
The Speed Limit of
Multiplication.

Ola Mæhlen
Institutt for matematiske fag

NTNU

“Forum for matematiske perler”
IMF, NTNU
06. Sept. 2019

In this presentation, numbers are
represented in base 10.

Thus, computing a number means
 to calculate its digits in base 10.

Definitions

A multiplication algorithm takes in two integers
and computes their product. (Here in base 10.)

𝒜

We let denote the maximum number of elementary
steps (addition/multiplication of single digits, etc) needed
for to compute the product of two n-digit integers.

M𝒜(n)

𝒜

The complexity of is the asymptotic behaviour of
as n goes to infinity.

𝒜 M𝒜(n)

The complexity of multiplication is the optimal complexity of all
 possible multiplication algorithms.

We formally write for the number of steps required by an
 “optimal multiplication algorithm” (i.e. of optimal complexity).

M(n)

The complexity of multiplication is the asymptotic behaviour of .M(n)

Note that the complexity of squaring cannot be much lower than half that of
multiplication, as

Why do we care about the complexity of multiplication?

Multiplication is a fundamental building block in computation:

Operation Algorithm Complexity

Squaring Optimal multiplication
algorithm

Division Newton-Raphson division

Square root (first n digits) Newton’s method

Greatest common divisor Schönhage controlled
Euclidean descent algorithm

 (n decimal places) Gauss-Legendre algorithmπ

O(M(n))

O(M(n))

O(M(n))

O(M(n)log(n))

O(M(n)log(n))

xy =
(x + y)2 − (x − y)2

4 and so one multiplication
can be exchange for the cost of two squares (+ negligible extra steps).

Example with ! and numbers ! , ! ,n = 6 a = 249416 b = 133758

Grade-school multiplication (GS)

On ! ’th row: Multiply 1 digit with ! -digit number,
and add ! extra zeros to the result (shifts)
requires ! steps.
Lastly, we sum over ! numbers of length ! ,
requires ! steps.
Number of elementary steps is approximately

k n
k − 1
≂ n + k − 1

n ∈ [n,2n]
≂ n2

MGS(n) ≂ (
n

∑
k=1

n + (k − 1)) + n2 =
5n2

2
−

n
2

Consequently, the complexity of multiplication satisfies (at least)

-The algorithm taught in school.
-Similar method used in ancient Egypt at least 4000 years ago.
-Has quadratic complexity i.e. ! behaves no better than ! asymptotically.MGS(n) O(n2)

M(n) = O(n2) .

1995328
 12470800

 174591200
 748248000

 7482480000
 24941600000

249416
133758×

8 249416×
5 249416×
7 249416×
3 249416×
3 249416×
1 249416×

33361385328=

⇒ MGS(n) ≂ n2 .

Kolmogorov’s ! -conjecturen2

In 1956 Andrey Kolmogorov conjectured that the complexity
of multiplication is quadratic, ! . M(n) ≂ n2

Andrey Kolmogorov

Anatoly Karatsuba

Later in 1960 he organised a seminar on problems in cybernetics
at Moscow University; here he stated his conjecture.

Attending was the 23-year old student Anatoly Karatsuba.
A week’s search later, he discovered the Karatsuba algorithm:

MKA(n) = O(nlog2(3)), log2(3) = 1.58496...
disproving Kolmogorov’s conjecture!

After learning of this new method, Kolmogorov presented it at
the next meeting… and then terminated the seminar.

In 1962, Kolmogorov wrote and published the article:
 A. Karatsuba and Yu. Ofman,

“Multiplication of Multiplace Numbers on Automata”

Karatsuba first learned of the article when given its reprint.
The article spawned a new area of computation theory:

Fast multiplication algorithms.

We consider the integers from earlier
a1 a2

Karatsuba realized that one can obtain the sum ! , without calculating
the products ! and ! individually.

a1b2 + a2b1
a1b2 a2b1

Karatsuba algorithm (KA), 1960

a = 249416, b = 133758.
b1 b2

Thus:
a = 249 × 1000 + 416 = a1103 + a2,
b = 133 × 1000 + 758 = b1103 + b2,

ab = a1b1106 + (a1b2 + a2b1)103 + a2b2,

Knowing ! , ! , ! and ! ,
we could build ! using only
addition and shifts,

a1b1 a1b2 a2b1 a2b2
ab

M(n) < 4M(n /2) + O(n),
⇒ M(n) = O(n2) .

a1b2 + a2b1 = (a1 + a2)(b1 + b2) − a1b1 − a2b2,

M(n) < 3M(n/2) + O(n), ⇒ M(n) = O(nlog2(3)) .

𝒜KA(a, b) : if , return .

else set

n = 1 ab
x = 𝒜KA(a1, b1),

and return x102n + (z − x − y)10n + y .

y = 𝒜KA(a2, b2),
z = 𝒜KA(a1 + a2, b1 + b2),

MKA(n) = O(nlog2(3)) .

More efficient than grade-
school multiplication
around .n > 60

 Indeed, knowing ! and ! we need
only one extra multiplication to attain this sum:

a1b1 a2b2

 Being a polynomial of degree 4, we need
5 evaluations. Choose small values: ! x = 2,1,0, − 1, − 2.

Toom-Cook algorithm (Tk), 1963

Stephen CookAndrei Toom

Introduced by Andrei Toom, and further
simplified by Stephen Cook .
A family of algorithms: Toom- ! (KA=Toom-2).k
Example of Toom-3, with ! : n = 6

a = 249416
b = 133758

A(x) = 24x2 + 94x + 16,
B(x) = 13x2 + 37x + 58.

→
→

Want to calculate ! . C(x) = A(x)B(x)

Notice:
C(100) = A(100)B(100) = ab .

C(2)
C(1)
C(0)

C(−1)
C(−2)

Coefficients of !C(x)

Each is a product of
integers of
digits. Toom-3 is
reapplied to evaluate
these 5 products.

≈ n /3

MT3(n) < 5MT3(n /3) + O(n),

⇒ MT3(n) = O(nlog3(5)) .

Toom- : k MTk(n) < (2k − 1)MTk(n /k) + O(n),

⇒ MTk(n) = O(nlogk(2k−1)) .

=

24 23 22 2 1
1 1 1 1 1
0 0 0 0 1
1 −1 1 −1 1

(−2)4 (−2)3 (−2)2 −2 1

c4
c3
c2
c1
c0

logk(2k − 1) ↘ 1, k → ∞ .Toom-Cook can get “linear + ” complexity, asε

⃗C = Π ⃗c

Compact
notation:

Calculating ! (in advance), ! is retrieved by a weighted sum of the elements of ! .Π−1 ⃗c ⃗C

Some more definitions

Sequences are by default of length .
Notation: .(xk) = (xk)N−1

k=0 = (x0, x1, . . . , xN−1)
N

Pointwise product:

(xk) ⋅ (yk) = (xkyk),
Cost = O(NM(n))

Cyclic convolution:

(xk) (yk) = (Σ xjyk−j),* j

Some more definitions

Sequences are by default of length .
Notation: .(xk) = (xk)N−1

k=0 = (x0, x1, . . . , xN−1)
N

Pointwise product:

(xk) ⋅ (yk) = (xkyk),
Cost = O(NM(n))

Cyclic convolution:

(xk) (yk) =* (Σ xjyk−j),j

The index k − j is considered modulo N .

Cyclic convolution:

Cost = O(N2M(n))

P(x) Q(x) P(x)Q(x)
(pk) (qk) (pk) (qk)*

Polynomials:
Coefficients:

Some more definitions

Sequences are by default of length .
Notation: .(xk) = (xk)N−1

k=0 = (x0, x1, . . . , xN−1)
N

Convolution theorem:

= ℱ−1{(̂xk) ⋅ (̂yk)} .(xk) (yk)*

Discrete Fourier transform:

(̂xk) = ℱ{(xk)} (xk) = ℱ−1{(̂xk)}
⇒ ̂xk = xj e− 2πi

N kj,Σ
j

⇒ xk = 1
N

̂xj e
2πi
N kj,Σ

j

The expression denotes the ring of polynomials with integer
coefficients modulo in other words, we have .

ℤ[x]/⟨xN − 1⟩
xN − 1, xN = 1

Elements of are represented
 by polynomials of degree less than .

ℤ[x]/⟨xN − 1⟩
N

For polynomials of degree less than , the classical product coincides with
the ring-product. The coefficients of can be calculated from:(ck)

N/2A(x), B(x)
C(x) = A(x)B(x)

(ck) = (ak) (bk) = ℱ−1{(̂ak) ⋅ (b̂k)},*

Pointwise product:

(xk) ⋅ (yk) = (xkyk),
Cost = O(NM(n))

Cost = O(N2M(n)) Cost = O(N2M(n))

though seemingly
 not more efficient…

(xk) (yk) =* (Σ xjyk−j),j

Fast Fourier transform (FFT)

A Fast Fourier transform is any discrete
Fourier transform algorithm of complexity
! and not ! . O(N log(N)M(n)) O(N2M(n))

(ck)

(ak), (bk)

* O(N2M(n))

O(N log(N)M(n))

O(N log(N)M(n))

O(NM(n))

(̂ak) ⋅ (b̂k)

⋅

(̂ak), (b̂k)
ℱ

ℱ−1

Blue path calculates ! in ! steps!(ck) O(N log(N)M(n))

Popularised in 1965, when the Cooley-Tukey FFT
was introduced.

James. W. Cooley John Tukey

Carl. F. Gauß

 who used
it to interpolate the trajectories of the asteroids
Pallas and Juno.

The same algorithm was known to Gauss,

 Unfortunately, his work was first
published after his death and only in Latin.

 To attain ! , we compute the
coefficients with a FFT:

C(x) = A(x)B(x)
 Thus ! ends with ! zeroes to
represent the absence higher order terms.

(ak), (bk) N Consider ! elements of ! . A(x), B(x) ℤ[x]/⟨x2N − 1⟩

Schönhage-Strassen algorithm (SSA1, SSA2), 1971

Volker StrassenArnold Schönhage

Two algorithms developed by Arnold Schönhage
and Volker Strassen in 1971.

a
b

→
→

A(x) = aN−1xN−1 + . . . + a0,
B(x) = bN−1xN−1 + . . . + b0,

a = A(10n/N),
b = B(10n/N),

(Set !)N = n /log(n)

(bk) = (b0, …, bN−1,0,…,0) .

(ak) = (a0, …, aN−1,0,…,0) .

ℱ−1{(̂ak) ⋅ (b̂k)} = (ck)

Description of SSA1 with
 numbers ! of ! digits:a, b n

The final product is constructed from
 shifts and
 addition: ab = C(10n/N) =

2N−1

∑
k=0

ck10kn/N .LHS contains ! multiplications
 of ! ! -digit numbers. SSA1 is reapplied.

O(N log(N))
≈n /N

M1(n) = O(N log(N)M1(n /N)) = O(nM1(log(n))), ⇒ M1(n) = O(n log(n)1+ε)
SSA2 is more famous, elegant and popular. Similar to SSA1, but uses the more ‘natural’
number theoretic transform instead of FFT. This algorithm attains better complexity:

M2(n) < 2 n M2(n) + O(n log(n)), ⇒ M2(n) = O(n log(n)log log(n))

249416 × 133758

(24x2 + 94x + 16) × (13x2 + 37x + 58)

P(x) × Q(x) = R(x)

̂P ⋅ ̂Q = ̂R

= R(100)

ℱ ℱ−1

The first Schönhage-Strassen
 multiplication algorithm in action:

Recursion happens here

 In their article, Schönhage and Strassen write:

Schönhage-Strassen ! -conjecture, 1971n log(n)

“We do not believe that the size of ! is
optimal, but suspect this for the order of magnitude ! . ”

n log(n)log log(n)
n log(n)

In 2007, a Swiss mathematician, Martin Fürer, discovered an algorithm whose
complexity replaced ! with ! . log log(n) 2 ∧ log*(n)

The complexity of SSA contains a large constant factor (efficient for !),
but has the asymptotic behaviour:

n > 10 000

M(n) = O(n log(n)log log(n)) .

Is this optimal?

Despite rapid progression from 1962-1971, not much improvement on fast
multiplication happened for the next 36 years.

 the algorithm is estimated
to be faster than SSA for ‘astronomically’ large data ! ,
making it a so called ‘galactic’ algorithm.

(n > 10 ∧ 10 ∧ 4796)

 Unfortunately the
complexity hides an enormous constant factor;

Still, the ! seemed within reach…n log(n)

(ck) ↔ (ck1,k2,…,kd
), 0 ≤ k1 ≤ p1 − 1,

0 ≤ kd ≤ pd − 1.
⋅⋅⋅

Key feature: arranging data in multiple dimensions.

Of complexity ! .n log(n)

Harvey-van der Hoeven algorithm, 2019

By David Harvey and Joris van der Hoeven.
Preprint added to Hyper Articles en Ligne (HAL)
March 2019.

Joris van der HoevenDavid Harvey

When ! (distinct primes), the Chinese remainder theorem
implies the ring isomorphism:

N = p1p2⋯pd

ℤ[x]/⟨xN − 1⟩ ≈ ℤ[x1, …, xd]/⟨xp1
1 − 1⟩⋯⟨xpd

d − 1⟩ f.ex. x ↔ x1x2⋯xd

Naturally re-arranges the coefficients from a sequence to a ! -dimensional array:d

(ak) (bk) ↔ (ak1,k2,…,kd
) (bk1,k2,…,kd

),* *

Seemingly no improvement: the convolutions are equally expensive, even when
exploiting classical FFTs…

Harvey and van der Hoeven introduces two new devices.

Joris van der HoevenDavid Harvey

Device 1: Efficient FFT for power-of-two sized arrays.

⊗d
j=1 ℂtj denotes the set of complexed valued ! -

dimensional arrays of sizes ! .
d

t1 × t2 × ⋯ × td

For powers of two ! , they construct a FFT t1, t2, …, td

consisting of few medium-sized multiplications, instead of many small.

On the previous slide we established an isomorphism

ℂN ⟷ ⊗d
j=1 ℂpj

but ! are distinct primes ! not powers of two.p1, p2, …, pd ⟹ So how is this useful?

⊗d
j=1 ℂtj ⟶ ⊗d

j=1 ℂtjℱ

Key feature: arranging data in multiple dimensions.

Of complexity ! .n log(n)

Harvey-van der Hoeven algorithm, 2019

By David Harvey and Joris van der Hoeven.
Preprint added to Hyper Articles en Ligne (HAL)
March 2019.

 We place a ! -dimensional
Gaussian at each grid-point, scaled with the associated
number.

d
 A complex number is
associated to each grid-point.

Consider ! as a ! grid, scaled to fit inside the
! -dimensional unit torus ! .

u p1 × ⋯ × pd
d (ℝ/ℤ)d

 We then superimpose a ! grid ! over
! , and associate to each point of ! the “sum of the
Gaussians” of ! evaluated at said point.

t1 × t2⋯ × td v
u v

u

Joris van der HoevenDavid Harvey

Device 2: Gaussian resampling.
They construct two cost-efficient
maps, ! ,𝒜, ℬ ⊗d

j=1 ℂpj ⊗d
j=1 ℂtj⟶⟵ℬ

𝒜

Satisfying: ℱ = ℬ ∘ ℱ ∘ 𝒜

Roughly how to construct ! , from ! :𝒜(u) u ∈ ⊗d
j=1 ℂpj

! grid (white)
! grid (black)
u = 11 × 13
v = 16 × 16

v = 𝒜(u)
(Gaussians are convenient for two reasons: rapid decay and
invariance under under ! .)ℱ

Key feature: arranging data in multiple dimensions.

Of complexity ! .n log(n)

Harvey-van der Hoeven algorithm, 2019

By David Harvey and Joris van der Hoeven.
Preprint added to Hyper Articles en Ligne (HAL)
March 2019.

Joris van der HoevenDavid Harvey

Td = ⊗d
j=1 ℂtj .Pd = ⊗d

j=1 ℂpj,

(ck)

(ak), (bk)

*

MHH(n) < Kn(d − 1
d)MHH(n

1
d) + O(n log(n)) (Where ! is

independent of ! .)
K

d

Choosing a ! ,
we obtain:

d > K MHH(n) = O(n log(n))

Td × Td

Td

⋅

ℱ

ℱ−1

ℂN × ℂN

ℂN

*

Td

Td × Td

ℬ

𝒜

*

Pd

Pd × Pd

*

∼

∼

Device 2 Device 1

Key feature: arranging data in multiple dimensions.

Of complexity ! .n log(n)

Harvey-van der Hoeven algorithm, 2019

By David Harvey and Joris van der Hoeven.
Preprint added to Hyper Articles en Ligne (HAL)
March 2019.

The algorithm takes the red path
in the commutative diagram:

∈

∈

True complexity of multiplication

M(n) = O(n log(n)),

We now know

but is this optimal?

Notoriously difficult to prove lower bounds in computation theory.
(Ex. !)P = NP
The conventional belief is that ! is optimal, but experts have been
wrong before.

n log(n)

References
-A. A. Karatsuba (1995). “The Complexity of Computations”. Proceedings of the Steklov
Institute of Mathematics. 211: 169–183.

-A. Schönhage and V. Strassen, “Schnelle Multiplikation großer
Zahlen”, Computing 7 (1971)

-David Harvey, Joris van der Hoeven. “Integer multiplication in time O(n log n).”
2019. ⟨hal-02070778⟩

-D. Harvey, J. van der Hoeven, and G. Lecerf, “Even faster integer multiplication”, J.
Complexity 36 (2016), 1–30. MR 3530637.

-P. Afshani, C. B. Freksen, L. Kamma, and K. G. Larsen, “Lower bounds for
multiplication via network coding”, 2019.

-Alexander Kruppa. “Speeding up integer multiplication and factorization”. General
Mathematics [math.GM]. Université Henri Poincaré - Nancy 1, 2010. English. ffNNT :
2010NAN10054ff. fftel01748662

-D. Knuth, “The Art of Computer Programming” (vol. 2, Seminumerical Algorithms)
(3rd ed.) [1997-11-14].

https://hal.archives-ouvertes.fr/hal-02070778

-R. P. Brent and P. Zimmermann, “Modern computer arithmetic”, Cambridge Monographs
on Applied and Computational Mathematics, vol. 18, Cambridge University Press,
Cambridge, 2011. MR 2760886

-Homepage of David Harvey; https://web.maths.unsw.edu.au/~davidharvey/

-Article by D. Harvey: https://theconversation.com/weve-found-a-quicker-way-to-
multiply-really-big-numbers-114923

-(And some wikipedia…)

https://web.maths.unsw.edu.au/~davidharvey/
https://theconversation.com/weve-found-a-quicker-way-to-multiply-really-big-numbers-114923
https://theconversation.com/weve-found-a-quicker-way-to-multiply-really-big-numbers-114923
https://theconversation.com/weve-found-a-quicker-way-to-multiply-really-big-numbers-114923

