Why is 1093 an interesting prime?

Abstract. This all started with a question that Abel posed in Crelle's
journal in 1828, under the heading “Aufgaben und Lehrsatze”. The
question was answered by Jacobi and appeared in the same issue of the
journal. Astonishingly, a special case of Abel’s question, not addressed
by Jacobi, turned out to be intimately related to Fermat's Last
Theorem. Furthermore, the question was also closely related to the
Fermat and Mersenne primes, as well as the Bernoulli numbers (and
thereby to the Riemann zeta function).



Reminder

a= b (mod m) means m | (a— b). In particular, a =0 (mod m)
simply means that m | a.

Example
= —45 (mod 13) since 13 | (7 — (—45)) = 52.

Interpretation of a = b (mod m), using the Euclidean algorithm:

a=qgm+n, 0<n<m
b=gm+rn, 0<n<m

Then a = b (mod m) if and only if n = r,.



a=b (mod m) and ¢ = d (mod m) implies a+ ¢ = b+ d (mod m)
and ac = bd (mod m).

If m prime then (multiplicative) inverses exist, i.e. if m{ a, then there
exists 3 such that a3 =1 (mod m). So we may write

_ 1 _ 1
a=—-,ora=a .
a



Fermat's “Little” Theorem

Let p be a prime and let p{ a. Then

2 1=1(mod p), ie p|(a®t-1).

Example
p=7,a=2 Then2°=1 (mod7), ie 7|(2°-1)=63.

Observe
a1 =1 (mod p?) = a» 1 =1 (mod p),
since p?|(aP 1 —1)=p|(a" ! -1)



21. L - 212
Aufgaben und Lehrsitze, .~ G

erstere aufzulésen, letziere zu beweisen. ( 1828

(Von Herrn N. H. A4bel zu Christiania in Norwegen.) - '
28. Aufgabe. Kann #**—1, wenn p eine Primzahl und « eine
ganze Ziahl und kleiner als p und grofser als 1 ist, durch p® theilbar sein?

Abel’s question: Can a/~* — 1 be divisible by u?, when 1 is a prime and
1 < a < u? In other words, can a*~! =1 (mod p?) for some prime 11?
BB e o ey s ’
Beantwortung der Aufgabe S. 212. dieses Bandes: ( B@M{ 3)
»Kann ¢**—1, Wenn g eine Primzahl und & eine ganze Zahl

und kleiner als p und gréfser als 1 ist, durch pp
theilbar sein”

(Von:Herrn Prof. C. G. J, Jacobi,)



‘Veranlafst durch vorstehende interessante Aufgabe, ersuchte ich einen
meiner Freunde hieselbst, Hrn. Busch, die Congruenz
-l — A

in Bezug auf den Modul pp fiir die Prirhzahlen bis 37 nach allen ihren
‘Wurzeln aufzulosen. Das Resultat dieser Arbeit enthdlt die unten ste-
hende Tabelle. Es ist darin den Wurzeln die Form & --pue’ gegeben,
wo & und o’ positive Zahlen sind, die kleiner sind als p; zu dem @, das
in der ersten Verticalreihe steht, giebt sie fiir p = 3, 5, 7, 11, 13, 17,
19, 23, 29, 31, 37, welche Zahlen sich in der obersten Horizontalreihe
befinden, das entsprechende ¢’, damit & -}- ue’ eine Wurzel sei. Se z B.
sind die Wurzeln von ¥ =1 (Mod.. 37%) . rH

1, 242.37, 3+ 17.37, 44 8.37, 5+ 24.37, etc. ete.



Ist /=0, 50 ist eine in der Aufgabe verlangte Zahl gefunden Die
Tabelle giebt e¢’=o0, fiir

e | e
11 { 3.9.
29 | 14.
37 | 18.

Die einfachste Liosung giebt 3° =243 =2.11*+ 1; also auch 3°=1,
wenn man die Vielfachen wvon 121 fortlafst.

39 =1 (mod 11?)
142 =1 (mod 29?)
Only examples for primes < 37
18% =1 (mod 37%) oy P primes < 37)
(9% =1 (mod 11?))



Recall Abel’s question: Can a*~! =1 (mod p?) occur? It turns out
that a = 2 is the most interesting case. So the following question

therefore arises:

Are there primes p > 3 such that

2" =1 (mod p?), ie p?| (2Pt —1)?

Theorem (Wieferich, 1909).
If the first case of Fermat's Last Theorem (FLT1) fails for the prime p,
then 2P~ =1 (mod p?). (Consequently, if 2°~1 # 1 (mod p?) then

(FLT1) is true.)



Fermat's Last Theorem (FLT) (proved by Andrew Wiles in 1994).

Let n > 3. Then the equation
(*) NG + yn — N

has no solution in integers 0 < x < y < z.

Remark
Enough to prove this for primes n. Can also assume that x, y, z are
pairwise relatively prime.

First case of (FLT) (Notation (FLT1))

In (%) we assume n 1t xyz, i.e. nis not a divisor of x, nor y, nor z, where
n > 3 is a prime.




The smallest prime p > 3 such that 2" =1 (mod p?) is p = 1093.
This was discovered by Meissner in 1913. A further search by D. H.
Lehmer has shown that for p < 6 x 10° only the primes p equal to 1093
and 3511 satisfy 21 =1 (mod p?)

So by Wieferich's theorem, (FLT1) is true for all primes p < 6 x 10°
except possibly for p = 1093 and p = 3511. (Mirimanoff showed that
(FLT1) is also true for p = 1093 and p = 3511. In doing this he invoked
Abel's original question, not restricting to o = 2.)



Two natural questions that arise from this are:
(i) Are there infinitely many primes p such that 2°~1 # 1 (mod p?)?
(i) Are there infinitely many primes p such that 2°~! =1 (mod p?)?

A digression: What motivated Abel to ask his question?
Let's speculate!



II. ABEL TIL HOLMBOE

Kjobenhavn [4 August 18231]

Tag Decimal-

L TN S
Aar 16.06£.321.219 o gy

Foruden at jeg leser arbeider jeg ogsaa selv. Saaledes har jeg sogt at bevise
Umuligheden af Ligningen @*=15"+ ¢* i hele Tal naar » er sterre end 2; men
jeg har jeg veeret h:aelde’cE J eg har ikke kommet videre end til mdlagte Theoremer,

som ere snorrige nok



Theorem 1. .
Ligningen
ar = bn 4 c»

hvor 7 er et Primtal er umuelig naar een eller flere af Storrelserne:
) 'm_’ m__ m_.
@, b,¢6, a+b, a-+c, b—ec, VYa, Vb, Tc

ere Primtal.



Abel’s claim

If a, b, c are nonzero pairwise relatively prime integers such that
O<c<b<aanda”"=>b"+ c", where n > 2 is a prime, then none of
a, b, ¢ are prime powers.

No direct proof of this statement has ever been discovered. However, it
is correct if n{ abc, but the proof of this is not easy and requires
analytical methods. (We are talking pre-Andrew Wiles here!). So maybe
Abel thought he had a proof of his claim by assuming the answer to his
question: “Can o' =1 (mod p?)", was no?



If 2 < a < p, where p is a prime, we define

a1 -1

gp(a) = 5

Remark

gp(a) is an integer by Fermat's Little Theorem, and we call g,(a) a
Fermat quotient (with base a and exponent p). We have that g,(a) =0
(mod p), i.e. p| gp(a), if and only if >~ =1 (mod p?).



Sylvester showed in 1861 the following congruence:

1 1 1
Gp(2)=1+Z+-+ -+

S d
3t - (mod p)

(He showed a similar congruence for g,(a).)

In 1910, Mirimanoff showed: If p = 2" 41 is a prime, then
1
qp(2) = F (mod p), and so, in particular, g,(2) # 0 (mod p).

Combining previous results, we get:
(FLT1) holds for prime exponents p of the form p =2" £ 1.



Two cases

(i) For 2"+ 1 to be a prime, r has to be of the form 2" for some
n > 0. The numbers F, = 22" + 1 are called Fermat numbers, and
F, is called a Fermat prime if F, is prime.
(Fermat (1607-1665)).

(i) For 2" — 1 to be a prime, r has to be a prime p. The numbers
M, = 2P — 1, p prime, are called Mersenne numbers, and M, is
called a Mersenne prime if M, is prime.
(Mersenne (1588-1648)).



Proposition
(i) If 2"+ 1 is a prime, then r = 2" for some n.
(i) If 2" — 1 is a prime, then r has to be prime.

Proof: (i) Sufficient to show that r has no odd factor. Assume to the
contrary that r =/ - k, where kK > 1 is odd. We have the identity

XKl =(x+1)(x—x2pxh 3 X x4 1)
Set x = 2. Then
2" +1=(2Y +1=2' +1)%V 22 ... _2l11)

Which shows that 2" + 1 is not a prime, contradicting our assumption.



Proposition
(i) If 2"+ 1 is a prime, then r = 2" for some n.
(i) If 2" — 1 is a prime, then r has to be prime.

Proof: (ii) Assume to the contrary that r = s - t, where s, t > 2. We
have the identity

xt—1=(x—-1)(x"1+ x4+ ..+ x+1)
Set x = 2°. Then
2N —1=(2V—-1=(2-1DE DV +...42°41),

so 2" — 1 is not a prime, contradicting our assumption.



Eisenstein (1844) conjectured: There are infinitely many Fermat
numbers that are prime. Even today only five Fermat primes are known:

Fo=3, L =5, [, =17, F3 = 257, F, = 65537.
(Fermat believed that all Fermat numbers are prime!)

One can show that

Fpn—1

377 =—1 (mod F,)

if and only if F, is a prime.



As for Mersenne numbers, Euler (1707-1783) gave the first test for
finding factors of these:

If p > 3 is a prime such that p =3 (mod 4), then 2p + 1 divides M, if
and only if 2p 4+ 1 is again a prime. In this way, Euler concluded that 23
divides Mj1,..., 503 divides Ms1, etc.

Primes p such that 2p + 1 is again a prime are called Sophie Germain
primes. She proved (around 1820):

If p and 2p + 1 are primes, then (FLT1) is true for the exponent p.



Lucas in 1878 derived a very effective primality test for Mersenne
numbers by utilizing the Fibonacci numbers (and the closely related
Lucas numbers) {F,}, given by Fp = 0, F; = 1 and the recurrence
relation F, = F,_1 + F,_». Lucas showed:

(i) If p=1 (mod 4), then M, = 2P — 1 is a prime if and only if M,
divides R,, where {R,} is given by R, = —4, R,;1 = R> — 2.
(So the sequence —4,14,194,...).

(i) If p=3 (mod 4) and p > 3, then M, = 2P — 1 is prime if and only
if M, divides R,, where {R,} is given by R, = —3, R,;1 = R*> — 2.
(So the sequence —3,7,47,...)



Schinzel (1963) conjectures the following:

There exist infinitely many square-free Mersenne numbers.

(To date no Fermat or Mersenne number with a square factor has ever
been found.)

Rotkiewicz (1965) showed the following:
If Schinzel’s conjecture is true, there exists infinitely many primes p such
that

21 £1  (mod p?).

So by the earlier mentioned theorem by Wieferich (1907), (FLT1) would
be true for infinitely many prime exponents p.



aP 1 —1

p
:(p—l)!—i—l

p

Fermat quotients: gp(a) =

Wilson quotients: W(p)

Wilson's Theorem (1782)
Let p be a prime. Then (p —1)! = —1 (mod p) i.e. p| ((p— 1)1 4+ 1).

If W(p) =0 (mod p),ie. (p—1)'+1=0 (mod p?), then p is called a
Wilson prime.

Remark
The only known Wilson primes are p =5, 13, 563.




p—1
Lerch proved in 1905 the following: qu(j) = W(p) (mod p)
j=1

Furthermore, Lerch showed that:  W(p) = By,-1) — Bp-1  (mod p)

Definition
B, denotes the n'th Bernoulli number, these being generated by the
function

In particular, By =1, B; = % Also, B, = 0 for all n odd, n > 3.



Euler discovered that the Bernoulli numbers were connected to the
Riemann zeta function (:

Bon = (—1)”1%((2@, for n > 1.

Here ((s) = Z %, Re(s) > 1.
k=1



p—1

Recall » " q,(j) = W(p) (mod p)
j=1
In 1909, Friedman and Tamarkine, in a letter to Hensel, proved:

S Jani) = ~28 = (1~ n) (mod p)

(Here p 1 n). !



There are similar formulas to the ones we have exhibited relating the
Fermat quotients (as well as the Wilson quotients) to the Legendre
symbol as well as to the class number of quadratic fields Q(v/a). (Here
a is a square-free integer.)

The proofs of these formulas use deep results by Kummer and Dirichlet
in class field theory.



Summary
We have seen that there is a rather surprising connection between such
dissimilar topics as Fermat’s Last Theorem, the factorization of
Mersenne numbers, the congruence 2”1 =1 (mod p?) as well as sums
of Fermat and Wilson quotients and the Bernoulli numbers, respectively
the Riemann zeta function.

Open problems

Are there infinitely many Fermat primes, Mersenne primes, Wilson
primes or primes p such that 27~ =1 (mod p?)?

So in a sense we link up to (the special case of) Abel’s original question!
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