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ft∫
R(x) dx = x3 + 7x +

1/2

(x − 2)2
+
−3

x − 2
+ 4 log (x − 2)

+
i

2
log (x + i) +

−i
2

log (x − i)

= R̃(x) + 4 log (x − 2) +
i

2
log (x + i) +

−i
2

log (x − i)

The integral of a rational function R(x) is a rational function R̃(x) plus
a sum of logarithms of the form log(x + a), a ∈ C, multiplied with
constants.
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sin x =
e ix − e−ix

2i
arcsin x =

1

i
log
(
ix +

√
1− x2

)
Trigonometric functions and the inverse arcus-functions can be expressed
by (complex) exponential and logarithmic functions.
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ftA rational function R(x , y) of x and y is of the form

R(x , y) =
P(x , y)

Q(x , y)
,

where P and Q are polynomials in x and y . So,

R(x , y) =

∑
aijx

iy j∑
bklxky l

Similarly we define a rational function of x1, x2, . . . , xn.
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ftAn algebraic function y = y(x) is (implicitly) defined by

y n + Rn−1(x)y n−1 + · · ·+ R1(x)y + R0(x) = 0

where Ri(x) is a rational function for i = 0, 1, 2, . . . , n − 1.

Similarly we define y to be an algebraic function of x1, x2, . . . , xn.
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ftExamples

(i) y + R0(x) = 0, i.e. y = y(x) = −R0(x) is a rational function.

(ii) y n + R0(x) = 0, i.e. y = y(x) = n
√
−R0(x).

(iii) y 4 − 4xy 2 − 4xy − x = 0, i.e. y = y(x) =
√
x +

√
x +
√
x .

(iv) y 5 − y − x = 0. Here y = y(x) can not be given an explicit
presentation, i.e. in terms of root extractions.
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Example (ii): y n + R0(x) = 0. Choose n = 2 and

R0(x) = −P(x)2

Q(x)2
(
ax2 + bx + c

)
,

where P(x) and Q(x) are polynomials in x . Then

y = y(x) =
P(x)

√
ax2 + bx + c

Q(x)
=

P(x)z

Q(x)
,

where z =
√
ax2 + bx + c .

Remark If n = 2 and R0(x) = −P(x)2

Q(x)2 f (x), where f (x) is a polynomial of
degree 3 or 4,

∫
y dx is an elliptic integral. If degree(f (x)) > 4, the

integral
∫
y dx is a hyperelliptic integral.
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Concrete example

y = y(x) =

√
x2 − x − 2

(x + 1)2

=
z

(x + 1)2
,

where z =
√
x2 − x − 2.

z2 = x2 − x − 2 = (x + 1)(x − 2) z2 = t2(x + 1)2 = (x + 1)(x − 2)

x =
t2 + 2

1− t2
, z =

3t

1− t2
, dx =

6t

(1− t2)2

Remark The curve defined by z2 − x2 + x + 2 = 0 is intersected by the
curve z = t(x + 1) = 0, where t is a (variable) parameter.
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ft∫ √
x2 − x − 2

(x + 1)2
dx = 2

∫
t2

1− t2
dt

= −2t − log(1− t) + log(1 + t)

=
2z

x + 1
− log

(
x − z + 1

x + 1

)
+ log

(
x + z + 1

x + 1

)
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ftAbelian integral: W =
∫
y dx is called an abelian integral, whenever

y = y(x) is an algebraic function. In other words, W = W (x) is an
abelian integral if it is a solution to the differential equation dW

dx = y .

Comment
∫
R(x , y) dx , where y = y(x) is an algebraic function and

R(x , y) is a rational function in x and y , is an abelian integral. In fact,
one can show that R(x , y) = R(x , y(x)) is an algebraic function of x .
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ftExample ∫
x + 3
√

1 + x7

(x − 2) 3
√

1 + x7
dx =

∫
R(x , y) dx ,

where y = 3
√

1 + x7, R(x , y) =
x + y

(x − 2)y
. Now

u = R(x , y) =
x + 3
√

1 + x7

(x − 2) 3
√

1 + x7

is an algebraic function and we can write the integral
∫
R(x , y) dx as∫

u dx .
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ftElementary functions. These are functions that can be “built” from
algebraic functions and logarithmic functions and their inverses. Note
that the inverse of an algebraic function is again an algebraic function.
In fact, if y = y(x) is defined by the equation

Pn(x)y n + Pn−1y
n−1 + · · ·+ P1(x)y + P0(x) = 0

where the Pi(x)’s are polynomials, then the inverse x = x(y) is defined
by a similar equation, now written as

Qm(y)xm + Qm−1(y)xm−1 + · · ·+ Q1(y) + Q0(y) = 0

where the Qj(y)’s are polynomials.
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The hierarchy of elementary functions
Order 0: algebraic functions
Order 1: algebraic functions of exp or log of functions of order 0
Order 2: algebraic functions of exp or log of functions of order 1.

etc.

Examples

ex
2

+ ex
√

log x (order 1)
y defined by y 5 − y − ex log x = 0 (order 1)
ee

x

, log log x (order 2)

Analogy with classification of radicals (over Q):

2, 3
√

7,
5
√

3 +
√

5 (orders 0, 1, 2, respectively).

Observe that taking the the derivative of an elementary function of order
n yields an elementary function of order ≤ n.
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Theorem 1 (Abel (1829), Liouville (1833)) If the abelian integral
∫
y dx

is an elementary function then it must have the form∫
y dx = t + A log u + B log v + · · ·+ F logw

where t, u, v , . . . ,w are algebraic functions of x and A,B , . . . ,F are
constants.

Theorem 2 (Abel’s Theorem; Précis (1829)) The functions t, u, v , . . . ,w
in Theorem 1 are rational functions of x and y .

(Footnote in Précis: “I have founded on this theorem a new theory of
integration of algebraic differentials, but circumstances have made it
impossible for me to publish this yet. . . ”)



D
ra

ft



D
ra

ftRemarks concerning Abel’s Theorem and its proof in Précis.

Galois cited this particular result in Précis, and Liouville included in his
paper the complete proof given in Précis of Theorem 2.

In 1916 Hardy and Littlewood (erroneously) claimed that Abel’s proof
was wrong!
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ftUsing Abel’s Theorem one can show that “most” elliptic integrals, for
example ∫

dx√
(1− x2)(1− k2x2)

,

are not elementary functions.
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ftHowever, as an example of the subtlety involved consider∫
x dx√

x4 + 10x2 − 96x − 71
=

− 1

8
log

[
(x6+15x4−80x3+27x2−528x+781)·

√
x4+10x2−96x−71

−(x8+20x6−128x5+54x4−1408x3+3124x2+10001)

]
But ∫

x dx√
x4 + 10x2 − 96x − 72

is not an elementary function.
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1802

1815

1816

1817

1818

1819

1820

1821

Born Aug. 5

Pupil at the Cathedral
School in Christiania
(later Oslo) New math teacher

(Bernt Michael Holmboe)

Death of Abel’s father

“Proof” of solvability (sic!) of the
quintic

Examen Artium
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1822

1823

1824

1825

1826

1827

1828

1829

Entrance exam to
the university

Preparation for the
travel to Göttingen and
Paris – in isolation in
Christiania

Abel’s travel to Berlin
and Paris

Hectic work period in
Christiania

Abelian integrals

Visits professor Degen in Copenhagen

“Anni mirabiles” (The miraculous years)
Discoveries: 1) Abel’s integral equation

2) Unsolvability of the quintic
3) Elliptic functions
4) The addition theorem

Berlin and Crelle: “Journal für die reine
und Angewandte Mathematik”.

Paris and the disappearance of the Paris Memoir.

Abandons visiting Göttingen and Gauss.

Development of the theory of elliptic functions.
(Abel-Jacobi “competition”.)
Theory of equations.

Letter to Legendre. Hyperelliptic paper published.
January 6: Last manuscript – proof of

the addition theorem in its
most general form.

Précis published

�April 6

Last 31/2 months at
Froland Verk
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ftAtiyah in his acceptance speech in Oslo 2004 on the occasion of
receiving the Abel Prize:

Abel was really the first modern mathematician. His whole approach,
with its generality, its insight and its elegance set the tone for the next
two centuries. (. . . ) Had Abel lived longer, he would have been the
natural successor to the great Gauss.
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ftYuri Manin being interviewed in 2009:

Take for example the first volume of Crelle’s Journal (Journal of Pure
and Applied Mathematics), which appeared first time in 1826. Abel’s
article appeared there, on the unsolvability in radicals of the general
equation of degree higher than four. A wonderful article! As a member
of the editorial board of Crelle, I would accept it even today with great
pleasure.
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Given polynomials R = R(x) and ρ = ρ(x). Abel (1826) proved that∫
ρ dx√
R

can be expressed by logarithms if and only if
∫

ρ dx√
R

is of the form

∫
ρ dx√
R

= A log

(
p + q

√
R

p − q
√
R

)

where p and q are polynomials in x , A is a constant.

Furthermore, he showed that there exists ρ such that∫
ρ dx√
R

= log

(
p +
√
R

p −
√
R

)

if and only if
√
R has a periodic continued fraction expansion.
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ft√
R = r +

1

2µ +
1

2µ1 +
1

. . . +
1

2µ1 +
1

2µ +
1

2r +
1

2µ +
1

2µ1 +
1

. . .

period
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ftp = r +
1

2µ +
1

2µ1 +
1

. . . +
1

2µ +
1

2r

The proof of this result is obtained by Abel by putting it in connection
with Pell-like equations

F 2 − G 2R = a

where F and G are polynomials in x , and a is a constant.
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ft“The ramparts are raised all around but, enclosed in its last redoubt, the
problem defends itself desperately. Who will be the fortunate genius who
will lead the assault upon it or force it to capitulate?”

Jean Étienne Montucla (1725-1799)
Histoire des Mathématiques (Tome III)
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Jeg har paa et andet Sted beviist at

∫ (log x)a dx
c+x paa ingen Maade lader sig

integrere ved de hidentil antagne Functioner, og at det altsaa er en egen
Classe af transcendente Functioner.

[I have proved another place that
∫ (log x)a dx

c+x in no way whatsoever can be
integrated in terms of the up to now familiar functions, and hence this
belongs to a separate class of transcendent functions.]
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ft“Abel told me”, Holmboe said, “that already during his stay in Paris
autumn 1826 he had finished the essential part of the principles that he
wanted to put forward regarding these functions. He would have
preferred to postpone the publication of his discoveries until he was able
to present them as a unified theory, if not in the meantime Jacobi
appeared on the scene, which had shaken up his plans.”
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Let C(x) denote the field of rational functions over C. Let y = y(x) be
an algebraic function given by

y n + Rn−1(x)y n−1 + · · ·+ R1(x)y + R0(x) = 0.(i)

Take the derivative of (i):

ny n−1y ′ + (R ′n−1y
n−1 + (n − 1)Rn−1y

n−2y ′) + · · ·+ (R ′1y + R1y
′) + R ′0 = 0.

Conclusion y ′ is a rational function of x and y , and hence y ′ is an
algebraic function.

Let a = a(x , y) be a rational function of x and y , where y is as above.
Then

(a′ =)
da

dx
=
∂a

∂x
+
∂a

∂y

dy

dx
is a rational function of x and y .
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Theorem (very special case of Abel’s Theorem) Let y = y(x) be an
algebraic function. Assume the abelian integral u =

∫
y dx is an

algebraic function. Then u is a rational function of x and y .

Proof: Let C(x) be the field of rational functions of x . Then C(x , y)
(≡ rational functions of x and y) is a finite-dimensional field extension
of C(x). Since u is algebraic over C(x), it is obviously algebraic over
C(x , y).
(Abel: “. . . car cette supposition permise simplifiera beaucoup le
raisonnement.”)
Now u is a root of an irreducible polynomial

f (z) = zk + ak−1(x , y)zk−1 + · · ·+ a1(x , y) + a0(x , y)

over C(x , y) (the minimal polynomial of u over K ).
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uk + ak−1u
k−1 + · · ·+ a1u + a0 = 0(∗)

Take the derivative and use that u′ = y :

kuk−1y +
(
a′k−1u

k−1 + (k − 1)ak−1u
k−2y

)
+ · · ·+ (a′1u + a1y) + a′0 = 0

(∗∗)

Now each a′i is a rational function of x and y , and so a′i ∈ C(x , y). From
(∗∗) we get

(ky + a′k−1) uk−1 + · · ·+ (2a2y + a′1)u + (a1y + a′0) = 0.(∗ ∗ ∗)

Hence ky + a′k−1 = 0, and so

u =

∫
y dx = −1

k

∫
a′k−1 dx = −ak−1

k
, q.e.d.
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ftR. H. Risch showed in 1969 that there exists an algorithm to decide
whether the indefinite integral of an elementary function is elementary or
not.

The crucial theorem that Risch’s result is based upon is an analogue of
Theorem 1 (due to Abel and Liouville).
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ft23. December 1751: “Die Geburtstag der elliptischen Funktionen”
(Jacobi).

Euler (23. December 1751 —).

dx√
A + 2Bx + Cx2 + 2Dx3 + Ex4

+
dy√

A + 2By + Cy 2 + 2Dy 3 + Ey 4
= 0

(√
A + 2Bx + · · · −

√
A + 2By + · · ·

x − y

)2

= 2D(x + y) + E (x + y)2 + F .
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ft∫ x

0

dt√
(1− t2)(1− k2t2)

+

∫ y

0

dt√
(1− t2)(1− k2t2)

=

∫ z

0

dt√
(1− t2)(1− k2t2)

,

z =
x
√

(1− y 2)(1− k2y 2) + y
√

(1− x2)(1− k2y 2)

1− k2x2y 2

“Potius tentando vel divinando.”
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(Abel’s letter to Degen in Copenhagen dated March 2, 1824.)

Jeg er af en Hændelse kommen dertil, at jeg kan udtrykke en Egenskab
af alle transcendente Functioner af Formen

∫
φ(z)dz , hvor φ(z)

betegner en hvilkensomhelst algebraisk irrational Function af z , ved en
saadan Ligning, og det mellem saa mange variable Størrelser som man
vil; nemlig dersom man betegner

∫
φ(z)dz = ψ(z) saa kan man altid

finde en Ligning af Formen

ψ(z1) + ψ(z2) + ψ(z3) + · · ·+ ψ(zn) = ψ(α1) + ψ(α2) + · · ·+ ψ(αn) + p

hvor z1, z2 etc. ere algebraiske Functioner af et hvilketsomhelst Antal
variable Størrelser (n er afhængig av dette Antal og i Alm. meget større;
α1, α2 etc. ere constante Størrelser og p en algebraisk og logarithmisk
Function; den er i mange Tilfælde liig Nul). Dette Theorem og en
Afhandling derom har jeg tænkt at sende til det franske Institut, da jeg
synes det vil udbrede Lys over de transcendente Functioner i det Hele.”
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ft“. . . I have come across a remarkable discovery: I can express a
property of all transcendental functions of the form

∫
φ(z)dz , where

φ(z) is an arbitrary algebraic function of z , by an equation of the
following form (denoting

∫
φ(z)dz = ψ(z)):

ψ(z1) + ψ(z2) + ψ(z3) + · · ·+ ψ(zn) = ψ(α1) + ψ(α2) + · · ·+ ψ(αn) + p

where z1, z2, . . . are algebraic functions of an arbitrary number of
variables (n depends on this number and is in general much larger;
α1, α2 are constant entries and p is an algebraic/logarithmic function,
which in many cases is zero). This theorem and a memoir based on it
I expect to send to the French Institute, for I believe it will throw light
over the whole theory of transcendental functions . . . ”
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ftAbel’s addition theorem in the hyperelliptic case, generalizing Euler’s
addition theorem in the elliptic case. (Published in Crelle, Volume 3,
December 3, 1828).

Let n be any natural number and let x1, x2, . . . , xn be any complex
numbers. Then,∫ x1

0

dx√
f (x)

+

∫ x2

0

dx√
f (x)

+ · · ·+
∫ xn

0

dx√
f (x)

=

g∑
k=1

∫ zk

0

dx√
f (x)

where f (x) is a polynomial of degree 2g + 2 or 2g + 1 with no multiple
roots and z1, z2, . . . , zg are algebraic functions of x1, x2, . . . , xn.
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In a letter to Legendre dated March 14, 1829, Jacobi wrote:

“Quelle découverte de M. Abel que cette généralisation de l’intégrale
d’Euler! A-t-on jamais vu pareille chose! Mais comment s’est-il fait que
cette découverte, peut-être la plus importante de ce qu’a fait dans les
mathématiques le siècle dans lequel nous vivons, étant communiquée à
votre Académie il y a deux ans, elle ait pu échapper à l’attention de vous
et de vos confrères?”

“What a discovery by Abel, this generalization of Euler’s integral! Has
anything like it ever been seen? But how is it possible that this
discovery, perhaps the most important in our century, could have
avoided the attention of yourself and your colleagues after having been
communicated to the Academy more than two years ago?”
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The Paris Memoir starts with the remark that a sum of abelian integrals
(∗) ω(x1) + ω(x2) + · · ·+ ω(xn), where ω(x) =

∫ x

a u dx , can be
expressed in terms of algebraic/logarithmic functions of x1, x2, . . . , xn
provided there exist certain algebraic relations between x1, x2, . . . , xn.
Abel then attacks the following problem: Determine the minimal number
γ such that an arbitrary sum (∗) can be expressed in terms of γ
summands of the form ω(z) =

∫ z

a u dx where the z ’s are algebraic
functions of x1, x2, . . . , xn (plus algebraic/logarithmic terms). He then
establishes that this question is intimately related to when the
algebraic/logarithmic terms vanish.

This is the first time in the history of mathematics that the all
important concept of the genus of an algebraic curve is
introduced and given “life” and significance.
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Dirichlet (1st July 1852): Gedächtnisrede auf Jacobi:

“. . . das Eulersche Theorem bildete damals auf dem Gebiete, dem es
angehört, die Grenze der Wissenschaft, über welche hinauszugehen Euler
selbst, Lagrange und andere Vorgänger Abels sich vergebens bemüth
hatte. Welche Bewunderung musste daher eine Entdeckung hervorrufen,
welche, die Integrale aller algebraischen Functionen umfassend, die
Grundeigenschaft derselben enthüllte.”

“. . . Euler’s Theorem represented then – within the field to which it
belonged – the limit of mathematical science and beyond which Euler
himself, Lagrange and other predecessors of Abel had endeavoured in
vain to surmount. What awe must therefore a discovery have brought
forth which unveiled the essential properties of the integrals of all
algebraic functions.”
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ftBrill-Noether (Jahresbericht der Deutschen Mathematiker-Vereinigung –
1892/93)
“Die Entwicklung der Theorie der algebraischen Functionen in älterer
und neuerer Zeit.”

“First of all, it is Abels’s glory to have brought integrals of higher
radicals (i.e. hyperelliptic integrals) within the accessible reach of the
mathematical learning of his time. Confronted with these even Euler’s
acuity proved to be insufficient. Furthermore, he put these integrals in
such close relation to the elliptic functions that their complete
understanding was only a question of time. However, this was for Abel
just a transitional step on the way to a type of integrals that nobody
before him had ever thought of.”
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ft“. . . y is by means of the polynomial equation Θ(x , y) = 0 defined as
the general algebraic function of x . This concept is here for the first
time included in a theorem, and attains thereby life and significance. In
this sense Abel is the founder of the theory of algebraic functions.”
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ftPicard (1899): “Le théorème parait tout à fait élémentaire, et il n’y a
peut-être pas, dans l’histoire de la Science, de proposition aussi
importante obtenue à l’aide de considérations aussi simples.”

[“The theorem appears as completely elementary, and perhaps there has
never occurred in the history of science a proposition so important which
is obtained by so simple considerations.”]

Kronecker to Mittag-Leffler (1874): “The whole enormous edifice of
modern mathematics rests on the shoulder of this Scandinavian giant.”
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ftAtle Selberg:

Det har alltid st̊att for meg som den rene magi. Hverken Gauss eller
Riemann, eller noen annen, har noe som riktig kan m̊ale seg med dette.

[For me this has always appeared as pure magic. Neither Gauss nor
Riemann nor anyone else have anything that really measures up to this.]
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ftWhat was the “Hændelse” (“epiphany”) that Abel refers to in his letter
to Degen, and which gave him the ingenious idea how to generalize
Euler’s addition theorem for elliptic integrals to any abelian integral?
Nobody knows. (The crucial mathematical notebooks that he had at
that time are lost.) However, a clue may be to take a look at the proof
that Abel presents in the hyperelliptic case, and specialize that proof to
the elliptic case.
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The Euler addition theorem for elliptic integrals (of the first kind) can be
formulated in the following manner, which for the general theory of
algebraic integrals is of fundamental importance: Given three pairs(

x1,
√

f (x1)
)
,
(
x2,
√

f (x2)
)
,
(
x3,
√

f (x3)
)

where f (x) is a polynomial of third or fourth degree. Assume two of
these pairs are given. Then one can in an algebraic way determine the
third pair so that the differential equation

dx1√
f (x1)

+
dx2√
f (x2)

+
dx3√
f (x3)

= 0

is satisfied. (This is the genus one case. Abel’s addition theorem
generalizes this to the higher genus cases.)
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Abel’s proof is based on the following lemma:

Let F (x) be a polynomial of degree n with n distinct roots x1, x2, . . . , xn,
and let F ′(x) be the derivative of F (x). Let φ(x) be a polynomial of
degree less or equal to n − 2. Then

φ(x1)

F ′(x1)
+
φ(x2)

F ′(x2)
+ · · ·+ φ(xn)

F ′(xn)
= 0.

Proof: The partial fraction decomposition of the rational function xφ(x)
F (x)

is equal to

x1φ(x1)

F ′(x1)(x − x1)
+

x2φ(x2)

F ′(x2)(x − x2)
+ · · ·+ xnφ(xn)

F ′(xn)(x − xn)

Setting x = 0, yields the result.
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Let f (x) be a polynomial of degree 3 or 4. Define

P(x) = a + bx + cx2

where a, b, c are (variable) parameters. Define

F (x) = P(x)2 − f (x) =
(
P(x) +

√
f (x)

)(
P(x)−

√
f (x)

)
(∗)

Let x1, x2, x3, x4 be the four roots of F (x) = 0, and consider these roots
as functions of the parameters a, b, c . Take the differential of (∗). Then
we get by a simple computation:

(δP) (xi)

F ′(xi)
=

dxi

2
√

f (xi)
; i = 1, 2, 3, 4

where δ denotes the differential with respect to the parameters a, b, c .
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By the lemma the sum on the left side is 0, and so we get:

4∑
i=1

dxi√
f (xi)

= 0.

Eliminating the parameters a, b, c from

F (xi) = (a + bxi + cx2i )2 − f (xi) = 0, i = 1, 2, 3, 4

we get Euler’s addition theorem for elliptic integrals.

Remark What is going on is the following: The curve y 2 − f (x) = 0 is
intersected by the “movable” curve (Clebsch: “Bewegliche” Curve)
y − (a + bx + cx2) = 0, where a, b, c are (variable) parameters.
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ft(Sylow, 1902)
I sin egentlige forfattertid, kun tre aar omtrent, havde han i grunden alle
sine emner samtidig under behandling. Han holdt dem i forbindelse med
hinanden og beskjæftigde sig i korte perioder snart med den ene, snart
med det andet; mest tid synes den saa rige teori for de elliptiske
funktioner at have krævet. Hans arbeidsomhed var overordentlig;
foruden at han i disse tre aar offentliggjorde alle sine store opdagelser,
har han ogsaa forberedt arbeider, som han ikke fik tid til at fuldende, og
det er ingenlunde sikkert, at vi kjender alle hans planer for fremtiden.
Den endelige redaktion af hans arbeider kom ofte aar efter opdagelsen af
de nye resultater, som de indeholt, og de færdige afhandlinger har derpaa
ofte maattet vente temmelig længe, inden deres tur til trykning kom.
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ftHvad der især udmerker Abel, foruden hans iderigdom, er hans stræben
efter den fulde stringens, samt den store almindelighed, hvori
problemerne stilles, og deres udtømmende behandling. En
eiendommelighed er det ogsaa, at han i sin fremstilling kun anvender saa
simple midler; af selve den vedvalgte problemstilling synes alt at flyde
lige til.


