGCeR I CTTE L L LR TR e CREEEPRE R TR Ee PRI EEL R EEPREELPRS
. The final product is constructed from

/’ F _1{(dk) (DR} = () shifts and 2N—1

: = s, _ nINY _ kn/N
LHS contains O(N log(N)) multiplications | 2ddition: ab = C(10"") = D G lok,
of ~n/N-digit numbers. SSA1 is reapplied. : k=0

M,(n) = O(N log(N)Ml(n/N)) = O(an(log(n))), = M(n) = 0(” IOg(n)Hg)

SSA2 is more famous, elegant and popular. Similar to SSA1, but uses the more ‘natural’
number theoretic transform instead of FFT. This algorithm attains better complexity:

My(n) < 24/n My (\/n) + O(nlog(n)), |= M,(n) = O(n log(n)log log(n))




The first Schonhage-Strassen
multiplication algorithm in action:

249416 x 133758 = R(100)

(24x2 + 94 + 16) X (13x2 + 37x + 58) ;
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P-0=R

Recursion happens here



Schénhage-Strassen 71 10g(71)-conjecture, 1971

The complexity of SSA contains a large constant factor (efficient for n > 10 000),
but has the asymptotic behaviour:

M(n) = O(nlog(n)log log(n)) .

Is this optimal? In their article, Schonhage and Strassen write:

“We do not believe that the size of nlog(n)loglog(n) is
optimal, but suspect this for the order of magnitude nlog(n). ”

Despite rapid progression from 1962-1971, not much improvement on fast
multiplication happened for the next 36 years.

In 2007, a Swiss mathematician, Martin Fiirer, discovered an algorithm whose

complexity replaced l0g log(n) with 2 A log*(n). Unfortunately the
complexity hides an enormous constant factor; the algorithm is estimated
to be faster than SSA for ‘astronomically’ large data (n > 10 A 10 A 4796),
making it a so called ‘galactic’ algorithm.

Still, the nlog(n) seemed within reach...



Harvey-van der Hoeven algorithm, 2019

By David Harvey and Joris van der Hoeven.
Preprint added to Hyper Articles en Ligne (HAL)

March 2019.

Of complexity nlog(n).

Joris van der Hoeven

Key feature: arranging data in multiple dimensions. ~ | David Harvey

When N = p,p,---p, (distinct primes), the Chinese remainder theorem
implies the ring isomorphism:

Z[x]/<'xN_ 1> ~ Z[x19 '°°9xd]/<Xf1 — 1>°°°<X5d — 1> f.ex. X HX1X2“‘Xd

Naturally re-arranges the coefficients from a sequence to a d-dimensional array:

0<k <p -1,

() < (Chhy.. k)
(a) * (by) < (akl,kz,...,kd) *R(bkl,kz,...,kd)’ 0 < léd <p;— L

)

Seemingly no improvement: the convolutions are equally expensive, even when
exploiting classical FFTs...

Harvey and van der Hoeven introduces two new devices.



Harvey-van der Hoeven algorithm, 2019

By David Harvey and Joris van der Hoeven.
Preprint added to Hyper Articles en Ligne (HAL)

March 2019.

Key feature: arranging data in multiple dimensions.

Of complexity nlog(n).

Joris van der Hoeven

J

David Harvey

Device 1:

Efficient FFT for power-of-two sized arrays.

®d Ct] denotes the set of complexed valued d-
1 dimensional arrays of sizes f{ X 1, X «=- X [;.

For powers of two 1y, I, ..

., 15, they construct a FFT

On the previous slide we established an isomorphism

(]:N

—> ®j=1 CPi

but py, Py, ..., Py are distinct primes = not powers of two.  So how is this useful?



Harvey-van der Hoeven algorithm, 2019

By David Harvey and Joris van der Hoeven.
Preprint added to Hyper Articles en Ligne (HAL)
March 2019.

Of complexity nlog(n).

Key feature: arranging data in multiple dimensions.

Device 2: Gaussian resampling.
They construct two cost-efficient of
maps, o, B, ----oooeoeeeeeeeeeeeeeee | QY. Cl =
Satisfying: % = B o F o o J =1 R

Roughly how to construct &f(u), from u € ®]C.Z=1 Chi .

Consider u as a p; X --- X p, grid, scaled to fit inside the
d-dimensional unit torus (R/Z)% A complex number is
associated to each grid-point. We place a d-dimensional
Gaussian at each grid-point, scaled with the associated
number. We then superimpose a f; X 1,--- X 1, grid v over
u, and associate to each point of v the “sum of the

. 3 1 1
Gaussians” of u evaluated at said point. y = Qf(lxi)

(Gaussians are convenient for two reasons: rapid decay and

invariance under under #.) \L,t _ i é ;: } 2 gﬁg ((t\:izlgf))



Harvey-van der Hoeven algorithm, 2019

By David Harvey and Joris van der Hoeven.
Preprint added to Hyper Articles en Ligne (HAL)
March 2019.

Of complexity nlog(n).

Joris van der Hoeven

Key feature: arranging data in multiple dimensions. | David Harvey

Pd _ ®d CPi Td _ ®d Cl The algorithm takes the red path
=1 ’ =1 '

in the commutative diagram:

ko4 74
@) b) eCNx CN—=~ P, x P, — T, x T, ——T,x T,

2 e % Device 2 % Device 1

\4

! v % v -1 v
(0 ¢ CV «—— P, — T, — T,

d—1 1 ere K 1s
MHH(n) < Kn( ‘ )MHH(nd ) + O(n log(n)) i(t\lxclll::penlcielnt of d.)

Choosingad > K, MHH(n) — O(n log(n))

we obtain:




True complexity of multiplication

We now know

M(n) = O(nlog(n)),

but is this optimal?

Notoriously difficult to prove lower bounds in computation theotry.

(Ex. P = NP)

The conventional belief is that n10g(n) is optimal, but experts have been
wrong before.
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