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ftWhy is 1093 an interesting prime?

Abstract. This all started with a question that Abel posed in Crelle’s
journal in 1828, under the heading “Aufgaben und Lehrsätze”. The
question was answered by Jacobi and appeared in the same issue of the
journal. Astonishingly, a special case of Abel’s question, not addressed
by Jacobi, turned out to be intimately related to Fermat’s Last
Theorem. Furthermore, the question was also closely related to the
Fermat and Mersenne primes, as well as the Bernoulli numbers (and
thereby to the Riemann zeta function).
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Reminder

a ≡ b (mod m) means m | (a − b). In particular, a ≡ 0 (mod m)
simply means that m | a.

Example

7 ≡ −45 (mod 13) since 13 | (7− (−45)) = 52.

Interpretation of a ≡ b (mod m), using the Euclidean algorithm:

a = q1m + r1, 0 ≤ r1 < m

b = q2m + r2, 0 ≤ r2 < m

Then a ≡ b (mod m) if and only if r1 = r2.
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fta ≡ b (mod m) and c ≡ d (mod m) implies a + c ≡ b + d (mod m)
and ac ≡ bd (mod m).

If m prime then (multiplicative) inverses exist, i.e. if m - a, then there
exists ā such that aā ≡ 1 (mod m). So we may write

ā =
1

a
, or ā = a−1.
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Fermat’s “Little” Theorem

Let p be a prime and let p - a. Then

ap−1 ≡ 1 (mod p), i.e. p | (ap−1 − 1).

Example

p = 7, a = 2. Then 26 ≡ 1 (mod 7), i.e. 7 | (26 − 1) = 63.

Observe

ap−1 ≡ 1 (mod p2)⇒ ap−1 ≡ 1 (mod p),
since p2 | (ap−1 − 1)⇒ p | (ap−1 − 1)
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Abel’s question: Can αµ−1 − 1 be divisible by µ2, when µ is a prime and
1 < α < µ? In other words, can αµ−1 ≡ 1 (mod µ2) for some prime µ?
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310 ≡ 1 (mod 112)

1428 ≡ 1 (mod 292)

1836 ≡ 1 (mod 372)

(910 ≡ 1 (mod 112))

(Only examples for primes ≤ 37)
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ftRecall Abel’s question: Can αµ−1 ≡ 1 (mod µ2) occur? It turns out
that α = 2 is the most interesting case. So the following question
therefore arises:

Are there primes p ≥ 3 such that

2p−1 ≡ 1 (mod p2), i.e. p2 | (2p−1 − 1)?

Theorem (Wieferich, 1909).

If the first case of Fermat’s Last Theorem (FLT1) fails for the prime p,
then 2p−1 ≡ 1 (mod p2). (Consequently, if 2p−1 6≡ 1 (mod p2) then
(FLT1) is true.)
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ftFermat’s Last Theorem (FLT) (proved by Andrew Wiles in 1994).

Let n ≥ 3. Then the equation

xn + y n = zn(∗)

has no solution in integers 0 < x < y < z .

Remark
Enough to prove this for primes n. Can also assume that x , y , z are
pairwise relatively prime.

First case of (FLT) (Notation (FLT1))

In (∗) we assume n - xyz , i.e. n is not a divisor of x , nor y , nor z , where
n ≥ 3 is a prime.
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ftThe smallest prime p ≥ 3 such that 2p−1 ≡ 1 (mod p2) is p = 1093.
This was discovered by Meissner in 1913. A further search by D. H.
Lehmer has shown that for p < 6× 109 only the primes p equal to 1093
and 3511 satisfy 2p−1 ≡ 1 (mod p2)

So by Wieferich’s theorem, (FLT1) is true for all primes p < 6× 109

except possibly for p = 1093 and p = 3511. (Mirimanoff showed that
(FLT1) is also true for p = 1093 and p = 3511. In doing this he invoked
Abel’s original question, not restricting to α = 2.)



D
ra

ftTwo natural questions that arise from this are:

(i) Are there infinitely many primes p such that 2p−1 6≡ 1 (mod p2)?

(ii) Are there infinitely many primes p such that 2p−1 ≡ 1 (mod p2)?

A digression: What motivated Abel to ask his question?
Let’s speculate!
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Abel’s claim
If a, b, c are nonzero pairwise relatively prime integers such that
0 < c < b < a and an = bn + cn, where n > 2 is a prime, then none of
a, b, c are prime powers.

No direct proof of this statement has ever been discovered. However, it
is correct if n - abc , but the proof of this is not easy and requires
analytical methods. (We are talking pre-Andrew Wiles here!). So maybe
Abel thought he had a proof of his claim by assuming the answer to his
question: “Can αµ−1 ≡ 1 (mod µ2)”, was no?
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ftIf 2 ≤ a < p, where p is a prime, we define

qp(a) =
ap−1 − 1

p

Remark

qp(a) is an integer by Fermat’s Little Theorem, and we call qp(a) a
Fermat quotient (with base a and exponent p). We have that qp(a) ≡ 0
(mod p), i.e. p | qp(a), if and only if ap−1 ≡ 1 (mod p2).



D
ra

ftSylvester showed in 1861 the following congruence:

qp(2) ≡ 1 +
1

3
+

1

5
+ · · ·+ 1

p − 2
(mod p)

(He showed a similar congruence for qp(a).)

In 1910, Mirimanoff showed: If p = 2r ± 1 is a prime, then

qp(2) ≡ ∓1

r
(mod p), and so, in particular, qp(2) 6≡ 0 (mod p).

Combining previous results, we get:
(FLT1) holds for prime exponents p of the form p = 2r ± 1.
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ftTwo cases

(i) For 2r + 1 to be a prime, r has to be of the form 2n for some
n ≥ 0. The numbers Fn = 22

n

+ 1 are called Fermat numbers, and
Fn is called a Fermat prime if Fn is prime.

(Fermat (1607-1665)).

(ii) For 2r − 1 to be a prime, r has to be a prime p. The numbers
Mp = 2p − 1, p prime, are called Mersenne numbers, and Mp is
called a Mersenne prime if Mp is prime.

(Mersenne (1588-1648)).
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Proposition

(i) If 2r + 1 is a prime, then r = 2n for some n.

(ii) If 2r − 1 is a prime, then r has to be prime.

Proof: (i) Sufficient to show that r has no odd factor. Assume to the
contrary that r = l · k , where k > 1 is odd. We have the identity

xk + 1 = (x + 1)(xk−1 − xk−2 + xk−3 − xk−4 + · · · − x + 1)

Set x = 2l . Then

2r + 1 = (2l)k + 1 = (2l + 1)(2l(k−1) − 2l(k−2) + · · · − 2l + 1)

Which shows that 2r + 1 is not a prime, contradicting our assumption.
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Proposition

(i) If 2r + 1 is a prime, then r = 2n for some n.

(ii) If 2r − 1 is a prime, then r has to be prime.

Proof: (ii) Assume to the contrary that r = s · t, where s, t ≥ 2. We
have the identity

x t − 1 = (x − 1)(x t−1 + x t−2 + · · ·+ x + 1)

Set x = 2s . Then

2r − 1 = (2s)t − 1 = (2s − 1)(2s(t−1) + · · ·+ 2s + 1),

so 2r − 1 is not a prime, contradicting our assumption.
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ftEisenstein (1844) conjectured: There are infinitely many Fermat
numbers that are prime. Even today only five Fermat primes are known:

F0 = 3, F1 = 5, F2 = 17, F3 = 257, F4 = 65537.

(Fermat believed that all Fermat numbers are prime!)

One can show that

3
Fn−1

2 ≡ −1 (mod Fn)

if and only if Fn is a prime.
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ftAs for Mersenne numbers, Euler (1707-1783) gave the first test for
finding factors of these:
If p > 3 is a prime such that p ≡ 3 (mod 4), then 2p + 1 divides Mp if
and only if 2p + 1 is again a prime. In this way, Euler concluded that 23
divides M11,. . . , 503 divides M251, etc.

Primes p such that 2p + 1 is again a prime are called Sophie Germain
primes. She proved (around 1820):
If p and 2p + 1 are primes, then (FLT1) is true for the exponent p.
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ftLucas in 1878 derived a very effective primality test for Mersenne
numbers by utilizing the Fibonacci numbers (and the closely related
Lucas numbers) {Fn}, given by F0 = 0, F1 = 1 and the recurrence
relation Fn = Fn−1 + Fn−2. Lucas showed:

(i) If p ≡ 1 (mod 4), then Mp = 2p − 1 is a prime if and only if Mp

divides Rp, where {Rn} is given by R2 = −4, Rn+1 = R2
n − 2.

(So the sequence −4, 14, 194, . . . ).

(ii) If p ≡ 3 (mod 4) and p > 3, then Mp = 2p − 1 is prime if and only
if Mp divides R̄p, where {R̄n} is given by R̄2 = −3, R̄n+1 = R̄2 − 2.
(So the sequence −3, 7, 47, . . . )
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ftSchinzel (1963) conjectures the following:
There exist infinitely many square-free Mersenne numbers.
(To date no Fermat or Mersenne number with a square factor has ever
been found.)

Rotkiewicz (1965) showed the following:
If Schinzel’s conjecture is true, there exists infinitely many primes p such
that

2p−1 6≡ 1 (mod p2).

So by the earlier mentioned theorem by Wieferich (1907), (FLT1) would
be true for infinitely many prime exponents p.
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ftFermat quotients: qp(a) =
ap−1 − 1

p

Wilson quotients: W (p) =
(p − 1)! + 1

p

Wilson’s Theorem (1782)

Let p be a prime. Then (p − 1)! ≡ −1 (mod p) i.e. p | ((p − 1)! + 1).

If W (p) ≡ 0 (mod p), i.e. (p − 1)! + 1 ≡ 0 (mod p2), then p is called a
Wilson prime.

Remark
The only known Wilson primes are p = 5, 13, 563.
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ftLerch proved in 1905 the following:

p−1∑
j=1

qp(j) ≡ W (p) (mod p)

Furthermore, Lerch showed that: W (p) ≡ B2(p−1) − Bp−1 (mod p)

Definition
Bn denotes the n’th Bernoulli number, these being generated by the
function

x

ex − 1
=

∞∑
n=0

Bn
xn

n!
.

In particular, B0 = 1, B1 = 1
2 . Also, Bn = 0 for all n odd, n ≥ 3.
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ftEuler discovered that the Bernoulli numbers were connected to the
Riemann zeta function ζ:

B2n = (−1)n−1
2(2n)!

(2π)2n
ζ(2n), for n ≥ 1.

Here ζ(s) =
∞∑
k=1

1

k s
, Re(s) > 1.
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ftRecall

p−1∑
j=1

qp(j) ≡ W (p) (mod p)

In 1909, Friedman and Tamarkine, in a letter to Hensel, proved:
p−1∑
j=1

jnqp(j) ≡ −Bn

n
≡ ζ(1− n) (mod p)

(Here p - n).
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ftThere are similar formulas to the ones we have exhibited relating the
Fermat quotients (as well as the Wilson quotients) to the Legendre
symbol as well as to the class number of quadratic fields Q(

√
a). (Here

a is a square-free integer.)

The proofs of these formulas use deep results by Kummer and Dirichlet
in class field theory.
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Summary

We have seen that there is a rather surprising connection between such
dissimilar topics as Fermat’s Last Theorem, the factorization of
Mersenne numbers, the congruence 2p−1 ≡ 1 (mod p2) as well as sums
of Fermat and Wilson quotients and the Bernoulli numbers, respectively
the Riemann zeta function.

Open problems

Are there infinitely many Fermat primes, Mersenne primes, Wilson
primes or primes p such that 2p−1 ≡ 1 (mod p2)?

So in a sense we link up to (the special case of) Abel’s original question!
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